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Abstract

A key parameter in the analysis of wage inequality is the elasticity of sub-

stitution between skilled and unskilled labor. We show that the empirical

literature is consistent with both publication and attenuation bias in the es-

timated inverse elasticities. Publication bias, which exaggerates the mean

reported inverse elasticity, dominates and results in corrected inverse elastic-

ities closer to zero than the typically published estimates. The implied mean

elasticity is 4, with a lower bound of 2. Elasticities are smaller for developing

countries. To derive these results, we use nonlinear tests for publication bias

and model averaging techniques that account for model uncertainty.
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1 Introduction

The elasticity of substitution between skilled and unskilled workers ranks among the most

frequently estimated parameters in labor economics: we found 682 estimates reported in

77 studies. The parameter commands the predictions of the canonical model of skill

differentials, especially the effect on the skill premium of a changing ratio of skilled

workers and biased technological change (for instance, Katz & Murphy, 1992; Acemoglu,

2002; Ciccone & Peri, 2005). It is also important for other questions, including the

usefulness of cross-country heterogeneity in education for explaining differences in labor

productivity (Klenow & Rodriguez-Clare, 1997). Unlike many important parameters in

economics, for which often little consensus exists and calibrations vary by the order of

magnitude, the elasticity of skill substitution is with extraordinary consistency commonly

calibrated at 1.5. As Cantore et al. (2017, p. 80) put it: “Most of [the] estimates [of the

elasticity] range between 1.3 and 2.5, with a consensus estimate around 1.5.” In this

paper we show that the literature is instead consistent with an elasticity around 4.

The observation by Cantore et al. (2017) is based on key papers (Katz & Murphy,

1992; Ciccone & Peri, 2005; Autor et al., 2008) but, at first glance, holds for the literature

as a whole: the 682 estimates we collect have a mean of 1.8. Nevertheless, Figure 1 illus-

trates that individual studies estimating the elasticity disagree more than what is often

acknowledged in the applications of the estimates. Elasticities larger than 1 (suggesting

that skilled and unskilled labor are gross substitutes) dominate the literature and also

frequently include values around 4. Elasticities smaller than 1 (suggesting that skilled

and unskilled labor are gross complements) are not rare. So the literature is consistent

with a wide range of calibrations, though of course the first moment is key in informing

them. The problem is that the mean estimates reported in many fields of economics are

routinely distorted by publication bias (Brodeur et al., 2016; Bruns & Ioannidis, 2016;

Card et al., 2018; Christensen & Miguel, 2018; DellaVigna et al., 2019; Blanco-Perez &

Brodeur, 2020; Brodeur et al., 2020; Ugur et al., 2020; Xue et al., 2020; Imai et al., 2021;

Neisser, 2021; Stanley et al., 2021; Brown et al., 2022; DellaVigna & Linos, 2022; Iwasaki,

2022; Stanley et al., 2022), often by a factor of 2 or more (Ioannidis et al., 2017).

2



Figure 1: Many studies defy the consensus of 1.5 elasticity
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Notes: The vertical axis shows the median estimate of the elasticity of sub-

stitution reported in individual studies. The horizontal axis shows the median

year of the data used in the studies. Outliers are omitted from the figure for

ease of exposition but included in all tests. The figure, as well as all other fig-

ures, tables, and numbers in the main text, only considers elasticities implied

by regressions of the skill premium on the relative supply of skilled labor, not

elasticities implied by reverse regressions (see text and Online Appendix B for

details).
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Publication bias stems from the tendency of authors, editors, or referees to prefer

statistically significant or theory-consistent results. Negative estimates of the elasticity

are inconsistent with the canonical model, and zero or infinite estimates are unintuitive.

Few researchers are eager to interpret such estimates, though negative, insignificant, or

huge elasticity estimates will appear from time to time given sufficient imprecision in data

and methods. The analysis of publication bias in this context is complicated by the fact

that while some researchers estimate the elasticity directly, most estimate the (negative)

inverse elasticity by regressing the skill premium on the relative supply of skilled labor.

The two groups of studies cannot be combined in an analysis of publication bias because

the inversion necessary for such a combination violates the assumptions of many tests.

Since in most plausible situations the relative supply represents the treatment and the

skill premium represents the outcome, in the main text we only focus on the studies

estimating the negative inverse elasticity, which are more likely to identify the underlying

causal relationship. In the Online Appendix we explain in detail why we find direct

estimates, yielded by reverse regressions, less persuasive (Appendix B), and provide tests

of publication bias for these estimates separately (Appendix C). The direct estimates are

consistent with little to no substitutability between skilled and unskilled labor.

McCloskey & Ziliak (2019) liken the problem of publication bias and p-hacking1 to

the Lombard effect in psychoacoustics, in which speakers intesify their vocal effort in

response to noise. So, too, can researchers intensify specification searching in response to

noise in their data and try a different setup to obtain a negative inverse elasticity larger

in magnitude, ideally an estimate significantly different from zero. Most of the techniques

we use for publication bias correction (including Ioannidis et al., 2017; Andrews & Kasy,

2019; Bom & Rachinger, 2019; Furukawa, 2020) are explicitly or implicitly based on

1Conceptually, publication bias and p-hacking are distinct terms. The latter denotes

researchers’ effort to produce statistically significant results, and often stems from pub-

lication bias. But it is unfeasible in empirical work to separate these two effects, as they

tend to be observationally equivalent. Applied meta-analysts thus typically use the term

publication bias more generally to also include p-hacking, and we follow this practice.
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the Lombard effect and assume that, in the absence of the bias, there is no correlation

between estimates and standard errors. The assumption is common but strong, and we

show that the correlation exists even among estimates unlikely to suffer from the bias.

Consequently we use the inverse of the square root of the number of observations as an

instrument for the standard error (Stanley, 2005) and employ tests by Gerber & Malhotra

(2008) and Elliott et al. (2022) that do not require the assumption.

