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The midpoint attractor (MPA) models of species richness integrate a unimodal envi-
ronmental favourability gradient and neutral effects forced by geometric constraints 
and thus extend the ecologically neutral mid-domain model. However, both alterna-
tive MPA algorithms assume that underlying environmental favourability peaks within 
the modelling domain. Here, we used elevational distribution data for 1054 plant spe-
cies occurring in northwest Himalaya to explore species richness gradients and MPA 
performance in species groups defined by biogeography, taxonomy and life-form. MPA 
models achieved an excellent fit, but the two MPA algorithms produced contrasting 
estimates of MPA location, especially for species groups with richness originating in 
lowlands. Therefore, we propose a modification of the MPA model accounting for the 
environmental favourability peak outside the study domain to reflect these situations. 
Biogeographic origin was more decisive for MPA location than taxonomic or life-form 
classification, indicating relatively low climatic niche conservatism in plants.

Keywords: elevational gradient, geometric constraints, Himalayas, mid-domain 
effect, midpoint attractor, neutral theory, null models, species ranges, species richness 
peak, vascular plants

Introduction

Species diversity patterns along elevational and latitudinal gradients have long fasci-
nated scientists, from the time of von Humboldt to the present day (Lomolino 2001). 
The monotonic decrease of diversity with increasing elevation was a generally accepted 
and universal pattern attributed to the general decrease of temperature with eleva-
tion, but the conflicting evidence of humped-shaped species diversity patterns resulted 
in a search for alternative explanations of empirical diversity patterns (Rahbek 1995, 
2005). A mid-elevation peak was found more frequently in dry climates, where pro-
ductivity at low elevations is limited by increasing aridity caused by high evaporation 
rates and low precipitation (McCain 2009). Furthermore, anthropogenic ecosystem 
disturbances have been concentrated mostly in lowlands, with reported negative effects 
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on biodiversity (Nogués-Bravo  et  al. 2008). However, the 
observed mid-elevation diversity peak may just be an artefact 
of the sampling effort or the method used to estimate eleva-
tional diversity patterns from available observations (Colwell 
and Hurtt 1994, Grytnes and Vetaas 2002). When the spe-
cies range is estimated from point-samples, it is likely that 
the absolute range would be underestimated and this conse-
quently causes the underestimation of actual diversity, espe-
cially at the domain margins and when the sampling effort 
is limited.

A simple and ecologically neutral explanation for a diver-
sity peak at middle elevations emerged with the concept of 
‘mid-domain effect’ (MDE), using only geometric constraints 
and random placement of species ranges within these con-
straints (Colwell and Hurtt 1994, Colwell and Lees 2000). 
MDE predicts the formation of symmetrical, hump-shaped 
distributions just by random overlap of species ranges placed 
within the domain. The MDE thus represents an ecologically 
neutral null model, simulating a richness pattern within a 
bounded domain when species range placement is not gov-
erned by climate suitability or any other ecological gradient. 
The support for MDE varies widely among studies, accord-
ing to the geographic extent and the organism group studied 
(Dunn et al. 2007). Generally, the MDE prediction is more 
likely to fit empirical richness patterns when species ranges 
of the studied species group (relative to domain size) are 
large and when the scale of analysis is large (Jetz and Rahbek 
2001, Dunn et al. 2007). Range location within a bounded 
domain is more restricted by geometric constraints for large-
ranged species groups; therefore, their overlap in the middle 
of the domain tends to produce a stronger mid-domain rich-
ness peak. In practice, large-ranged species yielding a better 
MDE fit are expected when the environmental gradients are 
weak (Colwell et al. 2005) or under conditions of high envi-
ronmental tolerances of the modelled species group (Rangel 
and Diniz-Filho 2005). In contrast, small-ranged (relative to 
domain size) species are usually found along prominent gra-
dients with sharply changing environmental conditions; such 
systems are accordingly less prone to the influence of MDE. 
Better fit found in studies on large spatial scales may be caused 
by weaker correlations between environmental gradients (e.g. 
temperature, water availability) and the geographic domain, 
especially for continental-scale latitudinal studies compared 
to local elevational studies (Dunn et al. 2007). A weaker role 
for climatically controlled processes then leaves more ‘space’ 
for neutral processes.

