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In this review, we summarize the main points that were raised and highlighted during the pre-conference 

meeting to the 17 th European Cystic Fibrosis Society Basic Science Conference, held from 30 March to 2 

April, 2022 in Albufeira, Portugal. Keynote lectures provided an update on the latest information regard- 

ing the phenomenon of antimicrobial resistance (AMR) in cystic fibrosis (CF). Traditional themes such as 

in vitro antibiotic susceptibility testing and its clinical value, AMR evolution in persistent Pseudomonas 

aeruginosa infection and the impact of biofilm on AMR were discussed. In addition, the report gives an 

overview on very recent AMR-related topics that include an ecological view of AMR in CF lung, referred 

to as resistome, and novel anti-infective approaches in preclinical or early clinical research such as an- 

tibiofilm drugs and bacteriophages. 

© 2023 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Never has there been a more exciting time to be working in the 

cience behind cystic fibrosis (CF). The progress over the last few 

ears in CFTR modulator therapy and the energy this has catal- 

sed in drug development is genuinely game-changing. Improve- 

ents in diagnosis and standards of care over the last few decades 

ave led to health and survival benefits, with a huge proportion 

f the CF population now reaching adulthood. However, the major- 

ty of these people have recurrent or chronic pulmonary infections 

nd, at least to date, there is little evidence that even transforma- 

ional therapies will have a major impact on these. We are still 

ompletely reliant on antimicrobials that are administered to many 

eople with CF (pwCF) on a daily basis as a means for eradication 
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f newly acquired infection, treatment of pulmonary exacerbations 

r suppressive maintenance therapy in cases of chronic infections 

1] . Both healthcare providers and pwCF express their concerns 

bout the inevitable increase in antimicrobial resistance (AMR), 

ostly perceived in an association with frequent use of inpatient 

i.e., intravenous) as well as outpatient (i.e., inhaled or oral) antibi- 

tics against traditional CF pathogens such as Pseudomonas aerugi- 

osa, Burkholderia cepacia complex or nontuberculous mycobacte- 

ia [2] . Thus, AMR is a well-recognised and worsening problem 

n CF. This report aims to summarize the latest knowledge and 

he key aspects of the AMR in CF at the research, clinical labo- 

atory and healthcare levels, presented by opinion leaders at the 

re-conference meeting on this topic at the 2022 European CF So- 

iety Basic Science conference. 
ibrosis Society. This is an open access article under the CC BY license 
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. Caveats of antimicrobial susceptibility testing in CF isolates 

The ultimate goal of antimicrobial susceptibility testing (AST) 

rom a clinical standpoint is to predict the success or failure of 

herapy with an antimicrobial drug, based on categorization of iso- 

ates as “susceptible” or “resistant”. While the performance of AST 

s subject to microbiological standards of care, its results, subse- 

uent correlation with clinical outcome and ultimately, indication 

nd frequency of its repeated performance in chronic CF infections 

ontinue to be a matter of debate with available evidence demon- 

trating utility is poor [3–6] . This most likely relates to the fact that

tandard AST is designed to be applied to single bacterial species, 

ultured in the context of acute infection, not to a community of 

icroorganisms causing a chronic polymicrobial infection. 

A growing body of evidence raised doubts about the reliability 

f current microbiological tests for identifying clinically-effective 

ntibiotics in CF. For example, multiple studies [ 5 , 7-9 ] found no re-

ationship between in vitro susceptibilities of P. aeruginosa isolates 

nd patients’ clinical responses to consequent antibiotic choices. 

hese studies primarily focused on P. aeruginosa; however, sim- 

larly poor predictive capacities of susceptibility tests have been 

ound for nontuberculous mycobacteria in CF [10] , as well as for a 

ange of non-CF chronic infections [11] . Diverse potential contrib- 

tors and explanations for this problem have been suggested. For 

xample, Foweraker et al. [12] demonstrated that in vitro suscepti- 

ilities of P. aeruginosa isolates in individual CF sputa vary dramat- 

cally even within a sample, raising doubts about the accuracy to 

e expected from testing a single isolate. 

