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a b s t r a c t 

Recently, the recommendations for the treatment of Clostridioides difficile infection (CDI) have been up- 

dated. However, in addition to the clinical efficacy data, the drug of choice should ideally represent op- 

timal antimicrobial stewardship, with an emphasis on rapid restoration of the gut microbiota to mini- 

mize the risk of infection relapses. Oral administration of metronidazole results in low concentration in 

stool, and interaction with fecal microbiota reduces its antimicrobial bioactivity. Reported elevated min- 

imum inhibitory concentrations of metronidazole in epidemic C. difficile ribotypes and the emergence 

of plasmid-mediated resistance to metronidazole represent additional potential risks for clinical failure. 

If metronidazole is the only CDI treatment option, antimicrobial susceptibility testing on agar contain- 

ing heme should be performed in C. difficile isolate. Compared with metronidazole, oral vancomycin and 

fidaxomicin reach very high concentrations in the stool, and therefore can quickly reduce C. difficile shed- 

ding. Health care facilities with higher CDI incidence and/or occurrence of epidemic ribotypes should 

not use metronidazole because prolonged C. difficile shedding can increase the risk for further C. difficile 

transmission. Only fidaxomicin has a narrow spectrum of antimicrobial activity, which might be, together 

with persistence on spores, the main contributing factor to reduce the recurrent CDI rates. 

© 2023 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Clostridioides difficile is the leading cause of health care–

ssociated diarrhea and a frequent cause of infective diarrhea 

n the community. C. difficile infection (CDI) increases in-hospital 

ortality and excess health care costs and has a long-lasting effect 

n the quality of life of the patients ( Barbut et al. , 2019 ; Hensgens

t al. , 2014 ; Marra et al. , 2020 ; Vent-Schmidt et al. , 2020 ). 

Since 2017, various international organizations have updated 

heir guidance documents and recommendations for CDI treat- 

ent ( Johnson et al. , 2021 ; Kelly et al. , 2021 ; Krutova et al. , 2022 ;
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cDonald et al. , 2018 ; van Prehn et al. , 2021 ). Due to a significant

eduction in recurrent rates, fidaxomicin is the preferred option in 

nitial nonsevere CDI and the first CDI recurrence ( Johnson et al. , 

021 ; Krutova et al. , 2022 ; van Prehn et al. , 2021 ). Fidaxomicin is

n equal option in severe CDI compared with vancomycin ( Johnson 

t al. , 2021 ; Kelly et al. , 2021 ; Krutova et al. , 2022 ; McDonald

t al. , 2018 ; van Prehn et al. , 2021 ). All guidance documents ex-

ept for one do not recommend oral metronidazole as the first- 

ine drug for the treatment of initial nonsevere CDI and consider 

etronidazole use only when fidaxomicin or vancomycin is not 

vailable ( Johnson et al. , 2021 ; Kelly et al. , 2021 ; Krutova et al. ,

022 ; McDonald et al. , 2018 ; van Prehn et al. , 2021 ). The American

ollege of Gastroenterology still supports the use of metronida- 

ole for initial nonsevere CDI in low-risk patients, such as younger 

utpatients with minimal comorbidities ( Kelly et al. , 2021 ). Revised 

ractice guidelines have had a significant impact on CDI treatment 
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ith an increase in vancomycin and fidaxomicin prescription. Al- 

hough the prescription of metronidazole decreased after the pub- 

ishing of recommendations, it is still one of the most frequently 

sed antimicrobials in patients with CDI ( Clancy et al. , 2021 ). 

Undoubtedly, antibiotic treatment of CDI already has very lim- 

ted options, and these have been further reduced. In addition 

o clinical efficacy data, the drug of choice should be in line 

ith good antimicrobial stewardship practice, with an emphasis 

n rapid restoration of the depleted gut microbiota to reduce the 

isk of infection relapses. The aim of this narrative review was 

o augment the CDI treatment recommendations by summarizing 

he pharmacological and microbiological properties of fidaxomicin, 

ancomycin, and metronidazole. 

. Literature search 

The literature for this narrative review was drawn from a search 

f PubMed until March 2022. Index search terms were Clostrid- 

um difficile, Clostridiodes difficile , metronidazole, vancomycin, fi- 

axomicin, gut microbiota, resistance, shedding, and stool con- 

entration. Only original studies written in English were in- 
119 
luded. The references of articles were also screened and added, if 

ppropriate. 

An overview of pharmacodynamic, pharmacokinetic, and micro- 

iological properties for oral administration of metronidazole, van- 

omycin, and fidaxomicin is shown in Figure . 