While MDE quickly attained recognition by biogeogra-
phers, it had also been strongly criticised (Zapata et al. 2005, 
Currie and Kerr 2008, but see Colwell  et  al. 2004, 2005). 
MDE opponents stressed the conceptual difficulties in defin-
ing domain boundaries, as well as purported latent effects of 
environmental factors on the range size frequency distribution 
used to generate mid-domain null models (Hawkins  et  al. 
2005) or evidence that the water-energy hypothesis can pro-
vide a better fit to empirical richness gradients than MDE 
(Hawkins  et  al. 2003). It is true that, with the exception 
of islands and other domains with sharp ecophysiographic 

boundaries (e.g. freshwater lakes), practically no other parts 
of the terrestrial surface have effective hard boundaries. This 
seems to be the major constraint for the application of MDE 
in practice, thus prompting the question of how to define the 
domain and its boundaries. In general practice, the lowest 
elevation of land surface in the study area (usually the sea-
level) is considered the lower domain limit. In contrast, the 
decision where to set the upper limit is more arbitrary – it can 
be the elevation of the highest summit in the area and also 
the physiological limit for survival of the organisms studied 
(Grytnes 2003a, Zapata et al. 2005). The growing body of 
macroecological studies on diversity distributions reveals that 
they cannot define the modelling domain unambiguously 
and are accordingly cautious in interpreting their results. 
Currently, there seems to be a consensus that the effects of 
geometric constraints can jointly influence the observed 
richness pattern together with other ecological drivers of 
diversity, and the neutral effect of domain boundaries can 
eventually be separated and quantified. In fact, MDE is not 
important for what it does explain but rather for what it does 
not. The unexplained residuals from the MDE model require 
further explanation because they may include deterministic, 
non-random and biologically relevant drivers (Colwell and 
Lees 2000).

To overcome the limitations of MDE, the midpoint attrac-
tor (MPA) model was recently developed. This model extends 
the conceptual framework of MDE by replacing an ecologi-
cally neutral uniform distribution of potential midpoint 
positions within the domain with a MPA with Gaussian dis-
tribution (Colwell et al. 2016). The MPA model is more flex-
ible than MDE because the Gaussian attractor allows MPA 
to fit also skewed hump shapes, peaking outside of the centre 
of the domain. The Gaussian attractor has two parameters A 
and B; the parameter A identifies the position of the peak of 
the Gaussian distribution function and the parameter B is 
the standard deviation of the Gaussian distribution function, 
that is an inverse measure of an attractor’s strength. The dis-
tribution function is truncated by the limits of the domain. 
The position and shape of the MPA can be interpreted as an 
ecologically meaningful shared ‘optimum’, favouring diver-
sity of the studied taxa, shifting the MPA model from purely 
neutral towards a model with biological meaning.

However, even the MPA model has limitations and 
assumptions that must be considered. Artefacts in under-
lying empirical data (e.g. incomplete sampling of species 
diversity and arbitrary decisions about where to set domain 
boundaries), may confound the model fit and interpreta-
tion. Furthermore, species whose fundamental niche extends 
beyond the environmental gradient present in the domain 
will have their realised range truncated, and therefore one 
or both of their range boundaries will likely be aligned with 
the domain boundary (Grytnes 2003a, Feeley and Silman 
2010). The presence of such species may cause deviations 
from the neutral distribution of midpoints. To compensate 
for truncated species ranges, Colwell et al. (2016) proposed a 
modification of the primary MPA algorithm. While the pri-
mary MPA model (hereafter called MPA 1) uses a doubly 
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truncated normal distribution as a midpoint sampler, a mod-
ified MPA algorithm (MPA 2, aka 'spreading dye' algorithm 
in Colwell et al. 2016) samples midpoints from the complete 
Gaussian distribution and then adjusts midpoints of the spe-
cies with ranges exceeding domain boundaries to the position 
closest to the respective domain boundary that will exactly 
keep the complete species range within the domain boundar-
ies. Both variants prevent the simulated species ranges from 
overlapping domain boundaries, but the second approach 
increases the probability that the species range limit is placed 
directly at the domain limit. While Colwell  et  al. (2016) 
claimed that fit between empirical and modelled richness was 
comparable or better using Algorithm 2 for most datasets 
involved, the consequences of model selection on estimated 
model parameter values and their interpretation were not suf-
ficiently discussed.