The concept of resistance of CF lung pathogens, the poten- 

ial usefulness of AST in the selection of appropriate antimicro- 

ial therapy and the need for appropriate clinical breakpoints for 

he interpretation of the antibiogram have recently been reviewed 

13–15] . Neither the U.S. Clinical and Laboratory Standards Institute 

CLSI) nor the European Antimicrobial Susceptibility Testing (EU- 

AST) Committee have included inhaled antibiotics in their propos- 

ls of defining clinical breakpoints and standardisation of AST. This 

ecision was related to the differences between those microorgan- 

sms isolated from patients with chronic lung infection and those 

hat cause sepsis or any other acute infection such as commu- 

ity or hospital-acquired pneumonia. Also, it has been challeng- 

ng to apply current standards for performing AST to CF pathogens 

ue to their characteristic growth (reduced growth rate and often 

n biofilms rather than in planktonic mode), great diversification 

o multiple morphotypes, their ability to exhibit tolerance, persis- 

ence and heteroresistance, and the high frequency of hypermuta- 

or phenotypes [15–19] . 

The CLSI does offer two brief technical recommendations: that 

ST of P. aeruginosa isolates from CF patients can be performed 

y both disc diffusion and dilution methods, and that the incu- 

ation of the tests should be extended up to 24 hours to facili- 

ate their reading [20] . The EUCAST includes epidemiological cut- 

ff (ECOFF) values for topical use, but explicitly excludes their use 

or inhaled antibiotics [21] . ECOFF refers to inhibitory concentra- 

ion values that discriminate wild-type bacterial populations from 

hose with acquired resistance mechanisms [ 22 , 23 ]. However, they 

re not applicable to scenarios where much higher concentrations 

f antibiotic are reached at the infection site when compared with 

hose obtained with the oral or intravenous route of administration 

13] . 

Consensus documents recommend the performance of AST for 

solates from pwCF for varying reasons; specifically, for under- 

tanding the potential impact of antimicrobial use on pathogens 

nd their evolution of AMR, selection of treatment for current or 

ext exacerbation, and to explain treatment failure [ 6 , 15 , 24 , 25 ]. It

s routinely recommended to study different isolate morphotypes 

eparately, avoiding the pooling of multiple colony types, and to 
938 
ncubate with antimicrobials for 24 hours. Diffusion techniques, ei- 

her with discs or gradient strips, also allow the phenotypic detec- 

ion of potential hypermutator strains, which can lead to a closer 

onitoring of the possible failure due to selection of populations 

ith lower antimicrobial sensitivity [26] . The study of CF isolates’ 

usceptibilities as biofilms has also been proposed, in general ap- 

lying a methodology similar to the determination of minimal 

nhibitory concentration (MIC) (by using the Calgary biofilm de- 

ice), in which the proposed value is the biofilm inhibitory concen- 

ration (BIC), i.e. the lowest concentration preventing the growth 

n biofilms [27] ( Table 1 ). In this case, the inoculum used is an

lready formed biofilm. Arguably more representative AST value 

ould be the concentration that eliminates biofilm (biofilm bac- 

ericidal concentration; BBC) or the concentration that prevents 

iofilm formation (BPC) [ 27 , 28 ] where the antimicrobial interacts 

ith the biofilm at the time as it is formed ( Figure 1 ). 

However, current evidence does not support the use of biofilm 

ST to guide antimicrobial treatment of P. aeruginosa pulmonary 

nfections in pwCF. Neither microbiological (e.g., a change in P. 

eruginosa density in sputum), nor clinical outcomes (see below) 

emonstrated that biofilm AST was superior to conventional AST 

 29 , 30 ]. 