We have noted that publication bias has been identified in many fields. In most cases,

however, it is probably moderated by attenuation bias in the opposite direction. Ac-

cording to the “iron law of econometrics” (Hausman, 2001), most estimates are biased

towards zero because the independent variable is almost always measured with error. The

interplay between publication and attenuation biases must be ubiquitous in economics,

but to our knowledge has not been explored before. The literature on skill substitution

recognizes the measurement error problem, since data on labor supply can be notoriously

noisy, and attenuation bias is mentioned frequently (e.g. by Katz & Murphy, 1992; An-

grist, 1995; Borjas, 2003; Bound et al., 2004; Borjas & Katz, 2007; Autor et al., 2008;

Card, 2009; Behar, 2010; Verdugo, 2014; Kawaguchi & Mori, 2016; Bowlus et al., 2022).

A classical measurement error can arise in the relative labor supply for at least three

reasons. First, survey responses may contain noise. Second, migrants’ degrees may be

incomparable to natives’ degrees due to cross-country differences in the quality of the

educational system. Third, the mapping from degrees to skills may be noisy due to time

differences in the quality of education and selection into student cohorts. We exploit the

fact that part of the literature uses instrumental variables (IV) to address the attenuation

bias and other endogeneity biases, while other studies either use simple OLS or have ac-

cess to arguably exogenous variation in relative labor supply (natural experiments). The

differences in results reported for studies based on OLS, IV, and natural experiments are

informative on the extent of attenuation bias.

Our results are consistent with both publication and attenuation bias. After correct-

ing for the former, the estimated negative inverse elasticity declines in magnitude from

the reported mean of −0.6 to an interval between −0.3 and 0.1, depending on the pub-
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lication bias correction method. Concerning the latter, the publication bias corrected

mean estimates are close to zero for both OLS and natural experiments, but around

−0.25 for IV. Under the assumption that the instrumental variables in the literature are

generally specified well, this result suggests that attenuation bias or other endogeneity

biases are important on average (the difference between OLS and IV is substantial) and

that attenuation bias in particular matters (the difference between IV and natural ex-

periments is substantial, too). Our preferred estimate of the mean elasticity is thus 4, a

value approximately corrected for both publication and attenuation bias.

The results are corroborated by a model that controls for 24 characteristics that reflect

the context in which the estimates were obtained (for example, variable definition, data

characteristics, design of the production function, estimation technique, and publication

characteristics). To address the resulting model uncertainty we use Bayesian (Raftery

et al., 1997; Eicher et al., 2011) and frequentist (Hansen, 2007; Amini & Parmeter, 2012)

model averaging, both superbly surveyed in Steel (2020). For the former we also employ

the dilution prior (George, 2010) that alleviates potential collinearity. Finally, we create

a hypothetical study that uses all estimates in the literature but assigns more weight to

those that are better specified (using Card, 2009, Autor, 2014, and Carneiro et al., 2022,

as benchmarks). The implied mean estimate of the elasticity is 4 with the 95% credible

interval of (2, 20). The implied elasticity for the US is 6, and for developing countries it is

2. We also find that publication bias is smaller for IV estimates and developing countries,

likely because for them the underlying inverse elasticity estimates are significantly distinct

from zero even in the absence of publication selection.

The remainder of the paper contains an analysis of publication bias (Section 2) and

heterogeneity (Section 3); attenuation bias is analyzed in both sections. The Online Ap-

pendix provides details on the dataset and estimation of the elasticity (Appendix A), dis-

cussion of the studies estimating the elasticity directly (Appendix B), additional material

on publication bias analysis (Appendix C), additional material on heterogeneity analysis

(Appendix D), and diagnostics and robustness checks of the Bayesian model averaging

analysis (Appendix E). Data and code are available at meta-analysis.cz/skill.
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2 Publication Bias

An intuitive quality of the elasticity of substitution between skilled and unskilled labor

is its nonnegativity. As Kearney (1997, p. 33) remarks on his negative estimates: “The

implied coefficients . . . violate standard economic theory.” Some researchers, such as

Bowles (1970, p. 73) “exclude [negative estimated] values [of the elasticity] . . . as im-

plausible on a priori grounds.” As we have noted, we focus on studies that estimate

the (negative) inverse elasticity. An inverse elasticity of zero, implying infinite elasticity

of substitution, is theoretically possible but often deemed implausible and rarely inter-

preted. What follows is a tendency in the literature to discriminate against positive and

insignificant values of the negative inverse elasticity. Hence the mean estimate of the neg-

ative inverse elasticity is probably biased towards a negative value larger in magnitude.

Such publication bias is natural, inevitable, and does not require any ulterior motives on

the side of authors, editors, or referees. It is a task for those who review and interpret

the literature to correct for the bias. As far as we know, no one has attempted to do so

in the case of the elasticity of skill substitution.

Most tests of publication bias assume that in the absence of the bias there is no

correlation between reported estimates and their standard errors. The correlation can

capture publication bias for two reasons. First, researchers (or editors or referees) may

prefer statistically significant results. Given some imprecision in their data and methods,

researchers may try, for example, different combinations of control variables until they

obtain an estimate large enough to offset the standard error. Second, researchers may

prefer an intuitive sign of the estimates and discard those with the opposite sign. Then

correlation between estimates and standard errors arises due to heteroskedasticity: with

lower precision, estimates will be more dispersed on both sides of the underlying mean

elasticity. When positive estimates of the negative inverse elasticity are discarded, a

regression of estimates on standard errors will yield a negative slope coefficient.