The basic assumption underlying the MPA is the exis-
tence of a universal, unimodal gradient of environmental 
favourability that underlies the realised richness patterns in 
a bounded domain. In reality, the ecological niche of taxo-
nomically or functionally related groups of organisms tends 
to be similar, and this niche conservatism is mirrored in the 
pattern of species richness along elevational and latitudinal 
gradients (Peterson et al. 1999, Wiens and Graham 2005), 
but for distinct taxonomic or functional groups the relevance 
of particular climatic drivers may largely differ. Water-energy 
balance measures like actual evapotranspiration and water 
deficit or climatic extremes (e.g. monthly temperature min-
ima and maxima) are usually considered the most relevant cli-
matic variables controlling plant species ranges and richness 
(Hawkins et al. 2003, Šímová et al. 2011). While the average 
temperature universally decreases with elevation, other cli-
matic measures potentially controlling species richness exhibit 
more complex relationships to elevational gradients (Körner 
2007, McCain and Grytnes 2010). Thus, the selection of a 
species group entering the model affects the resulting species 
richness curve and, consequently, model performance. The 
decision of how to define a species group used for richness 
assessment is usually made ad hoc; mostly according to taxo-
nomic or life-form criteria (Zhou  et  al. 2019). For plants, 
studies dealing with elevational richness gradients generally 
consider either all vascular plants (Grytnes and Vetaas 2002, 
Grytnes 2003b) or selected functional or taxonomic groups, 
such as ferns (Watkins  et  al. 2006, Colwell  et  al. 2016), 
epiphytes (Cardelús  et  al. 2006), trees (Carpenter 2005, 
Rana et al. 2019) or palms (Bachman et al. 2004). However, 
studies aiming to directly address differences among these 
groups are surprisingly scarce (Grytnes and Beaman 2006, 
Peters et al. 2016, Rana et al. 2019).

In this paper, we use a comprehensive dataset on vascu-
lar plant distribution from the Ladakh region in the western 
Himalaya to explore diversity patterns along an elevational 
gradient spanning more than 3500 m. We tested the per-
formance of the MDE and MPA models, addressing eleva-
tional diversity patterns in the area, where the lower domain 
boundary is defined geographically, while the upper domain 
boundary is set physiologically and therefore represents a 

hard boundary (sensu Colwell and Hurtt 1994). Specifically, 
we aimed to find an optimal model setting for fitting and 
interpreting the species richness pattern along the elevational 
gradient. We then used the optimal model to decompose the 
effects of geographic constraints, sampling bias, species func-
tional grouping, phylogenetic structure and biogeographic 
origin on realised species richness patterns.

Methods

Study region

We studied diversity patterns along an elevation gradient in 
northwest Himalaya, Ladakh region, India (Fig. 1). This region 
is partly isolated from adjacent areas by two biogeographical 
barriers – glaciated mountain ranges of Great Himalaya to the 
south and Karakoram Range to the northwest. To the east, 
the region is connected to the Tibetan plateau. Orographic 
barriers are also responsible for a strong rain-shadow effect, 
causing overall aridity in the region, with total annual precip-
itation often below 100 mm year−1. Elevations with available 
unglaciated land area stretches from 2650 to ca 7050 m a.s.l., 
but the highest occurrence of vascular plants currently known 
is from 6150 m a.s.l. (Dvorský et al. 2015). Combined effects 
of low temperature stress and aridity restrict regional species 
ranges and dominant life-forms (Dvorský et al. 2017). The 
prevailing vegetation is treeless because of high aridity, except 
for shrubby formations along streams. At higher elevations, 
where the water regime is more balanced due to the decrease 
in evapotranspiration, low temperature is the dominant lim-
iting factor (Dvorský et al. 2015).