. Pharmacological properties 

Oral metronidazole is absorbed almost completely (90%) in the 

pper gastrointestinal tract and enters the large intestine primarily 

hrough secretion across the gut mucosa; the intraluminal concen- 

rations of metronidazole are proportional to the extent of inflam- 

ation ( Bolton and Culshaw, 1986 ; Lamp et al. , 1999 ). Metronida-

ole therapy (six CDI episodes with 400 mg every 8 hours orally, 

hree CDI episodes with 500 mg every 8 hours intravenously, and 

ne CDI episode with only 200 mg every 8 hours orally) resulted in 

ean levels ( ± SD) in watery feces of 9.3 ± 7.5 μg/g wet weight 

range 0.8-24.2) decreasing to 3.3 ± 3.6 μg/g wet weight (range 

.5-10.4) in semiformed stool samples and have been found to be 

ery low or zero (1.23 ± 2.8 μg/g; range 0-10.2) in formed stool 

amples ( Bolton and Culshaw, 1986 ). Notably, the dosage in the 

ajority of patients in this study was about 20% lower than that in 

DI treatment recommendations, and it is unknown whether stool 
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oncentration would increase noticeably when the dosage of 500 

g every 8 hours is administered. 

In contrast to metronidazole, fecal concentrations of van- 

omycin with a dosage of 125 mg every 6 hours ranged from 175- 

299 μg/g; for fidaxomicin, for a dosage of 200 mg every 12 hours, 

oncentrations were 1396 ± 1019 μg/g, with 834 ± 617 μg/g for 

P-1118, which is an active metabolite of fidaxomicin ( Sears et al. , 

012 ; Thabit and Nicolau, 2015 ). 

Unlike metronidazole, systemic absorption is minimal after oral 

dministration of either vancomycin or fidaxomicin ( Sears et al. , 

012 ; Thabit and Nicolau, 2015 ). However, in severe inflammation 

f the intestinal mucosa with concomitant renal impairment, sys- 

emic absorption of orally administered vancomycin can be en- 

anced ( European Medicines Agency, 2017 ), especially with higher 

osages (250-500 mg per 6 hours) ( Pogue et al. , 2009 ; Yamazaki

t al. , 2017 ). The increased systemic absorption due to severe in- 

ammation can also hypothetically be expected with fidaxomicin; 

owever, the nonclinical pharmacology and safety pharmacology 

f fidaxomicin has not revealed any unexpected effects overall 

 European Medicines Agency, 2022 ). 

. In vitro activity 

.1. Vegetative Clostridium difficile cells 

Metronidazole is a nitroimidazole that inhibits DNA synthesis, 

ith bactericidal activity against anaerobic bacteria and protozoa. 

etronidazole is a prodrug that enters the cell by passive diffusion 

nd is activated when its nitro group is reduced. Reduced metron- 

dazole can interact with DNA causing strand breakage and helix 

estabilization, which leads to cell death ( Odenholt et al. , 2007 ; 

’Grady et al. , 2021 ). Vancomycin is a glycopeptide antimicrobial 

ith bacteriostatic activity that inhibits peptidoglycan biosynthesis 

n the cell wall in gram-positive bacteria ( Odenholt et al. , 2007 ;

’Grady et al. , 2021 ). In higher concentrations of vancomycin (8 

nd 16 mg/l), a bactericidal effect was observed ( Odenholt et al. , 

007 ). Fidaxomicin is a narrow-spectrum macrocyclic antibiotic 

hat targets bacterial RNA polymerase, with a bactericidal activ- 

ty against Clostridia belonging to clusters I and XI and gram- 

ositive nonspore-forming rods and anaerobic gram-positive cocci 

 Babakhani et al. , 2011 ; Finegold et al. , 2004 ). When the killing ki-

etics is compared, metronidazole exerted a very rapid bactericidal 

ffect ( < 4 log 10 colony-forming unit [CFU] after 3 hours) but in 

oncentrations of 8 x minimum inhibitory concentration (MIC) (4 

g/l) and above ( Odenholt et al. , 2007 ). Overall, vancomycin gave 

ess kill than metronidazole ( Odenholt et al. , 2007 ), and slower 

illing kinetics were also found in vancomycin than fidaxomicin. 

he bacterial count of C. difficile cells treated with vancomycin 

4 × MIC) dropped slightly over two logs in 48 hours, whereas 

n the fidaxomicin experiment, the bacterial counts dropped below 

he detection limit (100 CFU ml-1) by 48 hours ( Babakhani et al. ,

011 ). 