In addition to the inherent methodological problems with AST 

entioned above, there are also problems of defining microbio- 

ogical or clinical endpoints to evaluate the efficacy of the ther- 

py, either empirical or driven by the AST results [31] . Eradica- 

ion, once chronic infection is established, is difficult to achieve, so 

ther parameters such as the decrease in bacterial load, reduced 

ntibody responses, reduction in exacerbation frequency, time to 

he next exacerbation, improvement in lung function or even im- 

rovement in the quality of life have to be assessed [ 13 , 32-34 ]. As

 consequence, effort s to define the clinical breakpoints for inhaled 

ntibiotics and both microbiological and clinical outcomes should 

ontinue, to better understand benefits of antimicrobial treatment. 

ithout overcoming technical issues and finding meaningful clin- 

cal correlates, reservations about utility and clinical value of AST 

re appropriate and shared by the authors of this review. 

. Is measuring CF lung resistome clinically useful? 

The term resistome was coined in 2006 by Gerry Wright at the 

niversity of Michigan [ 35 , 36 ], referring to an ecological, rather 

han a clinical, concept [37] . His definition was “a collection of all 

he antibiotic resistance genes and their precursors in pathogenic 

nd non-pathogenic bacteria”, i.e., specifically including bacteria 

hat are both identified and not identified as pathogens, and also 

precursor” genes that could confer resistance only if adapted or 

pregulated. This focus of the term resistome on the presence or 

bsence of genes within an entire, diverse population of microbes 

ighlights a key difference from what the clinical microbiology lab- 

ratory usually measures from CF respiratory samples: the expres- 

ion of resistance in individual microbial isolates during in vitro 

onoculture. 

Current methods used in clinical CF microbiology are intention- 

lly selective [38] . Respiratory samples are cultured using a bat- 

ery of media formulated to identify pathogens most associated 

ith CF lung disease, while selecting against common microbes 

ithout a known role in disease. Cultured isolates are then indi- 

idually tested for AST without defining mechanisms of resistance. 

hese features of clinical laboratory results - defining phenotypes 

f specific pathogens - contrast sharply with those of genomics- 

ased resistome analyses that focus on the presence or absence 

but not activity) of canonical resistance mechanisms among all 

acteria in a sample without considering whether those bacte- 

ia are pathogens [ 37 , 39 ]. For these reasons, CF resistome results

an be expected to differ substantially from conventional CF labo- 



P. Drevinek, R. Canton, H.K. Johansen et al. Journal of Cystic Fibrosis 21 (2022) 937–945 

Table 1 

Different antimicrobial susceptibility testing parameters and inoculum used. 

Parameter Definition Inoculum 

Minimal inhibitory 

concentration (MIC) 

Lowest antibiotic concentration that 

inhibits the visible bacterial 

(planktonic) growth after overnight 

incubation 

Planktonic (10 5 CFU/ml) 

Minimal bactericidal 

concentration (MBC) 

Lowest antibiotic concentration that 

reduces an initial bacterial 

(planktonic) inoculum with 99.9% ( ≥3 

log) 

Planktonic (10 5 CFU/ml) 

Biofilm inhibitory 

concentration (BIC) 

Lowest antibiotic concentration that 

results in an OD650 nm difference of 

≤10% (1 log difference in growth after 

6 h of incubation) of the mean of two 

positive control well readings when a 

biofilm is used as inoculum 

Sessile (biofilm previously 

developed) 

Biofilm prevention 

concentration (BPC) 

Same definition as the BIC, but 

bacterial (planktonic) inoculation and 

antibiotic exposure occur 

simultaneously to avoid biofilm 

development 

Planktonic (10 5 CFU/ml) 

Biofilm bactericidal 

concentration (BBC) 

Lowest antibiotic concentration that 

reduces an initial biofilm inoculum 

with 99.9% ( ≥3 log) as compared to 

the growth control 

Sessile (biofilm) 

Fig. 1. Concentration over time at the site of infection of four hypothetical antibiotics. The dashed lines indicate the concentrations required for various effects against 

planktonic cells and biofilms as defined by MIC, MBC, BPC, BIC, and BBC ( Table 1 ). 
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atory phenotypic test results. In addition, sequencing-based (mi- 

robiome) methods often identify many bacteria in CF respiratory 

amples at abundances resembling those of conventional, cultured 

F pathogens [ 40 , 41 ]. While the roles of these nonconventional 

acteria in pathogenesis or response to therapy remain unknown, 

t has been suggested that interspecies interactions and other in- 

uences common in the CF airway [42] can alter the effects of an- 

ibiotics on pathogens [43] . 