Species data

We compiled information on species occurrence on the ele-
vational gradient in the study region using two datasets of 
plant occurrence data: a dataset of 95 812 georeferenced flo-
ristic records from the study region collected on 4062 sites 
in surveys conducted by L. Klimeš (LK) in years 1997–2006 
and from 7187 floristic records from field surveys led by J. 
Doležal (JD) in years 2008–2015 (Fig. 1). Field survey made 
by LK aimed to systematically explore floristic diversity of 
the region and to cover the geographic and elevational extent 
of the Ladakh, including remote areas far from the roads. 
Sampling took place during the short growing season (July–
September each year). LK chose the sampling sites in the field 
ad hoc with the aim to cover the whole diversity of vegeta-
tion types in the region. For each sampling site, LK recorded 
a complete species list of vascular plant species growing in 
1 ha area. Surveys by JD focused primarily on explorative 
plant trait data collection along the elevational transects with 
emphasis on species upper range limits and therefore a vari-
able number of plant individuals was recorded at each site. 
Elevation for each site was recorded according to handheld 
GPS or barometric altimeter. The total extent of the study 
area covered by field sampling is ca 50 000 km2, and the 
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vertical range covered by sampling stretches from 2650 m 
a.s.l. in the Suru Valley in northwest Ladakh to 6150 m a.s.l. 
in the Changthang region, in eastern Ladakh.

Before conducting the analyses, we excluded all cultivated 
plant species and taxonomically unresolved records. This 
selection resulted in a dataset comprising 90 464 records of 
1054 plant species, used for further analyses. For each spe-
cies, we identified the elevation of its lowest and highest 
occurrence in the dataset.

To complement this empirical elevational distribution 
realised within our study region, we extracted species eleva-
tional range limits realised in adjacent regions (Supporting 
information) from published floras and online databases. 
Specifically, we used the Flora of Pakistan (<www.tropicos.
org/Project/Pakistan>), the Flora of China (<www.eFloras.
org>), the Flora of Nanga Parbat (Dickoré and Nüsser 2000), 
the Himalayan Uplands Plant database (Dickoré 2011) and 
the Global Biodiversity Information Facility (GBIF, <www.
gbif.org>). Elevational records from the GBIF were rounded 
to the nearest hundred m a.s.l. to match the resolution 
reported in published floras and other databases. Unreliable 
records based mostly on historical reports (e.g. proclaimed 
elevation more than 1000 m apart from elevational extremes 
reported by other data sources for the same focal species) 
were discarded. We used information on elevational ranges 
realised outside the study region only for interpretation of the 
results based on regional elevational ranges.

To assess the contribution of various species groups to the 
overall diversity pattern, we classified the species according 
to the following criteria: family level taxonomic grouping, 
biogeographical affinity and life-form (annuals, graminoids, 
forbs, shrubs and trees). Detailed classification of species and 
the rules applied are given in the Supporting information.

Data analyses

We defined our domain by the extent of elevations inhabited 
by plants within our study area. The low elevation limit at 
2650 m a.s.l. was aligned with the geographic extent of the 
study, therefore representing a ‘soft boundary’ (sensu Colwell 
and Hurtt 1994), while the upper domain limit at 6150 m 
a.s.l. was determined by climatic tolerance of vascular plants, 
therefore representing a ‘hard boundary’ (Dvorský  et  al. 
2016). For model fitting, we transformed elevation values to 
unit domain values and back-transformed these values for the 
interpretation of results.

To calculate empirical elevational species richness (ESR), 
we used the interpolation method, assuming that each species 
was continuously present at all elevations between its extreme 
occurrences (Grytnes and Vetaas 2002). ESR was then cal-
culated as the number of overlapping species ranges in 100 
evenly spaced positions along the elevation gradient.