It is helpful to evaluate the relationship visually using the so-called funnel plot: a

scatter plot of estimates on the horizontal and their precision (1/SE) on the vertical

axis. Based on the intuition described in the previous paragraph, an asymmetry of the
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Figure 2: The funnel plot suggests publication bias
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Outliers are excluded from the figure for ease of exposition but included in all

statistical tests. Studies used in the analysis are listed in Table A1. SE =

standard error.
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funnel plot suggests publication bias, and the top of the funnel serves as an indication

of the underlying mean elasticity corrected for the bias. This is the case because under

the assumption that all studies estimate the same underlying elasticity the most precise

estimates are likely to be close to the underlying mean; moreover, because of their high

precision they tend to be highly significant and less prone to publication bias. Figure 2

shows evidence consistent with implicit or explicit discrimination against estimates with

the unintuitive (positive) sign. The most precise estimates are concentrated around zero,

which is consistent with perfect substitutability between skilled and unskilled labor.

We use two groups of tests more formal than the funnel plot. First, we regress esti-

mates on their standard errors and, to address heteroskedasticity, weight the regressions

by inverse variance in the spirit of Stanley (2008), Doucouliagos & Stanley (2013), and

Stanley & Doucouliagos (2015). Second, we use recent techniques that do not rely on the

linearity assumption. Regarding the linear meta-regression, a nonzero estimated slope

suggests publication bias. Under the assumption that publication selection is a linear

function of the standard error and there is no heterogeneity in the literature, the inter-

cept can be interpreted as the true mean elasticity corrected for the bias (the top of the

funnel). The linearity assumption, however, cannot be expected to hold in general, as

explained by Andrews & Kasy (2019) in the appendix to their paper (pp. 30–31).

Regarding nonlinear models, the technique with the most rigorous foundations is

the selection model of Andrews & Kasy (2019), which estimates the probability of a

result being reported and uses the probability to re-weight the observed distribution of

results. We have to specify the thresholds for the t-statistic associated with changes in

publication probability, and we choose -1.96, 0, and 1.96.2 We assume that effects have

a t-distribution and we cluster standard errors at the study level. The other nonlinear

specification that we employ is the endogenous kink model by Bom & Rachinger (2019),

which builds on Stanley & Doucouliagos (2014). It assumes that the relation between

2We only report the probability related to the −1.96 threshold for negative inverse

estimates; some of the remaining groups (especially positive estimates of the negative

inverse elasticity) have a limited number of observations.
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estimates and standard errors is linear up to a certain point until when precision is high

enough for all estimates to be published and the relation disappears. The endogenous

kink technique represents the latest incarnation of tests based directly on the funnel plot.

While the nonlinear techniques do not use the problematic assumption that publica-

tion selection is a linear function of the standard error, they share the strong assumption

that estimates and standard errors are independent or at least uncorrelated in the absence

of bias. Andrews & Kasy (2019) state the independence assumption explicitly, while the

endogenous kink technique implicitly assumes that more precise estimates are less biased

and closer to the true value.3 The assumption is unlikely to hold in economics because

data and method choices can influence both estimates and standard errors systemati-

cally. Table C6 in the Online Appendix shows that estimates and their standard errors

are correlated even among estimates with a p-value below 0.005, where publication bias

is less likely. The correlation appears in most cases even if we divide the literature to

subsamples according to the main differences in data and methods. But it is also possible

that even these highly significant estimates are plagued by publication bias.

Table C7 in the Online Appendix presents a direct specification test, introduced by

Kranz & Putz (2022) on the suggestion of Isaiah Andrews, of the Andrews & Kasy (2019)

technique. The table shows, for various subsets of the literature, the correlation coeffi-

cient between the logarithm of the absolute value of the estimated inverse elasticity and

the logarithm of the corresponding standard error, weighted by the inverse publication

probability estimated by the Andrews & Kasy (2019) model. If all the assumptions of the

model hold, the correlation should be zero. In our case the correlation is substantial for

almost all subsets of the literature, which means that some of the assumptions (including

the key independence assumption) are probably violated.

As a partial solution to the likely violation of the independence assumption invoked by

3If there is, for example, a positive relationship between estimates and standard errors

in the absence of publication bias, highly precise estimates will be smaller than the true

underlying mean. If some researchers reduce standard errors (for example, via changes in

clustering) in response to small point estimates, high reported precision can be spurious.

10



nearly all meta-analysis techniques, we run a simple meta-regression where the standard

error is instrumented by the inverse of the square root of the number of observations

(Stanley, 2005; Havranek, 2015). Comparing this IV estimate with other linear and non-

linear estimators tells us something about the practical importance of the independence

assumption for measuring the magnitude of publication bias and the corrected effect.

Following Andrews et al. (2019), we report the two-step weak-instrument-robust 95%

confidence interval based on the Stata package by Sun (2018) and the idea of Andrews

(2016) and Andrews (2018).

In the main text we focus on 5 bias-correction estimators that we consider most

informative in the context of skill substitution: linear meta-regression with study-level

fixed effects, between-effects meta-regression, IV meta-regression, the Bom & Rachinger

(2019) endogenous kink model, and the Andrews & Kasy (2019) selection model. In the

Online Appendix we also report the results of three additional techniques: OLS meta-

regression, the weighted average of adequately powered estimates introduced by Ioannidis

et al. (2017), and the stem-based technique by Furukawa (2020). The results of these three

techniques generally do not alter our conclusions. Each of the 5 estimators that we focus

on has a different strength: the fixed-effects model allows us to filter out idiosyncratic

study-level effects, the between-effects model gives each study the same weight, the IV

meta-regression directly addresses potential endogeneity, the endogenous kink model is

the most advanced nonlinear estimator based on the funnel plot and performs well in

Monte Carlo simulations (Bom & Rachinger, 2019), and the Andrews & Kasy (2019)

model is the one most rigorously founded, although, as we have noted, in the case of skill

substitution probably not well specified.