Recent studies demonstrated the power of genomic methods 

or identifying the dominant contributors to in vitro susceptibil- 

ties for individual pathogens, such as Mycobacterium tuberculo- 

is and Staphylococcus aureus [44] , with the capacity to be faster 

nd cheaper than culture-based methods. Notably, these pathogens 

re well-represented in genomic databases and are therefore ideal 

est organisms for molecular methods. By comparison, many CF 

athogens have relatively few complete genomes available for 

omputational comparison; for example, genomics seem more 

ikely to predict resistance for P. aeruginosa, given the numerous 
939 
enomes available for computational comparison, than for Achro- 

obacter spp . [45] . In addition, given the limited clinical utility of 

n vitro AST [ 7 , 9 , 10 , 42 ], and because genomic methods are gener-

lly optimized to predict in vitro resistance of individual isolates 

f specific, well-studied species, it is unclear whether a pathogen- 

ocused genomic predictor will be any more useful for clinical care 

han culture-based predictors. 

Published reviews have detailed the enormous promise resis- 

omics holds for improving cost and efficiency of predicting resis- 

ance among pathogens such as M. tuberculosis [46] . However, CF 

espiratory infections are often polymicrobial, with additional ge- 

omic diversity among populations of traditional pathogens such 

s P. aeruginosa. The roles in clinical responses to antibiotics of 

ach microbe identified using untargeted genomics of CF respi- 

atory samples is a topic of controversy and the focus of ongo- 

ng studies [47–49] . Resistome analyses would not easily deter- 

ine which specific species carries a given resistance determinant, 

hether that species is important for clinical response, or whether 
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Fig. 2. P. aeruginosa infection timeline. Environmental P. aeruginosa strains colonize the airways of people with cystic fibrosis persisting for decades. To escape the immune 

system and resist antibiotic treatment, bacteria have to survive natural selection due to their pre-existing variants of resistant phenotype; furthermore, they modify their 

phenotype and adapt their physiology through accumulation of adaptive mutations and changes in gene expression profiles. Unconventional mechanisms such as heterore- 

sistance development, metabolic specialization, growth rate reduction, persister phenotype and biofilm associated lifestyle strengthen further their persistence in the host. 
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hat gene is active in vivo . Therefore, there are many challenges in- 

erent in developing genomics-based CF resistomics measures for 

linical use, including therapy guidance. However, the growing ef- 

ciency and power of genomic methodology provide hope for a fu- 

ure role for these approaches in directing CF care. This future will 

equire a great deal of research, data validation and methodologic 

efinement. 

. Development AMR in bacteria: P. aeruginosa as an exemplar 

Pathoadaptation to the environment of CF airways has been 

ost extensively studied in P. aeruginosa , the pathogen that still 

auses chronic infections in over 40% of the European adult CF 

opulation [50] . The following section focuses specifically on find- 

ngs in P. aeruginosa , recovered from young pwCF. Almost half of 

hese pwCF were persistently infected with a single P. aeruginosa 

lone type [ 51 , 52 ] and the AST on a collection of early and sub-

equent P. aeruginosa isolates showed that during the first 5 to 10 

ears of infection, most of them remained susceptible to all anti- 

seudomonas antibiotics, except for quinolones towards which re- 

istance had developed in about 10 to 20% of the isolates. If we 

ssume that AST provides clinically meaningful information (de- 

pite all the concerns related to the AST mentioned earlier), then 

hese P. aeruginosa isolates should remain susceptible to antimi- 

robial therapy. However, they survive antibiotic exposure in vivo . 

hus, their ability to establish chronic infection is likely a conse- 

uence of several other mechanisms beyond those conventionally 

nvolved in the development of resistance [53] . 