We performed two independent analyses to reveal how 
ESR is affected by sampling bias and uneven distribution 

Figure 1. Study area with sampling localities. Inset histograms show sampling effort and terrestrial land area by 100 m elevation bands.



1669

of planimetric area along the elevational gradient. First, we 
calculated ESR from species ranges based on a limited num-
ber of observations. We subsampled floristic records used 
for ESR calculation to mimic a limited sampling effort. We 
used sequences of sub-samples consisting of 5–95% records 
sampled randomly without replication from the full dataset. 
We repeated this procedure 1000 times and calculated the 
median ESR for each sampling intensity. Second, we calcu-
lated species richness in elevational bands using incidence 
data from point-samples and applied corrections for sampling 
effort and total land area. This method is less sensitive to ele-
vational richness pattern distortion close to domain bound-
aries (Grytnes and Vetaas 2002). We calculated uncorrected 
empirical richness as the number of species present in 35 ele-
vational bands (100 m each). To account for sampling effort, 
we calculated total species richness using the incidence-based 
asymptotic richness estimator (aka Chao2, Chao et al. 2014) 
from the iNEXT R package (Hsieh  et  al. 2019), based on 
occurrence data at sampling sites. To account for potentially 
confounding species–area effects in fixed elevation belts, we 
divided the elevation gradient into 35 variable elevational 
bands with equal total unglaciated terrestrial land area in 
each band. Elevation range in equal-area bands ranged from 
45 to 632 m. To compensate both for uneven sampling and 
for land area in each belt, we calculated Chao2 estimate for 
incidence data also from these equal-area belts.

To disentangle neutral drivers of ESR from a gradient 
of environmental favourability, we employed MPA models 
(Colwell et al. 2016). We compared the performance of MPA 
models to the ecologically neutral MDE, which simulates 
random range placement within a domain (Colwell and Lees 
2000). Because MPA models were introduced recently and 
their performance had not been widely tested on indepen-
dent datasets so far, we decided to explore four alternative 
settings of MPA in order to find an optimal solution and to 
describe the consequences of model design on fitted MPA 
parameters.

To fit the MDE model, we randomly sampled midpoint 
positions for each species from a uniform probability density 
distribution function restricted to the interval of values that 
limits the randomised range placement within the modelling 
domain: on the unit domain is this interval defined by [half 
range; 1 – half range] (Colwell and Hurtt 1994). We repeated 
the sampling 1000 times and recorded the median and the 
95% confidence interval (2.5 and 97.5 percentiles) from spe-
cies richness predicted by MDE models at 100 evenly spaced 
positions along the elevation gradient.

The MPA models suppose that the species richness gra-
dient is generated by an underlying midpoint density that 
follows a Gaussian distribution and is limited by geomet-
ric constraints. MPA uses Bayesian inference to optimise 
the Gaussian attractor of midpoint density defined by two 
parameters: the parameter A, which controls the location of 
the attractor’s peak, and parameter B, which is the standard 
deviation of the attractor, controlling the strength of the 
attractor. The attractor distribution is truncated by domain 
limits. We implemented both variants of MPA as proposed 

by Colwell et al. (2016), differing in the way they draw mid-
points during Bayesian parametrisation of attractor param-
eters in order to prevent simulated range from overlap with 
the domain boundary. Algorithm MPA 1 uses a doubly 
truncated Gaussian probability density function for mid-
points, where truncation is adjusted individually according 
to the range size of each species, to prevent sampled ranges 
from extending beyond domain limits. Algorithm MPA 2 
uses a Gaussian probability density function for midpoints 
truncated by domain limits, and only if the sampled mid-
point position results in range truncation by domain limits 
(i.e. the distance of midpoint from the closest domain limit 
is less than half of the elevational range), it is adjusted to 
the closest possible position (half range distance from the 
domain limit) which prevents range overlapping with the 
domain boundary. The resulting midpoint density distribu-
tion function, therefore, corresponds to a censored normal 
distribution. This setting favours placement of midpoints 
at positions where range limits exactly reach the domain 
boundary.

