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Abstract: Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing
the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mito-
chondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably
exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in
left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased
mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related
metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1
and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine
kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis
revealed reduced expression of proteins involved in electron transport mainly of complexes I and
II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino
acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a sec-
ondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and
amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely
portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications
worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for
mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.
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1. Introduction

In heart failure, cardiac contractile dysfunction and impaired mitochondrial function
are intimately related [1]. Damage to the contractile apparatus promotes secondary changes
in mitochondrial function and oxidative metabolism, thus, aggravating cardiac disease.
Conversely, mitochondrial disease may produce secondary contractile dysfunction and
heart failure [2]. Dysfunction in proteins affecting both myocardial contraction and mito-
chondrial function could conceivably produce a ‘double whammy’ on the heart. One such
disease in which a primary cellular defect is related to a cytoskeletal protein with secondary
changes in mitochondrial structure and number is desminopathy [3–5]. Desminopathies
comprise a group of rare cardiomyopathies and myopathies caused by mutations of the
human desmin gene (DES) on chromosome 2q35 [6,7]. More than 120 disease-causing
DES mutations have been described ([8–10], Human Intermediate Filament Database,
http://www.interfil.org (accessed on 5 October 2022)), which give rise to autosomal-
dominant, autosomal-recessive, and sporadic desminopathies. Autosomal-dominantly
inherited desminopathies—by far the most frequently encountered genetic form—usually
manifest with signs of cardiac or skeletal muscle pathology [9,11,12]. In the very rare
recessive desminopathies, a subset of DES mutations leads to desmin deficiency [13–16].

The deleterious effects of mutant desmin or desmin deletion in human striated mus-
cles is closely linked to desmin’s multiple functions. Desmin is the principal intermediate
filament component of the extrasarcomeric cytoskeleton in striated muscle cells, which is al-
ready expressed in the early stages of myogenesis [17,18]. Human desmin, a 470 amino acid
protein with a molecular weight of 53.5 kDa, interlinks individual myofibrils at the level of
Z-discs. Furthermore, desmin attaches the whole myofibrillar apparatus to sarcolemmal
adhesion sites, myonuclei, intercalated disks, myotendinous and neuromuscular junctions,
and tethers the extrasarcomeric cytoskeleton to mitochondria [3,18–22]. In desminopathies,
faulty desmin expression inflicts a multitude of aberrations, thereby negatively affecting the
mechanical stability of muscle cells, myofibrillar spatial organization with subsequently im-
paired force generation, and the structure and function of intercalated discs, neuromuscular
junctions, and the mitochondrial network [4,8,11,12,14,23–35].

Previous studies repeatedly showed that desmin deletion is associated with mitochon-
drial dysfunction in striated muscle cells [3–5,36]. The finding led to the concept that a lack
of desmin also perturbs metabolism which in turn further worsens muscle function. To
address this issue in more detail, we performed comprehensive morphological, biochemi-
cal, and proteomic analyses of left ventricular cardiac tissue from desmin knock-out mice.
Notably, thirteen years before the first description of patients lacking desmin [13], two inde-
pendent research groups had reported their first analyses of desmin knock-out mice [20,21],
which closely mirror the human pathology of autosomal-recessive desminopathies with
a lack of desmin protein [13–16]. Our present work now reveals that beyond structural
and functional changes in mitochondria, desmin deletion induces profound myocardial
metabolic dysfunction including altered glucose, fatty acid, and amino acid metabolism.

2. Results

Previous work demonstrated that desmin deletion induces multiple structural al-
terations affecting the myofibrillar cytoarchitecture [20,21,37], the neuromuscular end-
plate [14,27,35], and mitochondria [3–5,31]. The common denominator of this diverse
pathology is a defective extrasarcomeric cytoskeleton, which lacks its main component
desmin. Here, we aimed to delineate the multi-level metabolic effects of the lack of desmin
in left ventricular cardiac tissue (Figure 1a) derived from six-month-old desmin knock-out
mice and their wild-type siblings by primarily studying mitochondrial bulk, distribution,
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ultrastructure, and enzyme activities and protein levels related to fatty acid, glucose and
amino acid metabolism, and creatine kinase isoforms.
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wheat germ agglutinin conjugate (WGA-AlexaFluor647) as a sarcolemmal marker (red) and nuclear 
marker DAPI (blue). Scale bars, 20 µm. (b) Analysis of the three-dimensional distribution of mito-
chondria in left ventricular cardiac tissue. Sections derived from six-month-old desmin knock-out 

Figure 1. Distribution, number, and ultrastructural morphology of mitochondria in desmin knock-out
cardiac tissue. (a) Indirect immunofluorescence images of desmin (green) in longitudinal sections
of wild-type (WT) and desmin knock-out (KO) ventricular cardiac tissue in conjunction with wheat
germ agglutinin conjugate (WGA-AlexaFluor647) as a sarcolemmal marker (red) and nuclear marker
DAPI (blue). Scale bars, 20 µm. (b) Analysis of the three-dimensional distribution of mitochondria in
left ventricular cardiac tissue. Sections derived from six-month-old desmin knock-out mice (KO) and
wild-type littermates (WT) were stained with an antibody directed against the voltage-dependent an-
ion channel (VDAC1) (lower panel, greyscale). Confocal Z-stack images from longitudinally oriented
cardiomyocytes were processed to visualize the mitochondrial network (upper panel, red). As a surro-
gate marker for mitochondrial contact sites, pixels that label crossovers from different mitochondrial
fluorescence signals were determined (upper panel, light blue dots). Scale bars, 2 µm. (c) Long-range
PCRs from total DNA extracted from left ventricular myocardium derived from desmin knock-
out mice and wild-type littermates did not show large-scale mtDNA deletions. (d) Quantitation of
VDAC1-positive mitochondrial contact sites revealed a significantly reduced number indicating
a rarefication of the mitochondrial network in desmin knock-out cardiomyocytes. Five Z-stacked
images of different regions of cardiac muscle tissue specimens from each of the four animals of each
genotype were analyzed; Mann-Whitney test, * p < 0.05. (e) Assessment of mitochondrial DNA
(mtDNA) copy numbers by quantitative PCR confirmed a significant decrease in desmin knock-out
mice. Samples from nine homozygous and ten wild-type mice were analyzed in nine technical
replicates: Mann-Whitney test, * p < 0.05. (f,g) Spectrophotometrically determined enzyme activities
of malate dehydrogenase (MDH; samples from three animals per genotype analyzed in singlet;
Mann-Whitney test, not significant) and citrate synthase (CS; samples from four animals per genotype
analyzed in singlet; Mann-Whitney test, not significant) in left ventricular cardiac tissue homogenates
were non-significantly reduced in the knock-out condition. Values in (d–g) are given as mean ± SEM;
(h) Electron microscopy depicted areas of focal clustering of mitochondria in conjunction with a
marked coarsening of the mitochondrial cristae in the cardiac tissue of desmin knock-out mice (KO)
as compared to the wild-type (WT).
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2.1. Desmin Deficiency Is Associated with Cardiac Mitochondrial Defects and Altered Fatty and
Amino Acid Metabolism

In a first step, we determined three-dimensional mitochondrial distribution using
image processing of confocal Z-stacks of left ventricular cardiac tissue sections stained for
the outer mitochondrial membrane component voltage-dependent anion channel (VDAC1)
(Figure 1b). Compared to cardiomyocytes from wild-type littermates, desmin knock-out
cells displayed a rarefied mitochondrial network with significant numerical reduction
in VDAC1-positive mitochondrial contact sites (Figure 1b,d). These findings suggest a
reduction in the total number of mitochondria, which is further supported by the signifi-
cantly reduced mitochondrial DNA (mtDNA) copy number (Figure 1e) without evidence
of mtDNA deletions (Figure 1c). Furthermore, there was a numerical but statistically non-
significant reduction of malate dehydrogenase (Figure 1f) and citrate synthase (Figure 1g)
enzyme activities in desmin knock-out mice. Next, we aimed to enrich mitochondrial
fractions for further biochemical analysis. However, repeated attempts failed due to the
apparently very high fragility, i.e., loss of respiration ability and swelling, the latter ob-
served via decreasing absorbance at 520 nm of the extracted mitochondria from the desmin
knock-out cardiac tissue. Further evidence of mitochondrial pathology was provided from
our ultrastructural analyses that revealed coarsened mitochondrial cristae in cardiac tissue
of desmin knock-out mice (Figure 1h). This ultrastructural abnormality was only seen in
electron microscopy images derived from desmin knock-out mice, where it was present in
the majority of recordings. In addition to morphological alterations of mitochondria, elec-
tron microscopic analysis also showed markedly increased intermyofibrillar, electron-dense
lipofuscin deposits in the desmin knock-out cardiac tissue (Figure 2a). However, Oil red O
and PAS stains of additional left ventricular cardiac tissue sections did not differ between
knock-out and wild-type sections. Thus, on the light microscopy level, there was neither
obvious accumulation of lipofuscin nor of glycogen. Notably, immunoblotting revealed
significantly decreased fatty acid transporter CD36 abundance (Figure 2b), and oxygen con-
sumption measurements demonstrated significantly reduced octanoyl-carnitine-stimulated
beta-oxidation (Figure 2c) in desmin knock-out cardiac tissue homogenates. Alterations
in mitochondrial fatty acid metabolism were also mirrored by mass spectrometry-based
acylcarnitine quantitation in dried whole blood samples. In desmin knock-out mice, this
analysis showed significantly increased concentrations of multiple acylcarnitines compris-
ing butyryl- and hydroxy-butyryl-carnitine (C4, C4OH), isovaleryl-carnitine (C5), octanoyl-
carnitine (C8), tetradecanoyl-carnitine (C14), hydroxy-hexadecanoyl-carnitine (C16OH),
and octanoyl-carnitine (C18) (Figure 2e) in conjunction with a significantly increased
C8/C10-carnitine ratio (Table 1). Levels of propionyl-carnitine (C3), palmitoyl-carnitine
(C16), 3OH-hexadecenoyl-carnitine (C16:1OH), and oleoyl-carnitine (C18:1) were numer-
ically increased, however, they failed to reach statistical significance (Table 1). Notably,
clinical chemistry data derived from a previously published patient (patient 2, [14]), a case
of the very rare desminopathy subform with a lack of desmin, showed blood acylcarnitine
levels in a normal range, but a moderately increased C8/C10-carnitine ratio (0.980; normal
range, 0.000 to 0.600). The mass spectrometry analysis of the murine dried whole blood
samples further revealed markedly elevated levels of the branched-chain amino acids
valine, isoleucine, and leucine (Figure 2d; Table 1) as well as of two aromatic amino acids,
phenylalanine and tryptophan (Table 1); the latter three, however, failed to reach statistical
significance (Table 1).
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Figure 2. Morphological and biochemical aspects of fatty and amino acid metabolism in desmin 
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levels of the fatty acid transporter CD36 in left ventricular cardiac tissue homogenates depicted a 
significant reduction in desmin knock-out mice. Samples from five animals per genotype were an-
alyzed in duplicate: Mann-Whitney test, * p < 0.05. Shown is a representative CD36 immunoblot in 
conjunction with the Ponceau S-stained membrane as loading control. The apparent molecular 
weight of CD36 is 85 kDa. (c) Mitochondrial respiration rate of beta-oxidation stimulated by oc-
tanoyl-carnitine was significantly lower in desmin knock-out mice (samples from four animals per 