Antimicrobial susceptibility testing (AST) recommendations dif- 

er between the European Committee on Antimicrobial Susceptibil- 

ty Testing (EUCAST) and the Clinical and Laboratory Standards In- 

titute (CLSI); however, both bodies do not recommend using the 

roth microdilution method due to the difference in MICs com- 

ared with those yielded by agar dilution ( Clinical and Laboratory 

tandards Institute, 2020 ; EUCAST, 2022 ; Hastey et al. , 2017 ). EU-

AST recommends “fastidious anaerobe agar” for the AST of anaer- 

bes, and the break points for C. difficile are based on epidemi- 

logical cutoff values; > 2mg/l for metronidazole and vancomycin 

esistance. CLSI recommends “Brucella blood agar” supplemented 

ith 5% sheep blood, hemin, and vitamin K1 for AST of anaer- 

bes, with MIC break points for C. difficile of ≥32 mg/l and ≥4 

g/l for metronidazole and vancomycin, respectively. For metron- 
120 
dazole, it is important to note that very recent data shows that 

he consistent detection of metronidazole resistance is dependent 

n the presence of heme in agar media and its protection from 

ight ( Boekhoud et al. , 2021 ; Wu et al. , 2021 ). Both agars recom-

ended by EUCAST and CLSI contain heme but in unknown quan- 

ities because of supplementation by blood. For fidaxomicin, there 

s still no official MIC break point available; 0.25 mg/l was sug- 

ested based on the MICs from European isolates ( Freeman et al. , 

015 ). 

Antimicrobial resistance in human C. difficile isolates showed 

qual-weighted pooled resistance for metronidazole and van- 

omycin of 1.0% (95% CI 0-3% and 0-2%, respectively) with a 

reak point of > 2 mg/l in a recent meta-analysis, including data 

or 5900 C. difficile isolates tested for metronidazole susceptibil- 

ty and 11,188 C. difficile isolates tested for susceptibility to van- 

omycin ( Sholeh et al. , 2020 ). When also analyzing C. difficile iso- 

ates from nonhuman sources, the weighted pooled resistance in- 

reased to 1.9% (95% CI 0.5-3.6%) for metronidazole and to 2.1% 

95% CI 0-5.1%) for vancomycin ( Saha et al. , 2019 ). For fidax-

micin, a few isolates with MICs from 1-64 mg/l were found re- 

ently in several studies investigating a large number of isolates 

 Freeman et al. , 2020 ; Goldstein et al. , 2011 ; Karlowsky et al. ,

020 ; Peng et al. , 2017 ; Schwanbeck et al., 2019 ); however, it

hould be noted that no commercial E-test for fidaxomicin is avail- 

ble in the market, so routine antimicrobial susceptibility data are 

imited. 

MICs can differ according to C. difficile ribotype (RT). Elevated 

eometric mean MICs relative to other RTs were found in RTs 001, 

27, 106, and 356 for metronidazole and in RTs 018 and 356 for 

ancomycin. These RTs belonged to epidemic types occurring in 

everal European countries, except for RT356, which is probably 

enetically related to RT018 based on 94% similarity of polymerase 

hain reaction ribotyping banding profile, and was found only in 

taly ( Freeman et al. , 2015 ). 

The clinical importance of MICs of metronidazole was high- 

ighted in the study of Gonzales-Luna and colleagues. In the study 

ohort of 356 patients, increased MICs ( ≥1 μg/ml) have been iden- 

ified as an independent predictor for clinical failure in patients 

ith CDI treated with metronidazole (odds ratio 2.27; 95% CI 1.18- 

.34); the majority of strains with a metronidazole MIC ≥1 μg/ml 

ere RT027 (n = 45/65 [69%]) ( Gonzales-Luna et al. , 2021 ). 

The molecular mechanisms of resistance to metronidazole and 

ancomycin in C. difficile remain poorly understood. It is hypothe- 

ized that resistance to metronidazole is likely due to multifactorial 

rocesses involving alterations to metabolism with nitroreductases, 

ron uptake, active efflux, drug inactivation, DNA repair, or biofilm 

ormation ( O’Grady et al. , 2021 ). Vancomycin resistance mediated 

y van genes is very well described in Enterococcus sp. However, 

hese gene clusters are also present in C. difficile but without corre- 

ponding vancomycin resistance phenotypes ( O’Grady et al. , 2021 ). 