For both MPA 1 and MPA 2 algorithms, we tested two dif-
ferent settings: first, with MPA parameter A values restricted 
to the unit [0, 1] interval (i.e. constrained to lie within the 
domain) and parameter B restricted to the unit [0, 1] inter-
val, henceforth referred to as algorithm MPA 1a and MPA 
2a, respectively. This first setting for A and B corresponds to 
the original setting used by Colwell et al. (2016). In the sec-
ond setting, we allowed MPA parameter A to fall outside the 
domain limits, within an interval restricted to [−0.5, 1.5], 
and we allowed the MPA to be weaker by allowing attractor 
parameter B to be drawn from a broader interval [0, 2] (algo-
rithm MPA 1b and MPA 2b). This second setting therefore 
allows MPAto be located below/above actual domain lim-
its, which is a possible scenario in our study area, where the 
lower domain limit is determined by the geographic extent 
of the study and the centre of diversity may potentially lie 
below the actual lowest elevation found within the study area. 
Regardless of the limits for the MPA parameters, the same 
rules were applied for truncation/censoring of the resulting 
probability density function by geometric constraints.

We implemented MPA models using Bayesian inference 
through ‘RStan’ (Stan Development Team 2018). Flat priors 
were used to define both parameters. For Bayesian inference 
of the parameters of the Gaussian attractor, we used a direct 
likelihood function for midpoint distribution, instead of 
using a goodness-of-fit measure for empirical species richness 
as proposed by Colwell et al. (2016). However, predicted spe-
cies richness (PSR) values were stored for post hoc evaluation 
of model performance. Our approach gives equal weight to 
each species, whereas the original approach gives proportion-
ally more weight to wide-ranged species because they con-
tribute more to richness patterns. We used four chains and 
1000 iterations for warm-up and 1000 post-warm-up itera-
tions, with a thinning factor of five, resulting in 800 draws 
used for model inference. We stored the posterior mean and 
95% credible interval values of distributions of estimated 
MPA parameters A and B, and median and 95% credible 
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intervals for PSR values at 100 evenly spaced positions along 
the elevation gradient for each model.

For model performance evaluation, we calculated four 
goodness-of-fit measures based on median PSR and ESR: 
Pearson correlation (cor), mean absolute error (MAE), root 
mean squared error (RMSE) and normalised RMSE (RMSE 
divided by total species richness).

We fitted MDE and MPA models to the full species list 
and to subsets of species, with species groups selected accord-
ing to taxonomic classification at family level, biogeographic 
affinity and life-form (Supporting information). Only groups 
comprising more than 10 species were used for model fitting. 
We tested the effects of decomposition of the total diversity 
into these species groups on MPA model fit. We quantified 
between-group variability in MPA position as the standard 
deviation of MPA parameter A and variability in attractor 
strength as average MPA parameter B, using posterior mean 
parameter estimates for the selected species groups. We used 
randomised species classification (randomisation without 
replication) to provide a null expectation, given the numbers 
and sizes of the species groups are equal to the actual groups. 
We expected that, if our grouping criteria were ecologically 
relevant, the variability in MPA parameter A (attractor posi-
tion) would be higher and the average MPA parameter B 
(inverse measure of attractor strength) would be lower than 
the null expectation. Increased variability in parameter A 
indicates differentiation of midpoint positions between the 
groups and a smaller parameter B indicates higher homo-
geneity of midpoint positions within the groups. We used 
a one-tailed F-test to test our hypothesis that variability of 
MPA parameter A will be higher and a one-tailed paired t-test 
to test the hypothesis that average MPA parameter B will be 
lower for empirical parameter estimates compared to null 
expectations for ecologically differentiated species groups.

All statistical analyses were performed in R 3.4.4 (<www.r-
project.org>); R code implementing all four variants of 
MPA models can be found in the electronic Supporting 
information.

Results

From 1054 species, 177 species (16.8%) had their lower 
range limit within 100 m of the lower domain boundary, 
but only seven species (0.7%) had their upper range limit 
within 100 m of the upper domain boundary (Fig. 2). The 
empirical species richness curve was unimodal and positively 
skewed, peaking at 3875 m a.s.l. (0.35 on unit domain) with 
a maximum richness of 660 species (Fig. 3). Towards higher 
elevations, species diversity declined and reached zero below 
the physical limit of available unglaciated land-area at high 
elevations.