Figure 2. Morphological and biochemical aspects of fatty and amino acid metabolism in desmin
knock-out cardiac tissue. (a) Compared to cardiac tissue from wild-type siblings (WT), ultrastructural
analysis of desmin knock-out mice (KO) demonstrated a marked increase of intermyofibrillar, electron-
dense material corresponding to lipofuscin deposits. (b) Immunoblot analysis of protein levels of
the fatty acid transporter CD36 in left ventricular cardiac tissue homogenates depicted a significant
reduction in desmin knock-out mice. Samples from five animals per genotype were analyzed in
duplicate: Mann-Whitney test, * p < 0.05. Shown is a representative CD36 immunoblot in conjunction
with the Ponceau S-stained membrane as loading control. The apparent molecular weight of CD36 is
85 kDa. (c) Mitochondrial respiration rate of beta-oxidation stimulated by octanoyl-carnitine was
significantly lower in desmin knock-out mice (samples from four animals per genotype were analyzed
in duplicate: Mann-Whitney test, * p < 0.05). (d) Mass spectrometry-based quantitation of amino acids
in dried whole blood samples denoted increased levels of valine, isoleucine, and leucine; the latter
just failed to reach statistical significance (Table 1). Samples from four homozygous and five wild-type
mice were analyzed in singlet; Mann-Whitney test, * p < 0.05. (e) Mass spectrometry-based quantita-
tion of acylcarnitines in dried whole blood samples revealed increased concentrations of multiple
acyl-carnitines, i.e., butyryl- and hydroxy-butyryl-carnitine (C4, C4OH), isovaleryl-carnitine (C5),
octanoyl-carnitine (C8), tetradecanoyl-carnitine (C14), hydroxy-hexadecanoyl-carnitine (C16OH), and
octanoyl-carnitine (C18) in desmin knock-out mice. In addition, levels of propionyl-carnitine (C3),
palmitoyl-carnitine (C16), 3OH-hexadecenoyl-carnitine (C16:1OH), and oleoyl-carnitine (C18:1) were
also elevated, however, they just failed to reach statistical significance (Table 1). Samples from fifteen
homozygous and thirteen wild-type mice were analyzed in singlet; Mann-Whitney test, * p < 0.05, **
p < 0.01. Values in (b–e) are given as mean ± SEM.
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Table 1. Acylcarnitine concentrations were determined from dried blood sample cards derived
from fifteen homozygous desmin knock-out mice and thirteen wild-type littermates; in addition,
acylcarnitine ratios were calculated. Amino acid concentrations were derived from four homozygous
and five wild-type mice. In a few samples, concentrations of specific acylcarnitines were below the
detection limit resulting in lower sample numbers (n, as indicated).

Acylcarnitines in µmol/L Desmin Knock-out
(Mean ± SEM; n)

Wild-Type Littermate
(Mean ± SEM; n)

p-Value (Two-Tailed)
(Mann–Whitney Test)

Carnitine (C0) 17.52 ± 0.54; 15 16.79 ± 0.63; 13 0.434
Acetyl-carnitine (C2) 15.09 ± 0.84; 15 13.02 ± 0.38; 13 0.140

Propionyl-carnitine (C3) 0.51 ± 0.02; 15 0.45 ± 0.02; 13 0.059
Malonyl-carnitine (C3DC) 0.14 ± 0.01; 14 0.14 ± 0.02; 11 0.298

Butyryl-carnitine (C4) 0.28 ± 0.03; 15 0.21 ± 0.04; 13 0.036
Methylmalonyl-carnitine (C4DC) undetectable undetectable —
3OH-Butyryl-carnitine (C4OH) 0.14 ± 0.01; 15 0.12 ± 0.01; 13 0.027

Isovaleryl-carnitine (C5) 0.07 ± 0.00; 15 0.06 ± 0.00; 13 0.023
Tiglyl-carnitine (C5:1) undetectable undetectable —

Glutaryl-carnitine (C5DC) 0.07 ±0.01; 15 0.07 ± 0.01; 11 0.938
3OH-Isovaleryl-carnitine (C5OH) undetectable undetectable —

Hexanoyl-carnitine (C6) 0.07 ± 0.00; 15 0.07 ± 0.01; 13 0.645
Octanoyl-carnitine (C8) 0.08 ± 0.00; 15 0.07 ± 0.01; 13 0.030
Octenoyl-carnitine (C8:1) undetectable undetectable —
Decanoyl-carnitine (C10) 0.04 ± 0.00; 15 0.04 ± 0.00; 13 0.447

Cis4-Decanoyl-carnitine (C10:1) 0.03 ± 0.00; 10 0.02 ± 0.00; 11 0.139
Dodecanoyl-carnitine (C12) 0.21 ± 0.01; 15 0.19 ± 0.02; 13 0.214

Tetradecanoyl-carnitine (C14) 0.16 ± 0.01; 15 0.14 ± 0.01; 13 0.010
Tetradecenoyl-carnitine (C14:1) 0.07 ± 0.00; 15 0.07 ± 0.00; 13 0.369

Tetradecadienyl-carnitine (C14:2) 0.03 ± 0.00; 15 0.02 ± 0.00; 13 0.475
3OH-Tetradecanoyl-carnitine (C14OH) 0.02 ± 0.00; 15 0.01 ± 0.00; 13 0.174

Palmitoyl-carnitine (C16) 1.00 ± 0.04; 15 0.92 ± 0.04; 13 0.088
Palmitoleyl-carnitine (C16:1) 0.08 ± 0.00; 15 0.08 ± 0.01; 13 0.279

3OH-Palmitoyl-carnitine (C16OH) 0.05 ± 0.00; 15 0.04 ± 0.00; 13 0.012
3OH-Hexadecenoyl-carnitine (C16:1OH) 0.032 ± 0.002; 15 0.026 ± 0.003; 13 0.076

Octadecanoyl-carnitine (C18) 0.27 ± 0.01; 15 0.23 ± 0.01; 13 0.025
Oleoyl-carnitine (C18:1) 0.34 ± 0.02; 15 0.30 ± 0.02; 13 0.065

3OH-Stearoyl-carnitine (C18OH) 0.01 ± 0.00; 14 0.01 ± 0.00; 11 0.584
3OH-Oleoyl-carnitine (C18:1OH) 0.02 ± 0.00; 15 0.02 ± 0.00; 13 0.645
3OH-Linolyl-carnitine (C18:2OH) 0.03 ± 0.00; 15 0.03 ± 0.00; 13 0.333

Acylcarnitine ratios Desmin knock-out
(mean ± SEM; n)

Wild-type littermate
(mean ± SEM; n)

p-Value (one-tailed)
(Mann–Whitney test)

C3/C0 0.03 ± 0.00; 15 0.03 ± 0.00; 13 0.099
C3/C2 0.03 ± 0.00; 15 0.03 ± 0.00; 13 0.418
C5/C2 0.00 ± 0.00; 15 0.00 ± 0.00; 13 0.238
C8/C2 0.01 ± 0.00; 15 0.01 ± 0.00; 13 0.111
C8/C10 2.12 ± 0.11; 15 1.85 ± 0.12; 13 0.049
C8/C12 0.41 ± 0.02; 15 0.40 ± 0.06; 13 0.191

C14:1/C14 0.48 ± 0.02; 15 0.52 ± 0.04; 13 0.282
C14:1/C16 0.08 ± 0.00; 15 0.07 ± 0.00; 13 0.356
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Table 1. Cont.

Amino acids in µmol/l Desmin knock-out
(mean ± SEM; n)

Wild-type littermate
(mean ± SEM; n)

p-Value (two-tailed)
(Mann–Whitney test)

Alanine 303 ± 51; 4 256 ± 31; 5 0.806
Allo-Isoleucine <2.0; 4 <2.0; 5 —

Arginine 25.1 ± 2.4; 4 25.4 ± 2.3; 5 0.624
Citrulline 13.6 ± 1.3; 4 14.9 ± 1.8; 5 1.000
Glutamine 107.2 ± 16.7; 4 94.6 ± 18.0; 5 0.462

Glycine 64.9 ± 6.0; 4 53.3 ± 5.5; 5 0.221
Histidine 3.54 ± 0.83; 4 2.51 ± 0.30; 5 0.327

Isoleucine 52.9 ± 6.0; 4 38.0 ± 2.0; 5 0.014
Leucine 129.9 ± 16.1; 4 93.7 ± 6.9; 5 0.086
Lysine 20.1 ± 1.8; 4 19.1 ± 2.2; 5 1.000

Methionine 12.9 ± 1.0; 4 11.8 ± 1.4; 5 1.000
3-O-Methyldopa 0.063 ± 0.003; 4 0.056 ± 0.002; 5 0.178

Ornithine 2.6 ± 0.6; 4 <2.0; 5 —
Phenylalanine 59.0 ± 12.2; 4 44.6 ± 8.1; 5 0.086

Proline 93.3 ± 16.0; 4 73.9 ± 12.1; 5 0.327
Serine 83.5 ± 10.4; 4 62.6 ± 9.6; 5 0.221

Threonine 52.9 ± 1.5; 4 44.7 ± 4.9; 5 0.221
Tryptophan 3.47 ± 0.44; 4 2.45 ± 0.23 0.086

Tyrosine 59.1 ± 12.7; 4 50.6 ± 9.5; 5 0.327
Valine 128.0 ± 9.6; 4 94.1 ± 4.7; 5 0.014