P. aeruginosa is known to develop various tolerance traits during 

nfection in CF lungs ( Figure 2 ). Slow growth is one of its adap-

ive phenotypes, and the metabolic footprint for amino acids, or- 

anic acids, and sugars also changes over time. In association with 

low growth, antibiotic resistance towards ceftazidime, carbapen- 

ms, quinolones and aminoglycosides has been observed [54] . Per- 

ister cells, tolerant to antibiotics, are found in all bacterial pop- 

lations. Although the persister phenotype per se is not associ- 

ted with genetic changes, a fraction as high as 20% with a high- 

ersister phenotype has been found among early CF isolates [55] . 

As an example of a less expected AMR mechanism, it was found 

hat P. aeruginosa isolates from patients receiving tobramycin ther- 

py developed L6 ribosomal protein mutations and associated with 
940 
minoglycoside resistance. The L6 mutations had additional im- 

acts on the bacterial phenotype such as decreased growth rate, 

nd development of collateral sensitivity to chloramphenicol. The 

6 mutants were eliminated from the patient airways after cessa- 

ion of tobramycin treatment [56] . Another common mechanism of 

minoglycoside resistance in P. aeruginosa CF isolates is associated 

ith mutations in the mexZ gene encoding a negative regulator 

rotein, resulting in over-expression of the efflux pump proteins 

exY and MexX. In the collection of nearly 500 whole genome se- 

uenced P. aeruginosa clinical isolates, almost 40% carried a mu- 

ation in mexZ . However, only a minority showed clinical amino- 

lycoside resistance. Instead, they showed subtle, no more than 2- 

old increased aminoglycoside and fluoroquinolone resistance rela- 

ive to the wild type [57] . The link between mexZ mutations and 

he level of AMR as well as the reasons for the high frequency of 

hese mutations among P. aeruginosa isolates needs to be further 

tudied. 

The use of azithromycin was adopted for treatment of pwCF in 

he 1990s to take advantage of its immunomodulatory and anti- 

lginate effects [58] . It was assumed that, as P. aeruginosa is in- 

erently resistant to macrolides (high MIC values in standard AST), 

zithromycin resistance should not be induced in P. aeruginosa in- 

ecting CF airways. However, macrolide therapy in fact does se- 

ect for AMR development in P. aeruginosa, related to mutations 

n the ribosomal protein gene L4 when assessed in alternative 

ubstrates [58] . When azithromycin resistance did develop, both 

he immunomodulatory effect and the inhibition of mucoidy were 

everely impaired. It is therefore important to reconsider this long- 

erm therapy in pwCF; specifically, that azithromycin may lose ef- 

cacy after one to two years from the start of therapy [58] . 

As stated above, the successful survival of P. aeruginosa ex- 

osed to frequent intensive antibiotic treatment in CF airways 

rises from a combination of bacterial features. Initial infection 

sually involves antibiotic-sensitive and fast-growing environmen- 

al P. aeruginosa isolates. Over the course of infection, the bac- 

eria adapt to the CF lung environment via the accumulation of 

athoadaptive mutations and changes in their metabolism. A sub- 

tantial fraction of the bacterial population enters a state of dor- 

ancy, becoming persisters. Eventual development of a reduced 

rowth rate markedly contributes to the development of pheno- 

ypic resistance [ 53 , 59 ]. 
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. Biofilm, the inherent defence mechanism of CF pathogens 