In the Online Appendix (Table C1) we test publication bias for the entire sample of

negative inverse elasticity estimates. All techniques find substantial publication bias and,

with the exception of the Andrews & Kasy (2019) model, yield estimated mean inverse

elasticities close to zero.4 Even for the Andrews & Kasy (2019) model the implied mean

4For the sample of direct elasticity estimates we also find strong publication bias and

zero mean corrected coefficient. Thus both groups of studies suggest little correlation be-
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elasticity of substitution exceeds 3. In the main text we analyze publication bias sepa-

rately for different methods used in the primary studies and divide the studies into three

groups: OLS (typically time series studies that either ignore endogeneity or argue that it

is not a major issue), IV (typically cross-sectional studies with shift-share instruments),

and natural experiments (studies that exploit arguably exogenous variation in relative

skill supply induced either by migration or expansions of higher education).

Correcting for publication bias in individual subsamples separately has three advan-

tages. First, the aggregate analysis may confound publication bias with heterogeneity.

Second, previous meta-analyses have shown differences in publication bias between OLS

and IV estimates in economics. For example, Ashenfelter et al. (1999) find that IV esti-

mates of the return to schooling suffer more from publication bias because researchers have

a harder time producing statistically significant estimates given the imprecision brought

by IV. Third, differences in the corrected means for OLS, IV, and natural experiments

are informative on the extent of attenuation bias. If IV studies are well specified, they

correct for attenuation bias and other endogeneity biases. Natural experiments correct

for other endogeneity biases, but in general not for attenuation bias.

Table 1 shows the results. For natural experiments we only have 40 estimates taken

from 6 studies, so the power of the tests is low for this group, but all techniques suggest

strong publication bias and negligible corrected effects. Natural experiments as a whole

are thus consistent with no causal effect of relative skill supply on the skill premium

and therefore with infinite elasticity of substitution. We obtain similar results for OLS

estimates—with the exception of the Andrews & Kasy (2019) model, which is in this

context less aggressive in correcting for publication bias. But IV estimates of the negative

inverse elasticity are different: they show less publication bias and larger corrected inverse

tween the wage premium and relative labor supply. But inference regarding the elasticity

is the opposite for the two groups. As explained in the Online Appendix (Appendix B),

we find less persuasive the identification arguments used by studies estimating the elas-

ticity directly. Moreover, there are not enough IV and natural experiment studies on

direct estimates to allow us examine attenuation bias for direct estimates.
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elasticities, implying the elasticity of substitution around 4. The results are consistent

with attenuation bias in the literature (IV estimates of negative inverse elasticities are

larger in magnitude than OLS estimates) and little additional endogeneity bias (OLS

estimates are similar to estimates from natural experiments). Nevertheless, even our

preferred estimate of 4 is much larger than the uncorrected mean implied elasticity of 1.8,

a difference which shows that publication bias dominates attenuation bias. In contrast

to Ashenfelter et al. (1999), we find that IV estimates suffer less from publication bias

than OLS estimates.5 This is the case because the underlying inverse elasticity is much

farther from zero for IV relative to OLS estimates, which means that with IV less effort

is needed to obtain plausible estimates for publication.

In the Online Appendix (Table C3, Table C4, Table C5) we test and correct for pub-

lication bias in other variously defined subsamples of the literature: elasticities estimated

for developed countries vs. elasticities for developing countries, elasticities estimated at

the country level vs. elasticities at the regional level, and elasticities estimated using a

one-level CES function vs. a multilevel CES function. The results suggest that elastici-

ties tend to be larger for developed countries (above 4) than developing countries (around

2.5), and once again publication bias is stronger for the group which displays a corrected

inverse elasticity closer to zero. The cross-country differences in elasticities are discussed,

for example, by Behar (2010). A plausible explanation for the finding is that in many

developing countries access to higher education is still limited, and therefore selection

effects are stronger within cohorts. In addition, the unskilled labor aggregate contains

workers of limited literacy. Next, our results suggest that elasticities estimated at the

country level are smaller than those estimated at the regional level, but there are only 93

estimates for the latter group. Finally, both one-level and multilevel CES functions seem

to yield similar estimated elasticities.

5Our findings also contrast those of Brodeur et al. (2020), who find that IV estimates

are more biased than other techniques commonly used in economics. But note that

Brodeur et al. (2020) only examine (quasi-)experimental techniques (IV, difference-in-

differences, regression discontinuity design, randomized control trials), not OLS.
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Table 1: IV estimation of the negative inverse elasticity shows less bias and a larger

corrected effect in magnitude compared to both OLS and natural experiments

Panel A: OLS estimates

FE BE IV EK SM

Publication bias -5.804
∗∗∗

-4.277
∗∗∗

-6.962
∗∗∗

-5.465
∗∗∗

P=0.468

(1.999) (1.266) (1.694) (0.540) (0.139)

[-11.770, -2.494]

{-11.972, -3.133}

Effect beyond bias -0.0207 -0.0965 0.0103 -0.0361
∗∗

-0.289
∗∗

(0.103) (0.0627) (0.104) (0.0191) (0.113)

[-0.331, 0.214]

First-stage robust F -stat 46.17

Observations 347 347 251 347 347

Panel B: IV estimates

FE BE IV EK SM

Publication bias -2.287
∗∗

-0.923 -0.553 -1.485
∗∗∗

P=0.336

(0.843) (1.365) (0.681) (0.268) (0.093)

[-1.913, 1.078]

{-1.991, 0.748}

Effect beyond bias -0.149 -0.297
∗∗

-0.400
∗∗∗

-0.252
∗∗∗

-0.333
∗∗∗

(0.109) (0.115) (0.114) (0.0246) (0.058)

[-0.719, 0.175]

First-stage robust F -stat 69.98

Observations 264 264 212 264 264

Continued on next page
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Table 1: IV estimation of the negative inverse elasticity shows less bias and a larger

corrected effect in magnitude compared to both OLS and natural experiments (continued)

Panel C: Natural experiment estimates

FE BE IV EK SM

Publication bias -3.557
∗∗∗

-1.874
∗

-3.176
∗∗∗

-3.115
∗∗∗

P=0.187

(0.0178) (0.682) (0.853) (0.343) (0.075)

[-4.854, -1.407]