2.2. Concomitant Changes in Myocardial Glucose Metabolism

To gain insight into the glucose metabolism of desmin knock-out left ventricular
cardiac tissue, we first performed immunoblots addressing the expression of glucose trans-
porter type 1 (GLUT1, Figure 3a) and type 4 (GLUT4, (Figure 3d). While the protein amount
of GLUT1 was significantly higher in desmin knock-out mice, the level of GLUT4 remained
unchanged. It is, however, noteworthy that the apparent molecular weight of GLUT4
was slightly increased in the desmin knock-out genotype (Figure 3d). The quantitative
analysis of the subcellular localization of GLUT1 (Figure 3b,c) and GLUT4 (Figure 3e,f) in
relation to the WGA-stained sarcolemma revealed significant differences between desmin
knock-out mice and their wild-type siblings. In addition, qualitative visual examination
of the signals of both glucose transporters depicted a localization of both GLUT1 and
GLUT4 underneath the sarcolemma in desmin knock-out cardiomyocytes in contrast to
their colocalization with the sarcolemma in wild-type tissue (Figure 3g). Subsequently, we
investigated hexokinase and phosphofructokinase, the rate-limiting enzymes of glycolysis.
The activity of hexokinase was significantly elevated in the desmin knock-out condition
(Figure 4a). Immunoblot analysis further showed a significantly increased amount of hex-
okinase isoform 1 but not isoform 2 in the cardiac tissue homogenates of desmin knock-out
mice (Figure 4b,c). In light of the notion that increased association of hexokinase isoform 1
with the outer mitochondrial membrane facilitates oxidative glucose utilization and that
hexokinase isoform 2 additionally exerts a strong antiapoptotic activity via stabilization of
the mitochondrial permeability transition pore [38], hexokinase-1, but not hexokinase-2,
further displayed a significantly increased degree of colocalization with the mitochondrial
compartment in desmin knock-out cardiomyocytes (Figure 4d,e).
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higher molecular weight in desmin knock-out hearts. (b,e) Quantitative analysis of the colocaliza-
tion of both glucose transporters with the sarcolemma based on the Manders M1 coefficient resulted 
in a statistically significant difference between desmin knock-out and wild-type animals (ten images 
of different regions of cardiac muscle tissue specimens from each of the three animals of each gen-
otype were analyzed; Mann-Whitney test, ** p < 0.01, *** p < 0.001). Values in (a,b,d,e) are given as 
mean ± SEM. (c,f) The subcellular localization of GLUT1 ((c), green) and GLUT4 ((f), green) in rela-
tion to the sarcolemma stained by Wheat Germ Agglutinin (WGA, red) was visualized in longitu-
dinally oriented cardiomyocytes. Note the absence of the WGA signal within the t-tubules region of 
sarcoplasm of the desmin knock-out cardiomyocytes (upper right images of KO). Black and white 
images represent colocalized pixels according to Manders M1 coefficient (white). (g) Qualitative 
examination depicted a localization of both GLUT1 and GLUT4 underneath the sarcolemma in des-
min knock-out cardiomyocytes (white arrows, lower images), whereas the signals of both glucose 
transporters in wild-type tissue colocalized to the WGA-stained sarcolemma (white arrows, upper 
images). Scale bars, 10 µm. 

Figure 3. Expression and localization of glucose transporters in desmin knock-out cardiac tissue.
(a,d) Immunoblot analysis addressing the expression of GLUT1 (a) and GLUT4 (d) in left ventricular
cardiac tissue homogenates. Samples from five animals per genotype were immunoblotted in
duplicate; Mann-Whitney test, ** p < 0.01. Representative immunoblots and Ponceau S-stained
membranes are shown. The apparent molecular weight of GLUT1 and GLUT4 is 54 kDa. Note
the highly increased expression of GLUT1 as well as the slight shift of the GLUT4 immunoblot
signals to a higher molecular weight in desmin knock-out hearts. (b,e) Quantitative analysis of
the colocalization of both glucose transporters with the sarcolemma based on the Manders M1
coefficient resulted in a statistically significant difference between desmin knock-out and wild-type
animals (ten images of different regions of cardiac muscle tissue specimens from each of the three
animals of each genotype were analyzed; Mann-Whitney test, ** p < 0.01, *** p < 0.001). Values
in (a,b,d,e) are given as mean ± SEM. (c,f) The subcellular localization of GLUT1 ((c), green) and
GLUT4 ((f), green) in relation to the sarcolemma stained by Wheat Germ Agglutinin (WGA, red) was
visualized in longitudinally oriented cardiomyocytes. Note the absence of the WGA signal within
the t-tubules region of sarcoplasm of the desmin knock-out cardiomyocytes (upper right images
of KO). Black and white images represent colocalized pixels according to Manders M1 coefficient
(white). (g) Qualitative examination depicted a localization of both GLUT1 and GLUT4 underneath
the sarcolemma in desmin knock-out cardiomyocytes (white arrows, lower images), whereas the
signals of both glucose transporters in wild-type tissue colocalized to the WGA-stained sarcolemma
(white arrows, upper images). Scale bars, 10 µm.
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< 0.01). (b,c) Further immunoblot analysis addressing hexokinase isoforms 1 (HK1) and 2 (HK2) 
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For both HK1 and HK2 homogenates from five animals per genotype were analyzed in quadrupli-
cate (HK1) or triplicate (HK2); Mann-Whitney test, ** p < 0.01. Representative immunoblots and 
Ponceau S-stained membranes are shown. The apparent molecular weight of HK1 and HK2 is 102 
kDa. (d,e) The subcellular localization of HK1 and HK2 (green) in relation to mitochondrial 
OXPHOS components (red) was visualized in longitudinally oriented cardiomyocytes. The addi-
tional black and white images illustrate pixels of colocalization (white). Scale bars, 5 µm. Quantita-
tive analysis based on the Manders M1 coefficient determined an increased degree of colocalization 
of HK1 with the mitochondrial compartment in desmin knock-out mice (five images of different 
regions of cardiac muscle tissue specimens from each of the three animals of each genotype were 
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glycolysis, and ATPases, thus serving as an energy buffer. Immunoblotting revealed an 
imbalance between creatine kinase isoforms in desmin knock-out cardiomyocytes with a 
significant reduction in mitochondrial creatine kinase (mtCK) abundance, unchanged cy-
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Figure 4. Activities, protein levels, and localization of glucose metabolism rate-limiting enzymes
in desmin knock-out cardiac tissue. (a) Spectrophotometrically-determined enzyme activities of
hexokinase (HK), which was significantly elevated, and phosphofructokinase (PFK) in desmin
knock-out mice (KO) and their wild-type siblings (WT). For both analyses, left ventricular cardiac
tissue homogenates from five animals per genotype were analyzed in duplicate; Mann-Whitney
test, ** p < 0.01). (b,c) Further immunoblot analysis addressing hexokinase isoforms 1 (HK1) and
2 (HK2) protein levels in the homogenates revealed a statistically significant increase in the HK1
amount. For both HK1 and HK2 homogenates from five animals per genotype were analyzed in
quadruplicate (HK1) or triplicate (HK2); Mann-Whitney test, ** p < 0.01. Representative immunoblots
and Ponceau S-stained membranes are shown. The apparent molecular weight of HK1 and HK2
is 102 kDa. (d,e) The subcellular localization of HK1 and HK2 (green) in relation to mitochondrial
OXPHOS components (red) was visualized in longitudinally oriented cardiomyocytes. The additional
black and white images illustrate pixels of colocalization (white). Scale bars, 5 µm. Quantitative
analysis based on the Manders M1 coefficient determined an increased degree of colocalization of
HK1 with the mitochondrial compartment in desmin knock-out mice (five images of different regions
of cardiac muscle tissue specimens from each of the three animals of each genotype were analyzed;
Mann-Whitney test, *** p < 0.001), while analysis of HK2 did not show any difference. Values in
(a–e) are given as mean ± SEM.

2.3. Imbalance in the Creatine Kinase System

The creatine kinase system comprising one mitochondrial and two cytosolic creatine
kinase isoforms in cardiomyocytes [39] enables the transfer of high-energy phosphate
compounds between ATP production compartments, i.e., oxidative phosphorylation and
glycolysis, and ATPases, thus serving as an energy buffer. Immunoblotting revealed an
imbalance between creatine kinase isoforms in desmin knock-out cardiomyocytes with
a significant reduction in mitochondrial creatine kinase (mtCK) abundance, unchanged
cytosolic creatine kinase (CKM) levels, and significantly increased fetal creatine kinase
(CKB) amounts (Figure 5a). While CKM is associated with the M-line of sarcomeres, CKB
is predominantly found in the cytosol [40]. Visualization of CKM’s and CKB’s subcellular
localization in relation to actin filaments showed a striated pattern of both CKM and
CKB (Figure 5b,f), however, in comparison to the wild-type, the intensity profiles of both
creatine kinase isoforms exhibited a phase-shift along the longitudinal axis of the myofibrils



Int. J. Mol. Sci. 2022, 23, 12020 10 of 29

in the desmin knock-out cardiomyocytes (Figure 5c,g). For CKM, but not for CKB, this
observation is also mirrored by a significant increase in the phase shift as quantitated by
the degree of anisotropy algorithm (Figure 5d,h) in conjunction with significant decreases
in the rate of both CKM and CKB colocalization with actin filaments (Figure 5e,i).
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Figure 5. Creatine kinase protein levels and localization in desmin knock-out cardiac tissue.
(a) Immunoblot analysis addressing the protein levels of mitochondrial creatine kinase (mtCK) as
well as the cytosolic CKM and CKB in left ventricular cardiac tissue homogenates from desmin
knock-out mice (KO) and their wild-type siblings (WT). Note the significantly lower protein level
of mtCK and the higher level of CKB in desmin knock-out mice. Representative immunoblots and
Ponceau S-stained membranes are shown. The apparent molecular weight of both CKM and CKB
is 43 kDa and of mtCK 47 kDa. For each CK isoform, homogenates from five animals per genotype
were analyzed in duplicate; Mann-Whitney test, ** p < 0.01. (b,f) The subcellular localization of
CKM and CKB (green) in relation to actin filaments (red) was visualized in longitudinally oriented
cardiomyocytes. Scale bar, 5 µm. (c,g) Fluorescence intensity line profiles of both creatine kinases
(lines indicated in yellow in panels (b) and (f)) demonstrated a phase-shift along the longitudinal
axis of the myofibrils in the desmin knock-out cardiac tissue. (d,h) The degree of anisotropy of
CKM (d) and CKB (h) fluorescence signals, which addresses the regularity of the striated signal
patterns, showed only a significant increase in the case of CKM (five images of different regions of
cardiac muscle tissue specimens from each of the three animals of each genotype were analyzed;
Mann–Whitney test, ** p < 0.01). (e,i) Quantitative analysis based on the Manders M1 coefficient
determined a significantly decreased colocalization of both CKM (e) and CKB (i) with actin filaments
in the desmin knock-out genotype (five images of different regions of cardiac muscle specimens
from each of the three animals of each genotype were analyzed; Mann-Whitney test, ** p < 0.01,
*** p < 0.001). Values in (a,d,e,h,i) are given as mean ± SEM.
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2.4. Proteome Analysis of Left Ventricular Cardiac Tissue Reveals Widespread Alterations Related
to Subcellular Compartments and Metabolism