gainst antibiotics 

In vivo, microorganisms behave in a very different way from 

ow they behave under laboratory conditions, forming multicel- 

ular aggregates embedded in a host-derived and/or self-produced 

xtracellular matrix. These aggregates are designated as biofilms, 

nd can be surface-attached (e.g. on the surface of a medical de- 

ice), suspended (e.g. in synovial fluid) or embedded in host tissue 

e.g. in a chronically infected wound). Cells in a biofilm are much 

ess susceptible to antimicrobial agents compared with planktonic 

ells, and treatment of biofilm-related infections is often difficult 

 Figure 1 ). There is convincing evidence that important pathogens 

ike P. aeruginosa occur as biofilms in the lungs of pwCF, which 

ight help to explain (along with other bacterial adaptation pro- 

esses mentioned earlier) why eradication of these infections is so 

ifficult [60–63] . Multiple mechanisms are involved in reduced an- 

ibiotic susceptibility of bacteria in biofilms [ 64 , 65 ] and the micro-

nvironmental conditions in the lung play an important role in this 

 42 , 66 ]. Indeed, changes in microbial metabolism, at least partly 

elated to gradients in oxygen and nutrient levels, can have a 

rofound effect on antimicrobial susceptibility [67–69] . The exact 

etabolomic adaptations vary between different microorganisms 

69] , and much remains to be learned about microbial metabolism 

n the infectious micro-environment (e.g. how the presence of mul- 

iple species affects metabolism and susceptibility [70] ), but a com- 

on theme nevertheless starts to emerge. Biofilm-associated bac- 

eria typically downregulate their central metabolism (e.g. the tri- 

arboxylic acid, TCA cycle) with a concomitant upregulation of al- 

ernative pathways (e.g. the glyoxylate shunt); by doing so they 

roduce fewer reducing equivalents (NADH, FADH 2 ) which slows 

own the electron transport chain and reduces the production of 

oxic reactive oxygen species [ 67 , 71 , 72 ]. The important contribu-

ion of the microenvironment and metabolism to biofilm suscepti- 

ility also has implications for in vitro evaluation of antimicrobial 

trategies and strongly suggests that the model systems to be used 

hould closely mimic the in vivo micro-environmental conditions. 

The observation that microbial metabolism plays a crucial role 

n reduced susceptibility during biofilm-associated infections also 

pens the door for novel treatment approaches: what if we could 

ounteract the metabolic changes in vivo ? Would this allow us 

o overcome bacterial defence mechanisms and increase antibiotic 

usceptibility? In this context, carbon sources can likely work as 

otentiators of antimicrobial activity. While their use to increase 

ctivity of antibiotics is not new (see for example [ 73 , 74 ]), this

trategy has not been systematically explored for biofilms. A recent 

tudy using P. aeruginosa biofilms formed in an artificial CF sputum 

edium [75] demonstrated that, by activating the TCA cycle, it is 

easible to potentiate the anti-biofilm activity of ciprofloxacin (us- 

ng D,L-malic acid) and ceftazidime (using sodium acetate). While 

he observed anti-biofilm effects appeared to be antibiotic and 

train dependent, and while much more work is needed (includ- 

ng validation in in vivo models), this study can be considered as a 

roof-of-concept that direct interference with biofilm metabolism 

an increase antibiotic susceptibility. Another intriguing alterna- 

ive approach to overcome the biofilm barrier is hyperbaric oxygen 

herapy (HBOT). In CF, infected endobronchial mucus quickly be- 

omes anoxic due to O 2 consumption by activated polymorphonu- 

lear leukocytes that are recruited to kill the infecting bacteria. The 

esulting very low levels of oxygen force P. aeruginosa to generate 

nergy in a different way (e.g. using nitrate as terminal electron 

cceptor), but this switch results in lower metabolic activity and 

rowth, which in turn reduces the susceptibility to antibiotics [76] . 

he idea behind using HBOT is that reoxygenation of the anoxic 

ones (by exposure to 100% O 2 at 2.8 bar for 90 min) will acti-

ate microbial aerobic metabolism and will increase antibiotic sus- 
a

941 
eptibility. Indeed, in vitro it has been shown that HBOT dramat- 

cally increased killing of P. aeruginosa biofilms by ciprofloxacin 

 77 , 78 ] and tobramycin [79] . In addition, HBOT lowered the to-

ramycin concentration required to achieve a 3-log (99.9%) reduc- 

ion in the number of colony forming units by over 50% (i.e., the 

ame killing could be achieved with much lower antibiotic con- 

entrations) [79] . While HBOT has been used to treat various in- 

ections, mostly wounds with anaerobic bacteria, more evidence 

s needed that it will be clinically beneficial as adjuvant therapy 

or antibiotics in the treatment of respiratory tract infections in CF 

76] . 