{-4.653, -1.444}

Effect beyond bias 0.0496
∗∗∗

-0.121 -0.00307 0.00302 -0.009

(0.00246) (0.0824) (0.0297) (0.0280) (0.066)

[NA, NA]

First-stage robust F -stat 260.41

Observations 40 40 40 40 40

Notes : The first three specifications regress estimates on standard errors (weighted by

inverse variance). Standard errors, clustered at the study level, are in parentheses. FE

= study fixed effects. BE = study between effects. IV = the inverse of the square root

of the number of observations is used as an instrument for the standard error. In square

brackets we show the 95% confidence interval from wild bootstrap (Roodman et al.,

2018); in curly brackets we show the two-step weak-instrument-robust 95% confidence

interval based on Andrews (2018) and Sun (2018). EK = endogenous kink method by

Bom & Rachinger (2019), SM = selection model by Andrews & Kasy (2019), P denotes

the probability that estimates insignificant at the 5% level are published relative to the

probability that significant estimates are published (normalized at 1). ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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In addition to bias-correction methods, we use the caliper test for the distribution

of t-statistics by Gerber & Malhotra (2008) and two new tests for the distribution of

p-values developed by Elliott et al. (2022). These tests of publication bias do not need

the independence assumption, but are not designed to estimate the underlying elasticity.

Figure 3 provides a motivation: the frequency of reported estimates drops precipitously

when the t-statistic falls short of −1.96 in magnitude. The first block of Table 2 examines

this drop using the caliper test (Gerber & Malhotra, 2008). In a narrow caliper around

−1.96, 62% of the estimates are different from zero at the 5% level, while only 38%

of them are statistically insignificant. In the histogram of the estimates (Figure A1 in

the Online Appendix) we observe that, in addition to 0, −1 is an important threshold.

It is unintuitive to suggest that skilled and unskilled labor are gross complements, and

the value −1 itself would mean that skill-biased technical change has no effect on the

skill premium. In the second block of the table we thus test whether authors prefer to

report estimates rejecting a negative inverse elasticity of −1. In this case the caliper

test is inconclusive. Next, we look at the distribution of inverted elasticities itself, not

t-statistics, and confirm the large drops at 0 and −1 as apparent from Figure A1.

The disadvantage of caliper tests is the necessity to specify the values where we

expect breaks in the distribution. Elliott et al. (2022) derive two new rigorously founded

techniques that do not require us to define the location of the breaks. The techniques

rely on the conditional chi-squared test of Cox & Shi (2022). The first technique is a

histogram-based test for non-increasingness of the p-curve, the second technique is a

histogram-based test for 2-monotonicity and bounds on the p-curve and the first two

derivatives. In their applications, Elliott et al. (2022) only focus on p-values below 0.15

and use 15, 30, or 60 bins. Because our dataset is much smaller (especially in subsamples),

we include all p-values below 0.2 and use 5–10 bins depending on the size of the subsample.

In most cases we reject the null hypothesis of no publication bias, with the exception of

natural experiments, regional estimates, and developing countries. These are also the

smallest subsamples, which might suggest that larger datasets than ours are needed for

the tests of Elliott et al. (2022) to have adequate power.
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Figure 3: The distribution of t-statistics peaks at −2
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Notes: The dashed vertical line represents the critical value associated with

significance at the 5% level. For ease of exposition we exclude outliers from

the figure but include them in all statistical tests.
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Table 2: Tests based on the distribution of t-statistics and p-values

Panel A: Caliper tests due to Gerber & Malhotra (2008)

Threshold for t-statistic: −1.96 caliper: 0.25 0.30 0.35 0.40

Share above threshold minus 0.5 -0.118
∗∗

-0.135
∗∗

-0.102
∗∗

-0.121
∗∗∗

(0.0561) (0.0525) (0.0485) (0.0452)

Observations 76 85 103 116

Threshold for adjusted t-statistic t∗ = (estimate + 1)/SE(estimate): 1.96

(relevant for the null hypothesis that the negative inverse elasticity is −1)

caliper: 0.25 0.30 0.35 0.40

Share above threshold minus 0.5 0.090 0.100 0.088 0.096

(0.0798) (0.0739) (0.0696) (0.0656)

Observations 39 45 51 57

Threshold for neg. inv. elasticity: 0 caliper: 0.05 0.10 0.15 0.20

Share above threshold minus 0.5 -0.397
∗∗∗

-0.387
∗∗∗

-0.379
∗∗∗

-0.383
∗∗∗

(0.0492) (0.0439) (0.0405) (0.0369)

Observations 39 53 66 77

Threshold for neg. inv. elasticity: −1 caliper: 0.05 0.10 0.15 0.20

Share above threshold minus 0.5 0.346
∗∗∗

0.368
∗∗∗

0.378
∗∗∗

0.406
∗∗∗

(0.0722) (0.0556) (0.0473) (0.0367)

Observations 26 38 49 64

Continued on next page
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Table 2: Tests based on the distribution of t-statistics and p-values (continued)

Panel B: Tests due to Elliott et al. (2022)

All OLS IV Natural Developed

inverse method method experiment country

Test for non-increasingness 0.016 0.037 0.307 1.000 0.098

Test for monotonicity and
bounds

0.008 0.050 0.032 1.000 0.110

Observations (p <= 0.2) 586 315 230 39 369

Total observations 654 347 264 40 418

Developing Country Region One-level Multilevel

country estimate estimate CES CES

Test for non-increasingness 1.000 0.078 1.000 0.000 0.025

Test for monotonicity and
bounds

0.930 0.041 0.773 0.000 0.016

Observations (p <= 0.2) 138 491 89 173 403

Total observations 151 555 93 198 444

Notes : In Panel A, the tests compare the relative frequency of estimates above and

below an important threshold for the t-statistic or negative inverse elasticity. A test

statistic of −0.397, for example, means that 89.7% estimates are below the threshold

and 10.3% estimates are above the threshold. Panel B reports for different subsamples

the p-values of two tests developed by Elliott et al. (2022), which also feature cluster-

robust variance estimators. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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3 Heterogeneity