To delineate and quantitate changes in the protein expression inflicted by the lack of
desmin, we performed quantitative mass spectrometry of left ventricular cardiac tissue
from five animals of each genotype. In the homozygous desmin knock-out mice and their
wild-type siblings, a proteome of 1522 protein groups was acquired at 1% FDR rate (raw
data and a method description have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository [41] (https://www.ebi.ac.uk/pride) with the dataset
identifier PXD030938). Principal component analysis (PCA) depicted clear differences in
the overall genotype-dependent protein expression profiles with desmin, as expected, as
a major separator. Hierarchical clustering of all quantitated proteins created six clusters
of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichments (Figure 6a, Table S1, Figure S1). While the upper three clusters (1),
(2) and (3) denoted higher protein levels, the lower three clusters (4), (5) and (6) showed
reduced protein expression in the desmin knock-out mice. Most prominent upregulation in
desmin knock-out mice in cluster 1 referred to the extracellular compartment comprising
terms annotated as “extracellular space”, “extracellular region”, “extracellular matrix”, “ex-
tracellular vesicle”, and “proteoglycans” (Table S1, Figure S1). Similarly, cluster 2 referred
to terms annotated as “sarcomere”, “M/A/I band”, “Z-disc”, “intercalated disc”, “focal
adhesion”, “proteasome”, “mitochondrion”, “pyruvate metabolism”, “carbon metabolism”,
“biosynthesis of amino acids”, “glycolysis and gluconeogenesis”, and “fructose and man-
nose metabolism” (Table S1, Figure S1). Upregulation in cluster 3 comprised terms such
as “cytoplasm”, “endoplasmic reticulum”, “protein processing in endoplasmic reticulum”,
“sarcolemma”, “cell projection”, and “actin cytoskeleton” (Table S1, Figure S1). Notably,
most prominent downregulation in desmin knock-out mice in cluster 4 referred to terms
comprising “mitochondrial membrane”, “pyruvate dehydrogenase complex”, “respiratory
chain”, “ATP synthase complex”, “biosynthesis of amino acids”, “fatty acid degradation”,
“fatty acid elongation”, “citrate cycle”, “oxidative phosphorylation”, “alanine, aspartate
and glutamate metabolism”, “valine, leucine and isoleucine degradation”, and “glycol-
ysis and gluconeogenesis” (Table S1, Figure S1). A marked downregulation of different
metabolic pathways is further highlighted in cluster 5, comprising terms such as “Z-disc”,
“intercalated disc”, “myosin filament”, “desmosome”, “mitochondrial matrix”, “respiratory
chain”, “biosynthesis of amino acids”, “citrate cycle”, “glycolysis and gluconeogenesis”,
and “oxidative phosphorylation” (Table S1, Figure S1). Finally, cluster 6 highlighted
downregulation of terms such as “extracellular matrix”, “extracellular vesicle”, “caveola”,
“focal adhesion”, “cardiac muscle contraction”, “mitochondrial membrane”, “respiratory
chain”, “carbon metabolism”, “oxidative phosphorylation”, and “biosynthesis of amino
acids” (Table S1, Figure S1). Taken together, the hierarchical clustering approach and the
subsequent GO term and KEGG pathway analyses further substantiated a broad range
of metabolic derangements in left ventricular cardiac tissue of desmin knock-out mice.
Notably, in addition to altered energy, fatty acid, and glucose metabolism, our analysis
revealed dysregulated amino acid metabolism. Furthermore, marked imbalances in sar-
comeric and extrasarcomeric cytoskeleton, protein homeostasis, as well as extracellular
space-related processes and structures were observed. A group of related proteins including
Xin actin-binding repeat-containing proteins 1 (Xirp1) and 2 (Xirp2), phosphoglucomutase-
like protein 5 (Pgm5), nebulin-related-anchoring protein (Nrap) and kelch-like protein 41
(Klhl41), that are localized at intercalated discs in the normal heart, were all upregulated
in desmin knock-out mice. These proteins are markers of striated muscle damage [42,43]
or play a role in myofibril assembly and protection against myofibrillar damage [44–47].
Their increased expression in desmin knock-out left ventricular cardiac tissue confirms that
a lack of desmin is associated with defects in the maintenance of the structural integrity
of sarcomeres.

https://www.ebi.ac.uk/pride
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Figure 6. Quantitative proteomic analysis of left ventricular cardiac tissue derived from desmin
knock-out mice. (a) Hierarchical clustering of the proteomic data created a dendrogram with six
distinct clusters. Clusters 1 to 3 showed higher protein amounts in the desmin knock-out cardiac
tissue, while clusters 4 to 6 highlighted reduced protein amounts as compared to their wild-type
sibling derived tissue. The heat map indicates increased protein levels in red and decreased values in
green. For a list of all proteins used for hierarchical clustering please refer to Table S1; for a bubble plot
illustration of the “Gene Ontology (GO) term Cellular compartment (CC)” and “Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway” enrichments please refer to Figure S1. (b) Volcano plot
comparing protein levels of desmin knock-out and wild-type genotypes. X-axis, log2-transformed
mean fold change; y-axis, -log10-transformed p-value. Light red and dark red as well as light and
dark green dots indicate significantly up- and down-regulated proteins, respectively, with p-values of
≤ 0.05 or ≤ 0.001 and a fold-change ≥ 2. For lists of significantly up- and downregulated proteins as
well as all quantified proteins including non-significantly regulated and proteins of any fold-change
in desmin knock-out left ventricular cardiac tissue please refer to Table S2.
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2.5. The Pattern of Significantly Regulated Proteins in Desmin Knock-Out Cardiac Tissue

Detailed quantitative analysis of individual proteins showed that a total of 98 proteins
were significantly upregulated (p≤ 0.05) in desmin knock-out mice when compared to their
wild-type siblings. Of those, 43 were still significant after multiple testing p-value correction.
A significant downregulation was detected for 97 proteins out of which 38 remained
significant after p-value correction (Table S2). A subset of significantly (p ≤ 0.05 and
p ≤ 0.001, shown as negative decadic logarithm of the p-value) and markedly (fold change
≥2, shown as binary logarithm of the fold change) upregulated and downregulated proteins
is visualized as a volcano plot (Figure 6b and Table S2). One group of upregulated proteins
was related to redox reactions and oxidative stress, and comprised glutathione peroxidase 3
(Gpx3), thioredoxin (Txn), thioredoxin domain-containing protein 5 (Txndc5), and protein
disulfide-isomerase A4 (Pdia4). In keeping with the above mentioned upregulation of
the term “extracellular matrix”, a second group consisting of vimentin (Vim), decorin
(Dcn), and lumican (Lum) was significantly upregulated thus reflecting the previously and
consistently documented increased interstitial fibrosis of left ventricular cardiac tissue in
desmin knock-out mice [48–50]. In addition to the expected lack of desmin, two metabolism-
related proteins, namely fructose-1,6-bisphosphatase isozyme 2 (Fbp2) and mitochondrial
methionine-R-sulfoxide reductase B2 (Msrb2), were downregulated. For information on
the other up- or downregulated proteins illustrated in the volcano plot (Figure 6b) please
refer to the tabular overview (Table S2).

2.6. A Closer Look at Metabolism-Related Proteins in Desmin Knock-Out Cardiac Tissue

Next, we focused specifically on metabolism-related proteins that were significantly
up- or downregulated (p≤ 0.05), with only a moderate fold change (1.1≤ fc≤ 2.0) (Table S2).
The analysis revealed upregulation of only three relevant proteins in left ventricular cardiac
tissue of desmin knock-out mice, namely UTP-glucose-1-phosphate uridylyltransferase
(Ugp2, p = 0.0012, fc = 1.7), NADH-cytochrome b5 reductase 3 (Cyb5r3, p = 0.0092, fc = 1.6),
and hexokinase-1 (Hk1, p = 0.0065, fc = 1.4). When focusing on downregulated metabolism-
related proteins in the desmin knock-out genotype, findings were more complex. One
group of downregulated proteins comprised core components of, and proteins related
to, electron transport and oxidative phosphorylation mainly affecting complexes I, II,
and V with p-values in a range from 0.049 to 0.00022 and fold changes between 1.15
and 1.59 (Adck3 (coenzyme Q biosynthesis), Atp5a1, Atp5b, Atp5i/Atp5k, Atp5j, Atp5o,
Cox5b, Cycs, Mtatp8, Ndufa12, Ndufa13, Ndufa6, Ndufs2, Ndufs3, Ndufv2, Sdhb, and
Uqcrc2; Table S2). In addition, the amount of electron transfer flavoprotein subunit beta
(Etfb) was significantly decreased (p = 0.00015, fc = 1.42; Table S2). A second group
contained proteins of the citrate cycle with p-values ranging from 0.043 to 0.0028 and fold
changes between 1.21 and 1.72 (Aco2, Cs, Dld, Fh, Idh2, Mdh2, Pdha1, Suclg1, and Suclg2;
Table S2). The third group consisted of several enzymes involved in the mitochondrial
beta-oxidation of fatty acids with p-values ranging from 0.046 to 0.00011 and fold changes
between 1.14 and 1.85 (Acaa2, Acadm, Acads, Acadvl, Acat1, Decr1, Ech1, Echs1, Eci1, Eci2,
Hadh, Hadha, Hadhb, Hsd17b10/Hadh2, Mut, Pcca, and Pccb; Table S2). Notably, these
downregulated enzymes were related to the metabolism of short, medium, and long-chain,
as well as unsaturated, branched-chain, straight, and odd fatty acids. Also, four proteins
involved in the transport, activation, and availability of fatty acids, namely carnitine
O-acetyltransferase (Crat, p = 0.000028, fc = 1.50) and carnitine O-palmitoyltransferase 2
(Cpt2, p = 0.0033, fc = 1.32) as well as the acyl-CoA hydrolysing enzymes Acot1 and Acot2
(p = 0.0062, fc = 1.52), were decreased in desmin knock-out cardiac tissue (Table S2). A
further downregulated protein was acyl-CoA synthetase short chain family member 1
(Acss1, p = 0.00047, fc = 1.44) (Table S2). The fifth group comprised proteins exerting
functions in amino acid metabolism, mostly associated with degradation, with p-values in
a range from 0.041 to 0.00031 and fold changes between 1.21 and 1.52 (Aldh5a1, Aldh6a1,
Auh, Bckdha, Bckdhb, Dld, D10Jhu81e, Got1, Hsd17b10/Hadh2, Mccc1, Mccc2, Pcca, and
Pccb; Table S2). A single protein was involved in glycogen degradation (Agl, p = 0.033,
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fc = 1.26; Table S2). A sixth group with p-values ranging from 0.042 to 0.00013 and fold
changes between 1.14 and 1.50 consisted of one protein related to mitochondrial fission
(Mtfp1) and two proteins related to mitophagy (Phb and Phb2; Table S2). Finally, a seventh
group of downregulated proteins with p-values in a range from 0.049 to 0.0054 and fold
changes between 1.17 and 1.50 was related to redox reactions and oxidative stress (Gstk1,
Gstm1, Prdx5, Sod1 (cytosolic), and Sod2 (mitochondrial); Table S2).