ecently, the presence of plasmid pCD-METRO and its international 

issemination has been reported in both toxigenic and nontoxi- 

enic C. difficile strains, with reduced susceptibility to metronida- 

ole ( Boekhoud et al. , 2021 ). Recently, plasmid-mediated resistance 

o vancomycin was also described in C. difficile isolate from a pa- 

ient with CDI nonresponding to vancomycin treatment ( Pu et al. , 

021 ). For fidaxomicin, several different mutations have been re- 

orted in laboratory-generated mutants, leading to alteration of fi- 

axomicin susceptibility ( O’Grady et al. , 2021 ). An amino acid sub- 

titution V1143D in the RpoB was identified in clinical C. difficile 

solate with MIC of > 64 mg/l. This genetic change was also asso- 

iated with reduced toxin A/B production and moderately reduced 

pore formation ( Schwanbeck et al. , 2019 ). 

It should be noted that fecal concentrations of vancomycin and 

daxomicin are many times greater than MICs detected in resis- 

ant C. difficile isolates than metronidazole with low stool concen- 
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ration ( Bolton and Culshaw, 1986 ; Sears et al. , 2012 ; Thabit and

icolau, 2015 ). 

.2. Clostridium difficile spores 

Sporulation allows C. difficile to persist in the host and dis- 

eminate through environmental contamination. The persistence 

f C. difficile spores in the gut can play a role in the recur- 

ence (relapse) of CDI ( Chilton et al. , 2016 ). Significant inhibi- 

ion of C. difficile sporulation in vitro was not observed with ei- 

her metronidazole or vancomycin, but both fidaxomicin and OP- 

118 inhibited sporulation, including for the epidemic NAP1/BI/027 

train ( Babakhani et al. , 2012 ; Garneau et al. , 2014 ). Antimicro-

ial activity on C. difficile spores was detected in fidaxomicin- 

xposed spores but was absent in the vancomycin-exposed 

pores after washing in phosphate-buffered saline or in the 

ore in vivo reflective fecal filtrate. The retention of antimicro- 

ial activity prevented the recovery of spores on selective agar 

 Chilton et al. , 2016 ). 

. Effect of the gut microbiota on the activity of anti- C. difficile 

nfection agents 

It is unknown if the measured activities of antibiotics in vitro 

n a very well-defined environment against pure cultures of C. dif- 

cile represent what occurs in vivo in the intestinal tract with the 

resence of various other bacterial species and metabolites, which 

ary across individuals. Using in vitro models with bacterial com- 

unities, the activity spectrum of antibiotics, in general, is more 

omplicated than testing in vitro with one species and one agent 

 Maier et al. , 2021 ). A further consideration is the effect of feces

n the bioactivity of antibiotics used to treat CDI. The inactivation 

f metronidazole in the presence of gut contents was shown in the 

tudy of Rafii and colleagues, suggesting nitroreductase-producing 

nterococci as the possible cause ( Rafii et al. , 2003 ). Importantly, 

 recent study using feces samples collected from 18 healthy indi- 

iduals observed reduced antibiotic bioactivity of all three anti-CDI 

ntimicrobials at 24 hours; however, the observed mean decreases 

or fidaxomicin (2.8-fold) or for vancomycin (1.5-fold) are unlikely 

o impact treatment efficacy due to the high fecal concentrations 

chieved. In contrast to vancomycin and fidaxomicin, a 727-fold re- 

uction of bioactivity for metronidazole was seen and, considering 

he suboptimal stool concentration of this antibiotic, could be ex- 

ected to have an impact on treatment outcome (personal com- 

unication with Mark Wilcox). 

. “Collateral damage” to the gut microbiota 

Metronidazole, vancomycin, and fidaxomicin are bactericidal 

ntibiotics with different mechanisms of action (Figure). The tar- 

et site of antibiotics is one factor that determines the narrow- 

ess of the antibacterial spectrum. Fidaxomicin has very little ef- 

ect or no activity against gram-negative aerobic and anaerobic 

acteria, which likely contributes to the rapid recovery of the 

arkedly disrupted microbiota found in patients with CDI ( Louie 

t al. , 2012 ). Metronidazole affects the gut microbiome to a larger 

xtent than vancomycin because it is active against anaerobic bac- 

eria, including gram-negative anaerobes, primarily Bacteroides, Fu- 

obacterium, and Prevotella spp., and also gram-positive anaerobes, 

uch as Peptostreptococcus and Clostridium spp. Vancomycin in- 

ibits various aerobic and anaerobic gram-positive bacteria, in- 

luding other Clostridium spp. ( Louie et al. , 2012 ). Although van- 

omycin is not normally active against gram-negative bacteria, van- 

omycin’s very high intestinal concentrations can suppress the Bac- 

eroides / Prevotella group bacteria ( Louie et al. , 2012 ; Newton et al. ,

013 ). Bacteroides play an important role in colonization resistance 
121 
ue to their numerous presences on the mucosal surface and in- 