The literature on the elasticity of substitution is characterized by significant variation in

the reported estimates, as we have shown in Figure 1. While publication bias explains a

part of this variation, individual studies (and individual specifications within the studies)

differ greatly in terms of the data and methods used. In this section we control for 24

variables that capture the context in which researchers obtain their estimates. Given the

model uncertainty inherent in such an exercise, we use Bayesian and frequentist model

averaging. Our goals are threefold. First, we examine whether the relation between

estimates and standard errors, which serves as an indication of publication bias, is robust

to controlling for the aspects of study design. This analysis complements the IV meta-

regression approach presented in the previous section. Second, we aim to identify the

aspects that are the most effective in explaining the differences among the reported

elasticities. Third, as the bottom line we create a synthetic study that computes an

implied elasticity using all estimates but giving more weight to those that are arguably

better identified and correcting for both publication and attenuation bias.

Table 3 lists the variables that we use; they are described in more detail, including

motivation for their inclusion, in Table D1 and Appendix D in the Online Appendix.

We divide the variables into five groups: data characteristics (such as data frequency

and aggregation), structural variation (different countries and sectors), production func-

tion design (for example, one-level vs. multilevel specifications), estimation technique (for

example, OLS vs. IV vs. natural experiments), and publication characteristics (impact

factor of the outlet and the number of citations received per year). The latter group

is included as a proxy for quality not captured by the data and method characteristics.

As explained in Appendix D, some of the dummy variables are used as reference cate-

gories, so they are not all included in regressions. In addition, we include interactions of

the standard error and the dummy variables for IV estimates and developing countries,

respectively, because the results in the previous section suggest that the corresponding

estimates are less affected by publication bias. That leaves 24 variables in total for all

models in this section.
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Table 3: Characteristics used to explain heterogeneity

Category Variables

Data characteristics Annual frequency, Higher frequency, Lower

frequency, Micro data, Sectoral data,

Aggregated data, Cross-section

Structural variation United States, Developing country,

Manufacturing sector

Design of the production function One-level CES function, Multilevel CES

function, Time control, Location control,

Macro control, Age control, Capital control

Estimation technique Dynamic model, Unit fixed effects, Time

fixed effects, OLS method, IV method,

Natural experiment

Publication characteristics Impact factor, Citations

Notes: Details on each variable, including definition, summary statistics, and motivation

for inclusion, are available in Table D1 and Appendix D in the Online Appendix. In data

collection we follow the guidelines compiled by the Meta-Analysis in Economics Research

Network (Havranek et al., 2020).
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Ideally we would regress the collected inverse elasticities on the 24 variables described

above. Given such a large number of regressors, however, the probability that many will

prove redundant is high, which would compromise the precision of parameter estimates

for the more important regression variables. In other words, we face substantial model

uncertainty; to address it, we employ model averaging techniques, both Bayesian and

frequentist. The Bayesian approach allows us to estimate the probability that an indi-

vidual explanatory variable should be included in the underlying model. The frequentist

approach is computationally more cumbersome, but does not require the choice of priors

and serves as a useful robustness check.

The goal of Bayesian model averaging (BMA) is to find the best possible approxima-

tion of the distribution of regression parameters. The method yields three basic statistics

for each parameter: posterior mean, posterior variance, and posterior inclusion probabil-

ity. In our case BMA is to run 224 regressions determined by all the possible combinations

of the explanatory variables. We simplify this task by employing the Metropolis-Hastings

algorithm of the bms package for R by Zeugner & Feldkircher (2015), which walks only

through the most likely models. The likelihood of each model is reflected by posterior

model probabilities (analogous to information criteria in the frequentist setting). Poste-

rior means are then computed as the estimated coefficients weighted across all models

by their posterior model probability. The posterior inclusion probability of a variable

is defined as the sum of posterior model probabilities for all models where this candi-

date regressor is included (analogous to statistical significance in the frequentist setting).

For more details on BMA, we refer the reader to Raftery et al. (1997) and Eicher et al.

(2011); BMA has already been used in meta-analysis by Bajzik et al. (2020), Zigraiova

et al. (2021), Gechert et al. (2022), and Matousek et al. (2022).

BMA requires explicit priors concerning the model (model prior) and regression co-

efficients (g-prior). Our baseline model prior and g-prior reflect our lack of ex ante

information in both areas: we employ a uniform model prior, which gives each model the

same prior probability, and the unit information g-prior, which provides the same infor-

mation as one observation from the data (suggested by Eicher et al., 2011). In addition,
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we employ the dilution prior according to George (2010), which accounts for collinearity

by adding a weight that is proportional to the determinant of the correlation matrix of

the variables included in the individual model.

Furthermore, in the Online Appendix (Appendix E) we combine the random model

prior (following Ley & Steel, 2009) with the hyper-g prior (suggested by Feldkircher

& Zeugner, 2012): while the random model prior assumes that the distribution of the

model size to be beta-binomial (which reflects the fact that no model size is preferred), the

hyper-g prior sets the prior expected shrinkage factor equivalent to the BRIC parameter

prior (see Fernandez et al., 2001, suggesting multivariate normal distribution that has

a covariance matrix specified depending on the data). In our application of frequentist

model averaging we use Mallow’s weights (Hansen, 2007) with orthogonalization of the

covariate space according to Amini & Parmeter (2012) to narrow down the number of

estimated models. Variables enter the model in descending order by the absolute value

of the correlation coefficient with the estimated inverse elasticity. For more details and

applications of model averaging techniques in economics, we refer the reader to the superb

survey by Steel (2020).