Finally, while development of resistance against these alterna- 

ive (combination) treatments seems less likely than with current 

trategies, it cannot be ruled out. For example, while several quo- 

um sensing inhibitors drastically increased the antimicrobial ac- 

ivity of conventional antibiotics against different bacterial biofilms 

 80 , 81 ], resistance towards this potentiating activity rapidly devel- 

ps in vitro [ 82 , 83 ]. Moreover, resistance against these antibiotic- 

otentiating quorum sensing inhibitors was observed in clinical P. 

eruginosa isolates that were never exposed to them before, il- 

ustrating the difficulties of finding anti-biofilm therapies that are 

evolution-proof” [ 84 , 85 ]. 

. Expanding the therapeutic arsenal against CF pathogens? 

The emergence of AMR and the increased prevalence of 

ifficult-to-treat pathogens highlight the need for novel antimi- 

robial molecules and/or strategies in pwCF. The novel molecules 

urrently under evaluation as anti-infective drugs in the U.S. 

F Foundation and the European CF Society drug development 

ipelines are mostly in early (phase 1 and 2) stages of develop- 

ent ( Figure 3 ). These investigational products include gallium, 

itric oxide and other antimicrobial substances (e.g., lactoferrin- 

ypothiocyanite or substances active against biofilm), and bacte- 

iophages. 

Gallium is a metal, nearly identical to iron, that disrupts iron 

etabolism in bacteria and exhibits therapeutic effects in mice and 

umans with lung infections [86] . Intravenous gallium is approved 

y the Food and Drug Administration for intravenous use in hu- 

ans and is being studied in phase 1 or 2 trials in pwCF using 

ntravenous or inhaled formulations for targeting P. aeruginosa or 

ycobacterium abscessus infections. Novel formulations of gallium 

re being studied and may show improved antimicrobial effects 

gainst Gram-positive and Gram-negative bacteria, and nontuber- 

ulous mycobacteria [87] . 

Nitric oxide is a gas that exerts natural antimicrobial effects. 

ne hypothesis that has been suggested for many years regarding 

evere infections is that increasing levels of nitric oxide could help 

ill bacteria and eliminate their biofilms in the lungs of pwCF [88] . 

hase 1 and 2 studies are being conducted in pwCF. A new inhaled 

lycopolymer SNSP113 that may disrupt bacterial biofilms and tar- 

et the mucus layer in the lung has been recently developed and 

ill be tested in pwCF. 

A combination of lactoferrin and hypothiocyanite, two natural 

ubstances with antimicrobial activities, has been proposed to be a 

otentially useful strategy for treating bacterial infection in pwCF. 

n vitro studies have revealed promising antibacterial effects on CF 

athogens, including P. aeruginosa [89] . However, the first in man 

linical study has been ongoing for several years and has been ter- 

inated due to financial issues; it is unknown whether this com- 

ound will be further developed in pwCF. 