erference with intestinal pathogens ( Eckburg et al. , 2005 ). In ad- 

ition, vancomycin decreased fecal secondary bile acids, which 

nhibit the growth of the vegetative form of C. difficile ( Vrieze 

t al. , 2014 ). Importantly, the changes in the gut microbiota and 

heir metabolites (metabolomics) by vancomycin and metronida- 

ole may persist for a considerable time period and affect various 

ost functions, including immune regulation and metabolic activi- 

ies ( Soto et al. , 2018 ; Vrieze et al. , 2014 ). 

. Acquisition and overgrowth of vancomycin-resistant 

nterococci 

The changes in the recommendations for the treatment of CDI 

oward the use of vancomycin led to concerns of increased selec- 

ive pressure for vancomycin-resistant enterococci (VRE). No in- 

reased risk for VRE acquisition has been identified in patients 

reated with metronidazole or vancomycin ( Stevens et al. , 2020 ). 

nterestingly, a reduced acquisition of VRE (7% vs 31%, respec- 

ively; P < 0.001) and Candida species (19% vs 29%, respectively; 

 -value = 0.03) was observed in patients who were treated with fi- 

axomicin versus those treated with vancomycin ( Nerandzic et al. , 

012 ). 

In addition, in patients with pre-existing VRE, a significant de- 

rease in the mean concentration in stool was detected in the fi- 

axomicin group (5.9 vs 3.8 log 10 VRE/g stool; P -value = 0.01) 

ut not in the vancomycin group (5.3 vs 4.2 log 10 VRE/g stool; P - 

alue = 0.20), ( Nerandzic et al. , 2012 ). In contrast, no significant

ifference in the density of VRE was observed after the onset of 

DI therapy (during therapy or up to 2 weeks after completion of 

herapy, P > 0.35) comparing vancomycin and metronidazole CDI 

reatment groups ( Al-Nassir et al. , 2008 ). 

. C. difficile shedding 

The treatment selection affects the clinical outcome of the pa- 

ient but may also have an impact on the C. difficile shedding 

nd environmental contamination and thus play a role in reduc- 

ng health care-associated C. difficile transmission. Two prospec- 

ive observational studies found fidaxomicin to be associated with 

ower rates of C. difficile contamination of the hospital environment 

han metronidazole and/or vancomycin. The study of Biswas and 

olleagues showed that patients treated with fidaxomicin (25/68, 

6.8%) were less likely to contaminate their environment than 

atients treated with metronidazole and/or vancomycin (38/66 

57.6%], P -value = 0.02) ( Biswas et al. , 2015 ). In the study of Davies

nd colleagues, observed rates of environmental contamination 

ere 30% versus 50%, P -value = 0.04, on days 4-5 and 22% ver- 

us 49%, P -value = 0.005, on days 9-12 in five-room sites sam- 

led of fidaxomicin or vancomycin/metronidazole recipients, re- 

pectively ( Davies et al. , 2020 ). These data were further supported 

y the results of a prospective, unblinded, randomized, controlled 

rial, where contrary to observational studies, the metronidazole, 

ancomycin, and fidaxomicin treatment arms were evaluated sep- 

rately ( Turner et al. , 2022 ). Fidaxomicin and vancomycin were as- 

ociated with a more rapid decline in C. difficile stool shedding 

han metronidazole (-0.36 log 10 CFUs/d, -0.17 log 10 CFUs/d, and - 

.01 log 10 CFUs/d, respectively. Both vancomycin and fidaxomicin 

6.3% vs 13.1%) were associated with lower rates of environmental 

ontamination than metronidazole (21.4%), respectively. With spe- 

ific modeling of within-subject change over time, fidaxomicin was 

ssociated with a more rapid decline in environmental contamina- 

ion than vancomycin or metronidazole (adjusted odds ratio, 0.83, 

5% CI 0.70-0.99; P -value = 0.04), ( Turner et al. , 2022 ). 
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. Conclusion 

The microbiological and pharmacological data support the CDI 

reatment recommendation of leaving metronidazole as the third 

lternative option only when fidaxomicin or vancomycin is not 

vailable or feasible. Oral vancomycin and fidaxomicin reach very 

igh concentrations in the stool, but only fidaxomicin has a min- 

mal effect on gut microbiota, inhibits sporulation, and shows an- 

imicrobial activity on spores. 
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