The results of Bayesian model averaging are visualized in Figure 4. Each column

represents an individual regression model, and the width of the column indicates the

corresponding posterior model probability: the weight of the model. The columns are

ordered by posterior model probability from left to right in descending order. Each row

of the figure represents a regression variable. The rows are ordered by the posterior

inclusion probability from top to bottom in descending order. Each cell with a darker

gray color indicates a positive sign of the posterior mean of the regression coefficient for

the variable in a given model. Each cell with a lighter gray color indicates a negative

sign. If a variable is excluded from the model, the corresponding cell is blank. The figure

suggests that approximately two thirds of our explanatory variables are, at least to some

degree, useful in explaining the heterogeneity in the reported estimates of the inverse

elasticity of substitution; moreover, for these variables the coefficient signs are robust

across virtually all the models.
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The corresponding numerical results are reported in Table 4. The first specification

represents our baseline BMA exercise. To interpret the posterior inclusion probabilities

(PIPs) of the BMA means, researchers typically follow Jeffreys (1961), who denotes evi-

dence of an effect as ‘weak’ for a PIP between 0.5 and 0.75, ‘substantial’ for a PIP between

0.75 and 0.95, ‘strong’ for a PIP between 0.95 and 0.99, and ‘decisive’ for a PIP larger

than 0.99. The other two specifications in Table 4 represent robustness checks: first, or-

dinary least squares that exclude all the variables deemed utterly unimportant by BMA

(with PIP below 0.5); second, frequentist model averaging (FMA) that includes all the

variables we have collected. Thus our baseline estimation technique is purely Bayesian,

the first robustness check uses Bayesian techniques for the selection of variables but fre-

quentist techniques for estimation, and the second robustness check is purely frequentist.

In addition, the Online Appendix (Appendix E) provides more robustness checks that

focus on different priors for BMA (Table E2).

We focus on the variables for which we have the most robust evidence across the three

specifications: at least substantial posterior inclusion probability in Bayesian model av-

eraging and, at the same time, significance at least at the 10% level in both frequentist

check and frequentist model averaging. The pre-eminent variable in this respect is the

standard error, which shows the strongest association with the reported inverse elasticity

in all the models we run. Thus model averaging techniques corroborate our previous find-

ings concerning publication bias, including less evidence for the bias among IV estimates

and estimates for developing countries (these effects are captured by interactions with

the standard error). The other three variables found important in all three model averag-

ing techniques are Developing country, IV method, and Capital control. The former two

corroborate our results presented in the previous section. A new result is the importance

of the control for capital, which is associated with inverse elasticities estimated farther

away from zero. Because changes in the capital stock can affect the marginal product of

both skilled and unskilled labor, ignoring capital may introduce a bias.
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Figure 4: Model inclusion in Bayesian model averaging
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Notes: The variables are sorted according to their posterior inclusion probabili-

ties from the highest at the top to the lowest at the bottom. The horizontal axis

measures cumulative posterior model probability. Darker shade of gray color =

the estimated parameter for the variable is positive. Lighter shade of gray color

= the estimated parameter for the variable is negative. No color = the variable

is not included in the model. Numerical results are reported in Table 4. All

variables are described in Table D1 in the Online Appendix.
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Table 4: Why estimates of the negative inverse elasticity vary

Response variable: Bayesian Frequentist check Frequentist

Reported estimate model averaging (OLS) model averaging

P.M P.SD PIP Coef. SE p-val. Coef. SE p-val.

Constant -0.20 NA 1.00 -0.22 0.11 0.04 0.00 0.21 1.00

Standard error (SE) -3.62 0.84 1.00 -3.60 0.57 0.00 -4.82 1.25 0.00

SE * IV method 2.35 0.48 1.00 2.36 0.74 0.00 2.92 1.18 0.01

SE * Developing country 2.24 0.59 1.00 2.26 0.98 0.02 2.59 1.06 0.01

Data characteristics

Higher frequency 0.00 0.02 0.08 0.00 0.04 1.00

Lower frequency 0.26 0.04 1.00 0.28 0.09 0.00 0.16 0.11 0.14

Micro data 0.06 0.05 0.65 0.09 0.06 0.15 0.00 0.10 1.00

Sectoral data 0.07 0.06 0.61 0.11 0.08 0.18 0.00 0.11 1.00

Cross-section 0.00 0.01 0.10 0.00 0.03 1.00

Structural variation

United States 0.10 0.03 1.00 0.10 0.06 0.11 0.02 0.07 0.79

Developing country -0.21 0.04 1.00 -0.20 0.10 0.05 -0.29 0.14 0.04

Manufacturing sector 0.00 0.02 0.09 0.00 0.03 1.00

Design of production function

Multilevel CES function 0.05 0.04 0.79 0.07 0.08 0.37 -0.02 0.08 0.83

Time control 0.00 0.01 0.11 0.00 0.00 1.00

Location control -0.10 0.08 0.65 -0.14 0.10 0.15 0.00 0.14 1.00

Macro control 0.19 0.04 1.00 0.21 0.06 0.00 0.04 0.16 0.81

Age control -0.02 0.03 0.36 0.00 0.03 1.00

Capital control -0.39 0.03 1.00 -0.39 0.09 0.00 -0.42 0.13 0.00

Continued on next page
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Table 4: Why estimates of the negative inverse elasticity vary (continued)

Estimation technique

Dynamic model 0.00 0.02 0.07 0.00 0.01 1.00

Unit fixed effects -0.08 0.02 0.99 -0.09 0.04 0.02 -0.02 0.06 0.72

Time fixed effects 0.00 0.01 0.13 0.00 0.02 1.00

IV method -0.12 0.04 0.96 -0.13 0.07 0.06 -0.12 0.05 0.02

Natural experiment 0.19 0.08 0.92 0.18 0.07 0.01 0.13 0.10 0.20

Publication characteristics

Impact factor 0.01 0.01 0.55 0.02 0.02 0.40 0.00 0.02 1.00

Citations 0.00 0.01 0.20 0.00 0.00 1.00

Studies 68 68 68

Observations 654 654 654

Notes: P.M = posterior mean, P.SD = posterior standard deviation, PIP = posterior

inclusion probability, SE = standard error. In Bayesian model averaging we employ

the combination of the uniform model prior recommended by Eicher et al. (2011) and

the dilution prior (George, 2010), which accounts for collinearity. The frequentist check