3. Discussion

The lack of desmin in human hearts triggers a cascade of noxious cellular effects often
leading to progressive heart failure during adolescence or early adulthood [14]. Findings
in patients and in desmin knock-out mice indicate that the key process in the molecular
pathogenesis of this very rare desminopathy subform is generalized destabilization of
the extrasarcomeric cytoskeleton due to the lack of its major component [37,51]. Sub-
sequent alterations in the structural and functional organization of the extrasarcomeric
cytoskeleton negatively interfere with the ordered alignment and proper subcellular at-
tachment of the entire myofibrillar apparatus, which likely explains impaired muscular
force generation and impaired mechanical stress resistance [21]. A second, major disease
promoting factor appears to be the negative impact of desmin deficiency on myocardial
metabolism. Already the first analyses of desmin knock-out mice showed that the extrasar-
comeric desmin cytoskeleton is tightly linked to subcellular distribution and respiratory
function of mitochondria in striated muscle cells [20,31]. The importance of this inter-
play is supported by the observation that aside from DES mutations [30,52], mutations in
genes encoding other essential extrasarcomeric intermediate filament cytoskeleton compo-
nents such as the cytoskeletal linker protein plectin (PLEC) [53,54] or the small heat shock
protein alphaB-crystallin (CRYAB) [55,56] also cause cardiomyopathies and myopathies
with morphological and biochemical evidence of mitochondrial dysfunction [30,57,58].
In addition to direct interactions between the N-terminal desmin domain with the outer
mitochondrial membrane [59], plectin isoform 1b has been identified as an important factor
concerting associations between mitochondria and the three-dimensional desmin network
in striated muscle cells [60]. While recent studies addressed the general molecular crosstalk
between mitochondria and the cytoskeleton in striated muscle cells (for review see [61,62]),
insight into the specific metabolic homeostasis of diseased cardiac tissue harboring DES,
PLEC, or CRYAB mutations is currently lacking. To delineate general metabolic effects
associated with the lack of desmin, here, we performed a comprehensive morphologi-
cal, biochemical, and proteomic analysis of left ventricular cardiac tissue derived from
six-month-old desmin knock-out mice and their wild-type siblings kept under standard
‘sedentary’ housing conditions.

3.1. Desmin and Myocardial Mitochondria

When we analyzed three-dimensional mitochondrial distribution by means of VDAC1-
stained left ventricular sections, we observed rarefied mitochondrial networks in desmin
knock-out mice. This finding implied a significant reduction in mitochondrial number.
Indeed, enzymatic measurements showed a tendency towards lower malate dehydro-
genase and citrate synthase activities, and quantitative real time PCR analysis yielded
significantly reduced mtDNA copy numbers. The latter finding resembles previous results
obtained in skeletal muscle specimens derived from patients with desmin missense mu-
tations as well as from homozygous desmin knock-out and homozygous R349P desmin
knock-in mice [30]. In contrast, transgenic mice expressing a desmin variant harboring
a 7-amino acid deletion displayed an increased mtDNA copy number in cardiac tissue.
This study further implicated that increased mitochondrial content may have been related
to an imbalance in mitochondrial fission and fusion processes [63]. In this respect, our
proteomic data revealed a significant downregulation of mitochondrial fission process
protein 1 (Mtfp1), however, no changes in Mfn1 and Opa1, and significant downregulation
of prohibitin proteins (Phb, Phb2) that are involved in mitophagy by targeting mitochondria



Int. J. Mol. Sci. 2022, 23, 12020 15 of 29

for autophagic degradation [64]. Additionally, our proteomic analysis depicted three down-
regulated mitochondrial proteins implicated in redox reactions and oxidative stress, namely
methionine-R-sulfoxide reductase B2 (Msrb2), peroxiredoxin-5 (Prdx5), and manganese
superoxide dismutase (Sod2).

3.2. Desmin and the Ultrastructure and Fragility of Mitochondria in Cardiac Muscle Tissue

Our ultrastructural analysis revealed areas of focal mitochondrial clustering, as well
as a markedly coarsened mitochondrial cristae in cardiac tissue of desmin knock-out
mice. Both findings mirror the previously described mitochondrial pathology in the
hearts of these mice [31,65]. We also noted the previously described focal clustering of
mitochondria in desmin deficient cardiomyocytes [31]. Another characteristic finding of
our ultrastructural analysis was the presence of electron-dense lipofuscin deposits, that
were much more abundant in the desmin knock-out cardiomyocytes. In addition to the
ultrastructural alterations, our attempts to enrich mitochondrial fractions failed due to
the apparently high fragility and swelling of the extracted mitochondria from the desmin
knock-out cardiac tissue. The latter findings indicate structural changes of mitochondria in
the desmin knock-out genotype, which negatively impact their mechanical stability during
the extraction or fractionation process.

3.3. From Aberrant Mitochondria to Changes in Fatty Acid Metabolism and
Oxidative Phosphorylation

Numerical and structural mitochondrial alterations prompted us to analyze mito-
chondrial fatty acid metabolism, which is the major ATP generator in cardiac muscle [66].
In addition to significantly decreased fatty acid transporter CD36 expression, octanoyl-
carnitine-stimulated beta-oxidation showed a significant reduction in desmin knock-out
cardiac tissue homogenates. Notably, dried whole blood sample analysis depicted an
intriguing picture in which multiple acylcarnitines ranging from C3 to C18 chain length
showed significantly increased concentrations in desmin knock-out mice. Regarding this
finding, one has to keep in mind that acylcarnitine blood levels are determined to a far
greater extent by skeletal than the cardiac muscle metabolism. However, proteomic analysis
of the left ventricular cardiac tissue also depicted that a spectrum of proteins involved
in fatty acid metabolism to oxidative phosphorylation was significantly downregulated.
This included proteins involved in the transport and activation of fatty acids such as the
carnitine O-palmitoyltransferase 2 (Cpt2), which is active with medium and long-chain
acyl-CoA esters for subsequent beta-oxidation, as well as multiple core enzymes involved
in mitochondrial beta-oxidation, the citrate cycle, electron transport, and oxidative phos-
phorylation. Taken together, our enzymatic and mass spectrometric analyses documented
widespread aberrations of fatty acid metabolism and oxidative phosphorylation in our
desmin knock-out mice.

3.4. Metabolic Adaptations in Desmin Knock-Out Hearts

Key findings regarding glucose metabolism in desmin knock-out left ventricular car-
diac tissue were a markedly upregulated fetal GLUT1 isoform in conjunction with GLUT4
with higher apparent molecular weight in immunoblotting, and increased hexokinase iso-
form 1 protein expression. Furthermore, hexokinase enzymatic activity (assay not isoform
specific) was significantly increased. GLUT4′s shifted apparent molecular weight is con-
sistent with posttranslational modifications, e.g., phosphorylation or N-glycosylation [67].
Moreover, GLUT4′s subsarcolemmal enrichment in desmin knock-out cardiomyocytes
may result from such posttranslational modifications [68]. The observed dissociation from
the sarcolemma of both GLUT1 and GLUT4 in desmin knock-out cardiomyocytes may
be linked to the loss of t-tubular system (a target structure of GLUT4 containing vesi-
cles) and accumulation of the GLUT4-containing sarcoplasmic vesicles underneath the
sarcolemma [69]. The marked upregulation of GLUT1 expression, which is under con-
trol of SP1 transcription factor in embryonal and neonatal heart [70], suggests activation
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of fetal gene program and increased glucose metabolism in the desmin knock-out heart.
Proteomic analysis also revealed a significant upregulation of UTP-glucose-1-phosphate
uridylyltransferase (Ugp2). The enzyme catalyzes glucose-1-phosphate conversion to UDP-
glucose. The gluconeogenesis regulatory fructose-1,6-bisphosphatase isozyme 2 (Fbp2) and
glycogen debranching enzyme Agl were downregulated. The outlined findings imply an
increase in glucose metabolism or utilization to compensate for decreased mitochondrial
ATP-generation. Moreover, the creatine kinase system exhibited a significant reduction in
mitochondrial creatine kinase (mtCK) amounts and significantly increased cytosolic fetal
creatine kinase (CKB). CKB is more resistant to inactivation by reactive oxygen species
and possesses a higher affinity to phosphocreatine than CKM [71]. Thus, the enzyme
can operate under conditions of increased oxidative stress and lower phosphocreatine
concentration. The observed phase-shift of both CKM and CKB in the desmin knock-out
myofibrils towards the levels of sarcomeric M-lines suggests enhanced metabolic chan-
neling of ATP to myosin-ATPase by the sarcomeric creatine kinase system [72,73]. The
response likely compensates for the impairment of intermyofibrillar mitochondria. In light
of the decreased mitochondrial stability, which is largely dependent on mtCK octamers [74]
and prohibitins [75,76], it is noteworthy that mtCK, Phb, and Phb2 were downregulated in
the desmin knock-out cardiomyocytes.

In contrast to our proteomic analysis using total left ventricular cardiac tissue, a previ-
ous study focused on the analysis of mitochondria that were fractionated from total heart
tissue [4]. Due to the sample preparation and proteomic measurement methodologies,
i.e., two-dimensional gel electrophoresis in conjunction with MALDI-TOF mass spectrome-
try, these results are only partially comparable with our present work. For example, various
citrate cycle proteins were unchanged. Further examples are the mixed patterns of non-,
up- or downregulated proteins of amino acid metabolism, respiratory chain, oxidative
phosphorylation, glucose metabolism and oxidative stress [4]. Another study reported
the absence of kinesin in heart mitochondria fractions and in the heart tissue of desmin
knock-out mice using immunoblotting and immuno-electron microscopy, respectively [5],
a finding that could not be recapitulated in our analysis showing no significant change in
the amount of kinesin-1 heavy chain (Kif5b). Corresponding data derived from patients
with a desmin knock-out cardiomyopathy have not yet been published. In the context of
human desminopathies it is, however, noteworthy that another study reported a marked
decrease in the levels of respiratory chain proteins as well as in citrate synthase activity in
cardiac tissue of patients harboring heterozygous DES mutations [52].