Sampling bias

Random subsampling of the species-occurrence dataset 
affected the shape of the ESR (Fig. 3). Richness estimates 

based on the interpolation method at the domain margins 
proved to be the most sensitive to simulated sampling effort 
bias. The lower regions of the elevational domain were more 
sensitive to sampling effort bias than the upper regions: 50% 
reduction of sampling intensity resulted on average in 27% 
species richness reduction in the lower elevation belt (below 
2970 m a.s.l.), 12.6% reduction in the middle elevation belt 
(4240–4560 m a.s.l.) and 22.8% reduction in the upper 
elevation belt (above 5830 m a.s.l.). The shape of the ESR 
converged as sampling effort increased: reducing sampling 
effort by 10% resulted in 4.1, 2 and 4.1% species richness 
reduction for lower, middle and upper elevational belts. With 
very limited sampling effort (<10% of the original dataset), 
the ESR became more symmetric, with its peak at 4030 m 
a.s.l., close to the domain centre at 4400 m a.s.l.

Species richness estimates from point-samples in eleva-
tional bands also produced hump-shaped patterns (Fig. 4). 
Applying an asymptotic estimate (Chao2) for total species 
richness in elevational bands conserved a hump-shaped pat-
tern, with a maximum of 711 species (SE = 34) estimated 
for the elevational band 3550–3650 m a.s.l. (Fig. 4b). When 
band planimetric area was equalised, the hump was less pro-
nounced, reaching maximum values in the 3280–3500 m a.s.l. 
band, both for observed (615 species) and sampling-intensity 
corrected (764 species, SE = 32) species richness (Fig. 4c–d).

Model performance

Full dataset
MDE prediction produced a symmetrical, parabolic curve, 
which reproduced the empirical species richness pattern 

Figure  2. Empirical species ranges of vascular plants growing in 
Ladakh. The position of the species range midpoint (x-axis) is plot-
ted by points against its range size (y-axis). Horizontal lines display 
species ranges defined by minimum and maximum elevation of 
occurrence. The triangle bounds possible locations of midpoints 
within the domain.
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poorly, underestimating diversity at lower elevations and 
overestimating diversity at upper elevations (Fig. 5a, f ). 
All MPA models fitted the empirical species richness well, 
with algorithm MPA 1b providing best results (Fig. 5). 
Algorithms MPA 1 and 2 differed only slightly in the good-
ness-of-fit metrics, but they provided significantly different 

estimates of MPA parameters (Table 1). MPA position esti-
mated by MPA 1b was situated below the lower domain 
limit. Algorithm MPA 2b produced MPA position esti-
mates similar to those produced by algorithm MPA 2a, with 
the attractor centred approximately at the observed peak  
of diversity.

Figure 3. Species richness of vascular plants along an elevational gradient in Ladakh. Species richness was estimated with different levels of 
sampling effort using the range interpolation method. Sampling bias is most pronounced at domain margins and in the lower part of the 
gradient. Absolute (left) and relative to the full dataset (right), species richness was estimated using randomly selected fractions (0.05–1.0) 
of all species occurrence records.

Figure 4. Estimated species richness using point-samples in 35 elevational bands, (a) using equally spaced 100 m elevational bands, (b) using 
equally spaced 100 m elevational bands corrected for sampling intensity using the asymptotic richness estimator Chao2, (c) using variable 
bandwidth with equal planimetric land area, (d) using variable bandwidth with equal planimetric land area corrected for sampling intensity 
using the asymptotic richness estimator Chao2. Horizontal whiskers indicate the width of the elevational bands used.
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Species grouping
Splitting the dataset into species groups significantly affected 
MPA shape parameters (Fig. 6), but goodness-of-fit measures 
were on average worse than for whole vascular plant richness 
(Supporting information).