(OLS) includes the variables found by BMA to have PIP above 0.5 and is estimated using

standard errors clustered at the study level. Frequentist model averaging applies Mallow’s

weights (Hansen, 2007) using orthogonalization of covariate space suggested by Amini &

Parmeter (2012) to reduce the number of estimated models. All variables are described

in Table D1 in the Online Appendix. Additional details on the benchmark BMA exercise

can be found in Table E1 and Figure E1 in the Online Appendix.
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As the bottom line of our analysis we compute an implied elasticity conditional on all

collected estimates, our baseline BMA results, and a definition of best practice methodol-

ogy in the literature. Since best practice is subjective, we choose two distinct strategies.

First, we rely on three definitions from the literature: Autor (2014), Card (2009), and

Carneiro et al. (2022). These are meticulous contributions that have been published in

prestigious journals; moreover, they represent the three main streams of the literature

using OLS, IV, and natural experiments, respectively. We copy their data and method

characteristics and plug those in the values of our variables in order to compute the fitted

values from BMA and, hence, the implied (negative inverse) elasticity. Second, we create

a subjective definition of best practice based on our reading of the literature.

Our subjective definition of best practice is the following. We plug in zero for the

standard error in order to approximately correct for publication bias. We prefer disag-

gregated panel data and annual granularity. We prefer the multilevel CES structure with

all potential control variables included in estimation; furthermore, we prefer dynamic

models estimated with unit and time fixed effects and accounting for endogeneity and at-

tenuation bias using instrumental variables. We also prefer studies published in journals

with a high impact factor and those with a high number of citations. All other variables

(including the ones corresponding to structural variation) are set to their sample means.

Table 5 reports the results. The first row shows the overall estimate, the second

row shows the estimate for the US, and the last row shows the estimate for developing

countries. Our subjective best practice estimate is in all three cases close to the estimate

based on Card (2009). This is because both approaches rely on IV, while OLS and

natural experiments in the remaining columns bring inverse elasticities generally close to

zero. Our preferred estimate of the implied overall elasticity is 3.7, with the 95% credible

interval of (2, 20). The preferred estimate for the US is 6.3; for developing countries it is

2.1. If we ignored any considerations of attenuation bias and instead preferred evidence

from natural experiments, we would have to conclude that the implied elasticity is, with

the exception of developing countries, close to infinity: a finding even less consistent with

the value of 1.5 commonly used for calibrations.
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Table 5: Implied elasticities

Subjective Autor Card Carneiro et al.

best practice (2014) (2009) (2022)

All countries -0.27 -0.13 -0.24 0.05

(-0.48, -0.05) (-0.24, -0.02) (-0.39, -0.09) (-0.12, 0.23)

σ = 3.7 σ = 7.7 σ = 4.2 σ = −18.4

USA -0.16 -0.02 -0.13 0.16

(-0.38, 0.06) (-0.12, 0.07) (-0.28, 0.02) (-0.02, 0.34)

σ = 6.3 σ = 45.0 σ = 7.8 σ = −6.2

Developing countries -0.47 -0.33 -0.44 -0.15

(-0.70, -0.24) (-0.47, -0.19) (-0.60, -0.27) (-0.33, 0.04)

σ = 2.1 σ = 3.0 σ = 2.3 σ = 6.8

Notes: The table presents the elasticity of substitution (σ) recovered from the negative

inverse elasticity and implied by the results of Bayesian model averaging and i) our

definition of best-practice approach, ii) the approach by Autor (2014), iii) the approach

by Card (2009), and iv) the approach by Carneiro et al. (2022). That is, the table

attempts to answer the question what the mean elasticity would look like if the literature

was approximately corrected for publication bias and all studies in the literature used the

same strategy as the one we prefer or the ones employed by Autor (2014), Card (2009),

and Carneiro et al. (2022). 95% credible intervals for the negative inverse elasticity are

reported in parentheses.
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4 Conclusion

We collect 682 estimates of the elasticity of substitution between skilled and unskilled

labor reported in 77 studies. We measure the extent of two biases that affect the reported

inverse elasticity: publication bias (stemming from the underreporting of small estimates)

and attenuation bias (stemming from measurement error). Correcting for publication bias

slashes the mean negative inverse elasticity from−0.6 to the vicinity of zero, and the result

holds when we relax the common meta-analysis assumption of conditional independence

of estimates and standard errors. While publication bias corrected estimates stemming

from OLS and natural experiments remain close to zero, corrected IV estimates are around

−0.25. The result is consistent with attenuation bias in the literature and an implied

elasticity of 4 after correction for both biases. The interplay of the two biases in labor

economics evokes Griliches (1977), who finds that in measuring the return to education,

attenuation bias almost exactly offsets omitted variable bias (which is often correlated

with publication bias via specification searching and p-hacking). In our case publication

bias dominates attenuation bias.

The aforementioned results hold when we control for additional 24 variables that

reflect the context in which the estimates were obtained in the primary studies: for

example, variable definition, data characteristics, design of the production function, esti-

mation technique, and publication characteristics. Using so many variables creates model

uncertainty problems, and we address them by using both Bayesian model averaging and

frequentist model averaging. We find that larger estimated elasticities are associated with

data from developed countries and specifications incorporating capital. We then compute

the implied elasticity conditional on best practice methodology, based both on prominent

studies and our reading of the literature. The implied mean elasticity is again 4, with a

95% credible interval of (2, 20). Because the typical calibration of the elasticity in the

literature is 1.5 (Cantore et al., 2017), our results suggest that skilled and unskilled labor

is substantially more substitutable than commonly thought.
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