3.5. Desmin Deficiency and the Heart: A Combined Structural and Metabolic Disease

Desmin knock-out cardiomyopathy is considered a ‘structural cardiomyopathy’ caused
by deficiency in an essential component of the extrasarcomeric cytoskeleton. However,
our data suggest that desmin deficiency is also associated with profound abnormalities
in myocardial metabolism, compatible with a secondary ‘mitochondrial cardiomyopathy’.
The starting point of the metabolic mayhem seems to be directly related to a defective
and stressed mitochondrial compartment. Reduced mitochondrial content along with the
structural aberrations provide an explanation for compromised fatty acid metabolism and
oxidative phosphorylation, which most likely results in reduced ATP generation in the very
energy demanding cardiac tissue. As an apparent countermeasure, glucose metabolism
and fetal creatine kinase isoform (CKB) were increased. We therefore postulate that the
cardiomyopathy associated with desmin deficiency should be conceptualized as combined
structural and mitochondrial cardiomyopathy.

Increased blood concentrations of short, intermediate, and long acylcarnitines associ-
ated with elevated blood levels of branched-chain amino acids also occur in the human
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) syndrome (MIM #231680; [77]).
MADD, which can cause cardiomyopathy [78], is either attributed to mutations in the genes
coding for the mitochondrial electron transfer flavoprotein-ubiquinone oxidoreductase
(ETFDH), electron transfer flavoprotein subunit alpha (ETFA), or electron transfer flavo-
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protein subunit beta (ETFB) (MIM #231680). While ETFDH and ETFA were unchanged in
the cardiac tissue proteome from our desmin knock-out mice, the amount of ETFB was
significantly decreased (p = 0.00015, fc = 1.42; Table S2). Furthermore, combined increases
in 3OH-butyryl-carnitine (C4OH) and branched-chain amino acid blood levels indicate
a catabolic metabolic state. Human desminopathies with a lack of desmin protein are
very rare and, to our knowledge, no published data on acylcarnitines and amino acid
blood levels are currently available. Review of clinical chemistry data in a previously
reported patient (patient 2 in [14]) showed no blood acylcarnitine elevations. However,
this patient showed an acyl CoA dehydrogenase deficiency-characteristic increase in the
C8/C10-carnitine ratio [79] with a value of 0.98 (normal range, 0.60 to 0.00), a finding
that was also present in our desmin knock-out mice (2.12 vs. 1.85, p = 0.049; Table 1).
Another enzyme of interest that was also significantly decreased in our proteomic analysis
is 2,4-dienoyl-CoA reductase (Decr1; p = 0.046, fc = 1.24; Table S2). This enzyme is essen-
tially involved in the pathogenesis of 2,4-dienoyl-CoA reductase deficiency (DECRD), a
disease with a characteristic increase in 2-trans 4-cis-decadienoyl-carnitine (C10:2) blood
levels [80]. In line with increased circulating acylcarnitine and amino acid concentrations,
carnitine acyltransferases, acyl-CoA hydrolysing enzymes, proteins of the mitochondrial
beta-oxidation, and the amounts of enzymes with predominantly catabolic functions in the
amino acid metabolism were significantly decreased in desmin-deficient left ventricles.

3.6. Translational Aspects Derived from the Analysis of Murine Desmin Knock-Out Hearts

Severe metabolic derangements seem to be common in various human cardiomy-
opathies. Specifically, a recent multi-omics study focusing on human hypertrophic car-
diomyopathy reported reduced mitochondrial cristae densities, reduced mtDNA copy
numbers, and multiple mitochondrial metabolic derangements comprising reduced oxida-
tive respiration, decreased levels of citrate cycle intermediates and high energy phosphate
metabolites, and the accumulation of free fatty acids [81]. These mitochondrial changes
are at least partly mirrored in our desmin knock-out animals, thus indicating that dys-
functional mitochondria are a common feature in cardiomyopathies irrespective of the
underlying aetiology. However, human hypertrophic cardiomyopathy tissues exhibited
significantly reduced acylcarnitines, whereas the analysis of blood acylcarnitines in our
desmin knock-out mice showed an opposite picture. To address such discrepancies, further
studies are required.

In the context of widespread mitochondrial dysfunction in desmin knock-out hearts,
it may be prudent to avoid medications that worsen mitochondrial function [82] in patients
lacking desmin. Whether other metabolic stressors, such as physical exertion, pose risks
deserves to be studied. A high mortality rate has been observed in desmin knock-out
mice exposed to a forced swimming exercise protocol [83,84], which might be due to an
acute metabolic crisis. On the other hand, moderate physical exercise could stimulate
mitochondriogenesis and improve oxidative metabolism in the long run [82]. Possibly,
therapeutic interventions for mitochondriopathies [82] may also be beneficial in patients
suffering from desminopathy-associated heart diseases. For example, as treatment of the
Multiple Acyl-CoA Dehydrogenase Deficiency syndrome with riboflavin [85,86], riboflavin
together with coenzyme Q10 [87], riboflavin together with carnitine [88], or coenzyme
Q10 [88] may markedly improve the muscle symptoms, it is tempting to speculate that
such a therapy may also improve the metabolic condition in desmin deficient hearts.

4. Materials and Methods
4.1. Animals

We studied six-month-old homozygous desmin knock-out mice B6J.129S2/Sv-Destm1Cba/Cscl
(http://www.informatics.jax.org/allele/MGI:2159584; [20]) and their wild-type siblings. Mice of
both sexes were used in approximately similar numbers. Routine PCR genotyping was performed
using primers DES 1 5’-TTGGGGTCGCTGCGGTCTAGCC-3’, DES 1R 5’-GGTCGTCTATCAGGTT
GTCACG-3’, and LacZ 430R 5’-GATCGATCTCGCCATACAGCGC-3’ resulting in products of
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350 bp for the wild-type and 450 bp for the knock-out allele. In addition, the absence of desmin
was verified by immunoblotting in individual animals. Mice were housed in isolated ventilated
cages (IVC) under specific and opportunistic pathogen-free (SOPF) conditions in a standard en-
vironment with free access to water and food. Health monitoring was done as recommended
by the Federation of European Laboratory Animal Science Associations (FELASA). Mice were
handled in accordance with the German Animal Welfare Act (Tierschutzgesetz) as well as the
German Regulation for the protection of animals used for experimental or other scientific purposes
(Tierschutz-Versuchstierverordnung). For tissue dissection, mice were euthanized by cervical
dislocation. All investigations were approved by the governmental office for animal care (Lan-
desamt für Natur, Umwelt und Verbraucherschutz North Rhine-Westphalia (LANUV NRW),
Recklinghausen, Germany (reference numbers 84-02.04.2014.A262 and 84-02.05.40.14.057)).

4.2. Patients

Clinical chemistry data derived from a patient, who has been included in a previous
publication (patient 2, [14]), were reviewed and included in this study. Blood samples from
the patient were obtained upon written informed consent according to the Declaration of
Helsinki and approval by the Boğaziçi University Institutional Review Board for Research
with Human Participants (reference number 20922).

4.3. Mass Spectrometric Analysis of Acylcarnitine and Amino Acid Levels in Blood

For mass spectrometric quantitation of acylcarnitines and amino acids, retro-orbital
sinus blood samples from mice under isoflurane anesthesia (single administration of a dose
of 4% Forane via inhalation in a small chamber) were withdrawn using Pasteur pipettes
immediately prior to euthanasia by cervical dislocation for muscle tissue dissection and
collected on dried blood sample cards.

Acylcarnitines were extracted from discs of 3 mm diameter, which were punched
out of the dried blood sample cards, with an acetonitrile/water-based buffer (NEO Ex-
traction Buffer #55008, Chromsystems, München, Germany) containing isotope-labelled
acylcarnitines as internal standard (C0-carnitine-D9, C2-carnitine-D3, C3-carnitine-D3,
C4-carnitine-D3, C5-carnitine-D9, C5DC-carnitine-D6, C6-carnitine-D3, C8-carnitine-D3,
C10-carnitine-D3, C12-carnitine-D3, C14-carnitine-D3, C16-carnitine-D3, C18-carnitine-D3).
After centrifugation at 14,000× g for 5 min the supernatants were evaporated to dryness
at 60 ◦C in a stream of nitrogen and butylated by addition of anhydrous butanol/HCl.
After drying and reconstitution of the acylcarnitines in an acetonitrile/water-based buffer
(NEO Reconstitution Buffer #55006, Chromsystems), samples were directly injected into the
ESI source of an LC-MS/MS instrument (Quattro premier XE mass spectrometer, Waters,
Milford, MA, USA) and analyzed in Parent-Ion-Scan (PIS) mode with the MS1 scan range
set from 200 to 500 m/z. A characteristic 85 m/z fragment ion generated from acylcarnitine
precursor ions selected for collision-induced dissociation fragmentation was selected by
MS2 and detected by a photo multiplier. Primary data analysis was performed using
MassLynx 4.1 with the NeoLynx tool (Waters, USA).

Amino acids were extracted from another 3.2 mm diameter discs punched out of the
dried blood sample cards into Eppendorf reaction vials, and 50 µL water were added to
each sample. Prior to analysis, all plasma calibration standards and control samples were
thawed and allowed to equilibrate at room temperature; 50 µL of each were transferred
into Eppendorf reaction vials. Extraction was carried out with 200 µL methanol containing
isotope-labelled amino acids (cell-free amino acid mixture 13C, 15N; Sigma Aldrich, Merck,
Darmstadt, Germany; 500 µL in 200 mL methanol). After agitation at 1000 rpm for 20 min
at 20 to 25 ◦C all vials were centrifuged at 16,000× g for 5 min. For derivatization, 10 µL of
the supernatants were transferred into sample cups and mixed with 70 µL of borate buffer
and 20 µL derivatization reagent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate in
acetonitrile (included in AccQ-Tag Ultra Derivatization Kit, Waters, Eschborn, Germany).
All vials were incubated for 10 min at ambient temperature. Chromatographic separation
of partly isobaric compounds was carried out on a ACQUITY UPLC I-Class System with a
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CortecsUPLC column (particle size 1.8 µm, 150 mm length, 2.1 mm inner diameter) (Waters,
Germany) using 0.1% formic acid in ULC water and 0.1% formic acid in acetonitrile as
mobile phase. After chromatographic separation, detection was performed using a Xevo
TQS-micro (Waters, Germany) in ESI positive mode quantification with MassLynx NT
version 4.1 (Waters, Germany). A decrease in acylcarnitine and amino acid amounts on the
dried blood sample cards during storage for a few months [89] was considered.