Great hope has emerged with the revival of research into bac- 

eriophages, which had been put on hold or overlooked for many 

ears during past periods of full confidence in success of antibi- 

tics. Bacteriophages are viruses that exclusively infect bacteria 

nd can act as potent bactericidal agents [90] thanks to their ad- 
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Fig.3. The antimicrobial compounds in the CF therapeutic development pipeline as of October 2022 (adapted from CF Foundation website). 
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antageous features such as self-amplification at the site of in- 

ection or the capacity to disrupt biofilm matrix. Their high host 

pecificity makes them very promising tools for targeted and per- 

onalised anti-infective therapy. Anecdotal reports described inter- 

sting effects of inhaled or intravenous bacteriophages in pwCF 

ho developed infections with untreatable M. abscessus [ 91 , 92 ], 

an-drug resistant A. xylosoxidans [93] or P. aeruginosa [94] . Phage 

ocktails (ready-to-use, or “magistral”, customized preparations 

95] ) have been produced by several laboratories worldwide, and 

arly phase clinical trials on the phage therapy of P. aeruginosa 

n CF have been designed. Compassionate use of bacteriophages 

s also ongoing in multiple countries. Yet many questions remain 

nanswered, including how to test the efficacy of phage therapy 

or pwCF both in vitro and in vivo , how to select phage cocktails, 

ow to combine phages with antibiotics, and how best to deliver 

hages to CF airways [ 96 , 97 ]. 

Of note, the CF pipelines mentioned above are not the 

nly routes for approval of new antimicrobial compounds for 

wCF. Additional novel antibiotics, applicable also to CF in- 

ections, have been commercialized in the past few years, 

lthough they have not been subject to clinical trials in 

wCF. These novel broad spectrum antibiotics, mostly beta- 

actams in combination with beta-lactamase inhibitor (includ- 

ng ceftolozane-tazobactam, ceftazidime-avibactam, imipenem- 

ilastatin-relebactam, meropenem-vaborbactam and cefidorocol) 

ay be useful in the treatment of Gram-negative bacteria (e.g., 

. aeruginosa, A. xylosoxidans, Stenotrophomonas maltophilia , and 

. cepacia complex) and nontuberculous mycobacteria and could 
a

942 
herefore be considered in pwCF with difficult-to-treat airway in- 

ections [ 98 , 99 ]. These novel antibiotics have shown interesting 

n vitro activity in several studies using Gram-negative bacterial 

trains isolated from CF sputum [100–102] and are being increas- 

ngly used in pwCF, as reported in short case series [ 103 , 104 ].

mamovic et al. have further suggested novel strategies of cycling 

pproaches using available antibiotics, as the evolution of AMR 

o P. aeruginosa confers predictable sensitivities to other classes 

f antibiotics [105] . To the best of our knowledge, this recently- 

resented approach is not currently being tested in clinical trials. 

At this time, antibiotics remain the main approach to fight air- 

ay infection in pwCF and their wise use, with the aim to max- 

mize therapeutic effect and to minimize adverse events, should 

e guided by professionals from antimicrobial stewardship teams 

ho are knowledgeable of specifics of CF microbiology [106] . 

ther approaches are still in early stages of drug development and 

here will be major challenges in designing clinical trials, espe- 

ially at the upcoming time when highly effective CFTR modula- 

ors reduce both exacerbation rates and sputum expectoration in 

wCF. Nonetheless, current CFTR modulators have limited effects 

n established bacterial infection [107] , and developing novel anti- 

nfective strategies for pwCF is of utmost importance. 

. Conclusions 

Adaptation of pathogens to the CF lung environment results in 

he development of persistent infections. One, but not the only, 

daptive mechanism is the evolution towards the AMR phenotype, 
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hich is not a simple correlate of mutational changes in their 

nown resistance genes. Bacteria tend to switch to a metaboli- 

ally less active state with slower growth rate, characteristic of the 

iofilm associated mode of growth; existing subpopulations of per- 

isters also survive exposure to antibiotics. Standard AST is not de- 

igned to consider these bacterial properties, and for these reasons, 

 broader concept of resistome testing may currently be also of 

imited clinical value. For more reliable AST, concentration values 

elated to biofilm may be further investigated and clinical break- 

oints for antibiotics when administered via inhalation need to be 

efined. The drug development pipeline for anti-infective thera- 

eutics is rather limited but includes a number of relatively un- 

onventional approaches, such as the use of bacteriophages and 

ntibiotic potentiating drugs. 
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