4.4. Cardiac Muscle Tissue Preparation

Murine hearts were dissected and processed for different subsequent analyses. For
quality control, the genotype of all dissected animals was confirmed by a second PCR.
Explanted hearts were washed in ice-cold saline solution and left ventricles (LV) were sepa-
rated from the free wall right ventricle and immediately frozen in liquid nitrogen. Frozen
tissue specimens were pulverized in liquid nitrogen and homogenized in homogenization
buffer (12.5 mM Tris, 2.5 mM EGTA, 1 mM EDTA, 250 mM sucrose, 5 mM DTT, Complete
protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany ), pH 7.4). Total pro-
tein concentrations were assessed using the Bradford Method Protein Assay Kit (Sigma
Aldrich). The homogenates were aliquoted and stored at −80 ◦C until they were used
for western blotting (WB) and enzyme activity assays. For immunofluorescence analysis,
the left ventricles of a set of explanted hearts were immediately perfused by injection of
relaxing Tyrode solution (140 mM NaCl, 5.4 mM KCl, 1 mM Na2HPO4, 1 mM MgCl2.6H2O,
10 mM glucose, 5 mM HEPES, pH 7.4) and subsequently perfused with freshly prepared 4%
formaldehyde (Sigma Aldrich) solution. Perfused hearts were transferred into fresh fixative
and kept immersed for 2 h. Subsequently, they were infiltrated with 20% cryoprotective
sucrose solution, snap-frozen in liquid nitrogen, and stored at −80 ◦C. For mtDNA and
proteomic analyses another set of explanted hearts was used for separation of the cardiac
apexes and left ventricles, which were snap-frozen in liquid nitrogen. For ultrastructural
analysis, several cardiac apexes were fixed in glutaraldehyde.

4.5. Enzyme Activity Measurements

Specific enzyme activities (U/mg protein) of hexokinase (HK), phosphofructokinase
(PFK), malate dehydrogenase (MDH), and citrate synthase (CS) were spectrophotomet-
rically assessed by enzyme coupled assays using either a 96-well multi-reader system
BioTek Synergy HT (HK, PFK; Agilent, Santa Clara, CA, USA) or a spectrophotometer
Shimadzu-UV1601 (MDH, CS; Shimadzu corporation, Duisburg, Germany).

The enzyme activity of HK was assessed as described by an enzyme-coupled assay
using a slightly modified Worthington protocol (http://www.worthington-biochem.com/
HK/assay.html (accessed on 5 October 2022)) [39]. Briefly, 60 µg of the protein samples
were loaded onto a 96-well plate and diluted in assay buffer (50 mM Tris, 13.3 mM MgCl2,
0.8 mM NAD+, 0.8 mM ATP, 1 U/mL glucose-6-phosphate dehydrogenase (Roche/Sigma-
Aldrich/Merck), pH 8.0). The reaction was initiated after 2 min incubation at 30 ◦C by the
addition of a solution containing 1.5 M glucose, 50 mM Tris, 13.3 mM MgCl2, pH 8.0. The
absorbance was recorded for 15 min at 339 nm.

The enzyme activity of PFK was assessed using the Activity Colorimetric Assay Kit
(MAK093, Sigma-Aldrich) according to the manufacturer’s instructions. For this purpose,
20 mg pulverized tissue samples were homogenized in 200 µl ice-cold PFK assay buffer
and samples were centrifuged at 13,000× g for 10 min to remove insoluble material. The
supernatants were loaded into the assay in a volume of 10 µL and mixed with the reaction
buffer containing fructose-6-phosphate and ATP. The resulting colorimetric product was
measured at 450 nm. Values are proportional to the PFK activity.

The MDH specific enzyme activity was measured using a Worthington protocol that
determines the decrease in absorbance at 340 nm resulting from the oxidation of NADH
(http://www.worthington-biochem.com/MDH/assay.html (accessed on 5 October 2022)).
20 µg of protein was resuspended in 100 mM phosphate buffer, pH 7.4, containing 0.30 mM
NADH. The reaction was initiated by addition of 1.51 mM oxaloacetate.

http://www.worthington-biochem.com/HK/assay.html
http://www.worthington-biochem.com/HK/assay.html
http://www.worthington-biochem.com/MDH/assay.html
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The specific enzyme activity of CS was detected at 412 nm using the 5,5’-dithio-
bis(2-nitrobenzoic acid) (DTNB) method. DTNB reacts with the free sulfhydryl group of
coenzyme A and produces mercaptide ions. The reaction was performed in 1 mL of buffer
containing 100 mM Tris (pH 8.1), 0.1 mM DTNB and 0.12 mM acetyl-coenzyme A, and was
started by adding 0.5 mM oxaloacetate as described previously [90].

4.6. High-Resolution Respirometry

Respiration of left ventricle cardiac tissue homogenates from desmin knock-out mice
and wild-type littermates was determined by using, as described previously, [90] high-
resolution respirometry (Oxygraph 2-k, Oroboros) using MiR05 (0.5 mM EGTA, 3 mM
MgCl2, 60 mM K+-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM
D-sucrose) and 1 g/l BSA as respiration medium [91,92]. To analyze the mitochondrial
beta-oxidation rate, the following substrates were added: 0.5 mM malate, 2.5 mM ADP,
0.25 mM octanoyl-carnitine, and 0.01 mM cytochrome c.

4.7. SDS-PAGE and Immunoblotting

Left ventricle cardiac tissue homogenates (each 20 µg protein) were separated by
SDS-PAGE as described previously [93] using 10–12% polyacrylamide gels and a voltage
gradient ranging from 100 to 150 V (Mini-PROTEAN TetraCell, Bio-Rad, Hercules, Cali-
fornia, USA). Separated proteins were electro-transferred onto a nitrocellulose membrane
(0.2 µm pore size, Protran BA 83, Whatman, Merck) at a constant voltage of 25 V for 35 min
(Trans-Blot Turbo, Bio-Rad). Membranes were washed, stained by Ponceau S solution
(Sigma), and scanned for further evaluation. De-stained membranes were blocked for 1 h
at room temperature with 5% non-fat dry milk powder in Tris-buffered saline solution
(20 mM Tris, 500 mM NaCl, pH 7.5) containing 0.05% Tween 20 (TBS-T). After washing in
TBS-T, membranes were incubated overnight at 4◦C with the following primary antibod-
ies: rabbit polyclonal anti-HK1 and anti-HK2 (Abcam, Cambridge, UK; ab150423, 1:2000,
and ab78259, 1:500, respectively,), rabbit polyclonal GLUT1 (ab115730, 1:1000), mouse
monoclonal GLUT4 (ab65267, 1:1000), rabbit polyclonal anti-CD36 (ab64014, 1:500), and
goat polyclonal anti-CKB, CKM or mtCK (Santa Cruz Biotechnologies, Dallas, Texas, USA;
sc-15157, 1:500, sc-15164, 1:1000, and sc-15168, 1:400, respectively). After washing in TBS-T,
the membranes were incubated with HRP-conjugated anti-rabbit (A9169, Sigma Aldrich,
Merck), anti-mouse (Thermo Fisher Scientific, Waltham, MA, USA; 32430, 1:10,000) or
anti-goat (Santa Cruz Biotechnologies, sc-2033, 1:10,000) secondary antibodies for 1 h. After
final washing, the SuperSignal West Dura Extended Duration Substrate (Thermo Fisher
Scientific) was added and the chemiluminescence signals were visualized using a LAS-3000
Imaging System from Fuji (Biocompare, South San Francisco, CA, USA). Densitometric
quantitation of specific protein bands was performed using ImageJ. All samples from each
group were always separated on a single gel. Western blotting data were normalized
against total protein amounts that were visualized by Ponceau S staining.

4.8. Immunofluorescence Staining, Imaging, and Image Analysis

Using a Leica CM3050 cryostat (Leica Microsystems, Wetzlar, Germany), 5 to 7 µm-
thick sections of the cryopreserved left ventricular cardiac tissue specimens were prepared.
Cryosections were rehydrated in PBS, permeabilized in ice-cold methanol, briefly incubated
in 1% SDS for antigen retrieval, and incubated in a blocking solution containing 10% donkey
serum, 10% goat serum, 0.3% Triton X-100, and 0.3 M glycine in PBS. Methanol permeabi-
lization and SDS treatment were omitted for sections dedicated to Wheat Germ Agglutinin
(WGA) staining. The sections were incubated with primary antibodies (rabbit polyclonal
anti-HK1 and anti-HK2 (Abcam, ab150423, 1:50, and ab78259, 1:50, respectively), rabbit
polyclonal anti-Glut1 and anti-Glut4 (Abcam, ab115730, 1:50, and ab654, 1:50, respectively),
and rabbit polyclonal anti-CKB and anti-CKM (Abcam, ab92452, 1:50, and ab189438, 1:50,
respectively)) and conjugated secondary antibody (donkey anti-rabbit IgG AlexaFluor488
(Thermo Fisher Scientific, A-21206, 1:200)) followed by staining with a subcellular com-
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partment marker (total OXPHOS Blue Native WB antibody cocktail (Abcam, ab110412,
1:200) and goat anti-mouse IgG AlexaFluor647 (Thermo Fisher Scientific, A-21235, 1:200)
for mitochondria, WGA AlexaFluor647 conjugate (Thermo Fisher Scientific, W-32466, 1:200)
for sarcolemma and t-tubules, and Phalloidin AlexaFluor647 conjugate (Thermo Fisher
Scientific, A-22287, 1:40) for actin filaments). Sections were mounted in ProLong Gold
Antifade Reagent with DAPI (Thermo Fisher Scientific).

Images were acquired using a wide-field inverted fluorescence microscope (Olympus
IX2-UCB) equipped with a MT20 mercury arc illumination unit (Olympus, Tokyo, Japan), a
fully motorized stage Corvus (PI-Japan, Kanagawa, Japan), and a CCD camera Orca C4742-
80-12AG (Hamamatsu Photonics, Seoul, Korea). Samples were observed with a 100x 1.4NA
Plan-Apochromat objective lens. Filter combinations were as follows: DAPI (blue), triple-
band set 69002-ET-DAPI/FITC/TexasRed (Chroma Technology Corp., Vermont, USA), ex.
350 nm (bandwidth 50 nm), em. 457 nm (bandwidth 22 nm); proteins of interest (green),
U-MWIBA3 (Olympus), ex. 477.5 nm (bandwidth 17.5 nm), em. 530 nm (bandwidth
20 nm); additional markers (red), U-N41008 (Chroma Technology Corp.), ex. 620 nm
(bandwidth 60 nm), em. 700 nm (bandwidth 75 nm). For each sample, images were taken
from at least 5 randomly selected positions on each sample. Each position was optically
sectioned at 0.5 µm steps resulting in approximately 8–12 layers in a Z-stack depending on
specimen thickness.

Subcellular colocalization of proteins of interest with mitochondria, sarcolemma, t-
tubules, and actin filaments was expressed as Manders M1 coefficient [94], and calculated
using the Colocalization Threshold plug-in in Fiji software [95]. Prior to colocalization
analyses, images were calibrated, and a rolling ball background subtraction with radius
(r = 5) was applied. To solve the relative disproportion in sarcolemma and t-tubules signal
intensities, the Contrast Limited Adaptive Histogram Equalization (CLAHE) [96] was used
to enhance the fluorescent signal of WGA AlexaFluor647 conjugate. For representative
images, foreground pixels were enhanced using the Difference of Gaussian (DoG) algo-
rithm [97]. The extent of the striation pattern of the CKM/CKB fluorescence signal was
evaluated using the degree of anisotropy algorithm, a part of the BoneJ plug-in collection
for Fiji software [98]. On the selected, representative images, qualitative evaluation of
the phase-shift between the CKM/CKB and WGA fluorescence signal was performed by
plotting a linear intensity profile alongside the longitudinal axis of the myofibrils.

4.9. Confocal Image Acquisition and Analysis

Cryosections of the left ventricular cardiac tissues were also stained with an antibody
directed against the voltage-dependent anion channel (rabbit polyclonal anti-VDAC1,
Abcam, ab15895, 1:100; secondary antibody goat anti-rabbit IgG AlexaFluor555, Thermo
Fisher Scientific, A-21429, 1:100). Confocal Z-stacks were acquired on a Leica TCS SP5
microscope using a HCX PL APO CS 63.0 × 1.30 GLYC objective lens. To enhance the
signal and remove noise and background, images were deconvolved using Huygens
Professional (version 17.04; Scientific Volume Imaging, Amsterdam, The Netherlands).
Further analysis was performed with Fiji [99]. Fiji’s Tubeness filter (σ = 0.15 µm) was
applied to enhance filamentous structures in the image volumes. The mitochondrial
network was then separated from the background using automatic Otsu thresholding.
The midlines of the network were extracted by the Skeletonization algorithm, and the
number of branch points was counted. The mitochondrial network was visualized using
3Dscript [99].

4.10. Ultrastructural Analysis

For transmission electron microscopy, cardiac apexes were fixed in freshly prepared
2.5% glutaraldehyde in 0.1 M Sørensen’s phosphate buffer, pH 7.2, with 0.23% NaCl,
post-fixed in 2% buffered osmium tetroxide, dehydrated in graded ethanol concentrations,
and embedded in epoxy resin. 1 µm-semi-thin-sections for orientation were stained with
toluidine blue. Ultra-thin sections were stained with uranyl acetate and lead citrate and
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were examined with a LEO 906E transmission electron microscope (Carl Zeiss Microscopy
GmbH, Oberkochen, Germany).

4.11. mtDNA Deletions Determination

Total DNA was isolated from the apexes of dissected hearts using the QIAamp DNA
Mini Kit (QIAGEN, Venlo, The Netherlands) column purification. The DNA isolation
protocol provided by the manufacturer was followed and the samples were eluted in
200 µL elution buffer provided in the kit. All samples were stored at 4 ◦C. Deletions of
mitochondrial DNA were detected by a long-range PCR protocol using the TaKaRa LA
Taq Hot Start polymerase (Takara, Saint-Germain-en-Laye, France) specifically suitable
for the production of longer PCR amplicons with greater accuracy. In order to detect
deletions, almost the entire mtDNA was amplified between primers musMT2482F24 (5′-
GTTCAACGATTAAAGTCCTACGTG-3′) and musMT1005R24 (5′-CCAGTATGCTTACCTT
GTTACGAC-3′), under the following conditions: 95 ◦C for 2.5 min, 30 cycles of 92 ◦C for
20 s and 66.8 ◦C for 5.5 min, and final extension at 72 ◦C for 10 min. The PCR products
were visualized on a 1% agarose gel with Quick-Load 1 kb Extend DNA Ladder (New
England Biolabs, Frankfurt/Main, Germany).

4.12. mtDNA Copy Number Determination

Total DNA, isolated as described above, was used for mtDNA copy number deter-
mination by quantitative real-time PCR (qPCR). The qPCR was performed with 2×SYBR
Green qPCR Master Mix (Bimake, Munich, Germany). Three different DNA concentra-
tions were used (1.6 ng/µL, 0.8 ng/µL, and 0.4 ng/µL) with final DNA amounts of 20 ng,
10 ng, and 5 ng, respectively, and each sample was used in triplicate for each dilution.
Primers musMT553F23 (5′-GCCAGAGAACTACTAGCCATAGC-3′) and musMT668R23
(5′-AGCAAGAGATGGTGAGGTAGAGC-3′) were used for mtDNA amplification. Ampli-
fication of the single copy gene for the inward rectifier potassium channel 13 (Kcnj13) with
primers mus4987F25 (5′-GGATGAGAGAGAGAAGCACAAGTGG-3′) and mus5140R25 (5′-
CTGTATGACCAACCTTGGACATGAT-3′) served as a nuclear reference gene. All primer
pairs were PCR optimized and checked by PAGE. The qPCRs for the mtDNA and Kcnj13
were performed using the following parameters: 95 ◦C for 7 min, 45 cycles of 95 ◦C for 15 s,
and 62.6 ◦C (Kcnj13) or 64.6 ◦C (mtDNA) for 1 min, 95 ◦C for 1 min, and 55 ◦C for 1 min.

From the obtained qPCR fluorescence data, the Ct values for the calculation of the
mtDNA copy numbers were obtained by Chapman sigmoidal non-linear regression curve
fitting analysis in Sigma Plot (2001 for Windows version 7.0, Systat Software GmbH) [100].
The shape of the sigmoidal regression curves was determined by the parameters y0, a, b,
and c, from the equation y = y0 + a(1 − e−bx)c; and the inflection point of the sigmoidal
curve determining the Ct value was calculated using the equation Ct = ln(c)/b. The copy
number (CN) of the mtDNA relative to the diploid single nuclear Kcnj13 was calculated as
CN = 2 × 2∆Ct, where ∆Ct represents the cycle number difference between Kcnj13 and the
mtDNA fragment (∆Ct = Ctnuclear − CtmtDNA) [101]. The PCR amplification efficiency,
(10−1/slope − 1) × 100 [102], was determined as 103% and 95% for the mtDNA primer pair
and the Kcnj13 primer pair, respectively.

4.13. Statistical Analysis

Data analysis and statistical evaluation were performed using Excel 2016 (Microsoft)
with the Excel add-in ”Real Statistics Resource Pack” (release 7.9) by Charles Zaiontz avail-
able at http://www.real-statistics.com (accessed on 5 October 2022) as well as GraphPad
Prism (version 9.3.1, GraphPad Software). Since the samples were non-normally distributed
in some data sets as determined by the Shapiro–Wilk normality test, and because of the
limited sample sizes (number of animals), statistical significances were calculated using
the non-parametric Mann–Whitney U (Wilcoxon rank-sum) test. The number of experi-
ments, technical replicates, and significance levels for each analysis are indicated in the
Figure legends.

http://www.real-statistics.com


Int. J. Mol. Sci. 2022, 23, 12020 23 of 29

4.14. Proteomic Analysis: Sample Preparation, Mass Spectrometry, and Data Analysis

Left ventricular cardiac tissue was lysed as described [103]; the muscle tissue was
pulverized in liquid nitrogen, homogenized on ice in urea buffer (7 M urea, 2 M thiourea,
20 mM Tris base, pH 8.5), followed by sonication (6× for 30 s, with 30 s rest time on ice) to
support protein solubilization. Protein concentration was determined by Bradford assay.
Subsequent digestion was carried out as described [103]; 40 µg of proteins were digested
with trypsin (ratio 1:40) in 50 mM AMBIC. Prior to digestion, reduction of cysteine bridges
using 15 mM DTT was carried out at 56 ◦C for 30 min followed by a 30 min alkylation step
using 5 mM IAA at RT. 1 µg trypsin was added to each sample and digestion was carried
out overnight at 37 ◦C and stopped by acidification. Peptide concentration was determined
by amino acid analysis [104], and 200 ng of peptides (in 0.1% TFA) were used for mass
spectrometric analysis.

Mass spectrometry was carried out as described [105]; a nanoHPLC analysis was
performed on an UltiMate 3000 RSLC nano LC system (Thermo Fisher Scientific, Germany).
Peptides were loaded on a capillary pre-column (Thermo Fisher Scientific, 100 µm × 2 cm,
particle size 5 µm, pore size 100 Å) and afterwards onto an analytical C18 column (Thermo
Fisher Scientific, 75 µm × 50 cm, particle size 2 µm, pore size 100 Å). Peptide separation
was performed with a linear gradient of up to 40% buffer B (84% acetonitrile, 0.1% formic
acid) with a flow rate of 400 nL/min. The HPLC system was online-coupled to the nano
ESI source of an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). The MS1
scan range was set from 300 to 2000 m/z and a resolution of 30,000. From each full
scan, the Top 20 ions were selected for low-energy collision-induced dissociation (CID)
fragmentation with a NCE of 35%. The Top 20 ions were subsequently dynamically
excluded for fragmentation for 30 s.

Data analysis was carried out using MaxQuant (v.1.6.17.0) [106]. Spectra were searched
against the Uniprot Mus musculus reference proteome (04_2021) [107] using the integrated
Andromeda algorithm using trypsin as protease. The false discovery rate (FDR) was set to
1% for peptides (minimum length of 7 amino acids) and proteins and was determined by
searching against a reverse decoy database. A maximum of two missed cleavages were
allowed in the database search. Peptide identification was performed with an allowed
initial precursor mass deviation up to 7 ppm and an allowed fragment mass deviation
20 ppm. Carbamidomethylation of cysteines was set as fixed modification and oxidation
of methionine and deamidation of asparagine as variable modifications, due to sample
pre-processing. For superior identification the match between run option was enabled.
Quantitation was carried out using the MaxQuant Label-Free Quantification (LFQ) algo-
rithm including unique and razor peptides for quantification. For further quantitation the
calculation of iBAQ values was enabled [108]. Resulting data was subsequently statistically
analyzed using Perseus (v. 1.6.14.0) [109]. Contaminants and decoys were filtered and LFQ
values were log2-transformed. Only proteins identified in at least 4 replicates in one group
were used for further statistical assessment. Remaining missing values were imputed using
a width of 0.3 and a downshift of 1.8. Two-sided Student’s t-test with Benjamini–Hochberg
correction was performed to determine significantly enriched proteins. Proteins with a
p-value <0.05 or respectively adjusted p-value <0.05 were assigned as being significant
differential between the wild-type and homozygous desmin knock-out conditions. A vol-
cano plot that shows plots the log10-transformed p-values against the log2-transformed fold
changes was generated using R version 4.1.0 (R Core Team, 2021) and the package ggplot2.

Hierarchical Clustering was performed to determine clusters of proteins with differ-
ential expression profiles in the wild-type and homozygous desmin knock-out conditions.
For this purpose, all proteins remaining after our stringent filter criteria, were Z-scored
and resulting values were averaged for both groups. For Hierarchial Clustering, Euclidean
distance was chosen with average linkage and constraint and a maximum number of
300 clusters. Resulting clusters were exported and used for subsequent GO term and
Pathway enrichment analysis using David Bioinformatics Resources 6.8 [110,111].
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