Grouping based on life-form resulted in a marginally sig-
nificant effect on the variance of attractor positions (param-
eter A) only for model MPA 2b (p = 0.066), but marginally 
significant effects on attractor strength (parameter B) were 
found for all four MPA models (Table 2). The difference 
from random expectation in absolute numbers was, how-
ever, the largest among the tested grouping criteria, but 
the low number of life-form groups (n = 5) resulted in low  
test power.

Grouping based on biogeographical affinity significantly 
affected both attractor position and strength in all MPA mod-
els. Attractor location for Eurasian, Mediterranean, Eurasian 
and Cosmopolitan biogeographic elements was estimated 
below the lower domain limit by the model MPA 1b. In con-
trast, the MPA for Tibetan elements was located at 5290 m 
a.s.l., far above MPA of other biogeographic groups (Fig. 6).

Taxonomic grouping by families marginally affected the 
variance of attractor position (parameter A) only in the MPA 
1a model and affected attractor strength (parameter B) in 
models MPA 2a and MPA 2b (Table 2). Attractor position 
estimated by MPA 1b for 13 out of 23 families was below 
the domain limit. The highest attractor position was reported 
consistently by all MPA models for Saxifragaceae. A very weak 
attractor (MPA 1b parameter B > 3000 m) was reported for 
four families (Brassicaceae, Crassulaceae, Papaveraceae and 
Saxifragaceae).

Discussion

Empirical observations and sampling bias

Underestimation of species ranges leads to underestimated 
diversity, especially close to domain boundaries, when the 
interpolation method for richness estimation is used (Grytnes 
and Vetaas 2002). Although sampling effort was very inten-
sive in this study, empirical species ranges may still be slightly 

Figure 5. Observed elevational species richness and null model predictions for MDE model (a, f ), MPA 1a (b, g), MPA 1b (c, h), MPA 2a 
(d, i) and MPA 2b (e, j). Upper panels (a–e) show empirical richness (dots), predicted species richness by null models (blue line and light 
blue area for median and 95% confidence/credible interval), and the probability function of the midpoint attractor (dashed red line). Lower 
panels (f–j) display observed versus predicted species richness and the 1:1 line. While the MDE model provided a poor fit to the empirical 
richness, all variants of the MPA models provided an excellent fit.

Table 1. Estimated parameters and model performance for evaluated richness models using the full set of species. Parameter A controls the 
Gaussian MPA location (in m a.s.l.); parameter B controls strength (standard deviation, in m) of the Gaussian MPA. Fit between observed 
and predicted elevational richness is presented by goodness-of-fit measures: Pearson correlation (corr); mean absolute error (MAE); root 
mean squared error (RMSE) and normalised root mean squared error (nRMSE).

Richness model Param. A mean (95% CI) Param. B mean (95% CI) corr MAE RMSE nRMSE

MDE – – 0.718 140.88 155.74 0.148
MPA1a 2848 (2659; 3114) 1078 (946; 1185) 0.993 17.66 25.86 0.025
MPA1b 2431 (1324; 3044) 1229 (989; 1595) 0.994 16.67 24.49 0.023
MPA2a 3913 (3873; 3949) 600 (570; 630) 0.990 26.03 32.90 0.031
MPA2b 3913 (3876; 3948) 600 (570; 632) 0.990 26.02 32.94 0.031
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underestimated. Simulation of less intensive sampling effort 
in this study showed that empirical species richness in the 
lower part of the elevational gradient is more sensitive to range 
underestimation with limited sampling, while in the upper 
part of the elevational gradient, estimated diversity was less 
affected (Fig. 3). Nevertheless, a hump-shaped richness pattern 
remained apparent for alternative point-sample-based richness 
estimation, even when adjusted for sampling effort (Fig. 4). 
When we corrected for land area using equal-area bands, the 

hump was less pronounced but still apparent, peaking at 
3280–3500 m. Therefore, we conclude that the unimodal ele-
vational richness pattern has a real basis, controlled either by 
neutral processes or by underlying climate gradients, or both.

MDE and MPA models

The MDE model, which can be considered as an ecologi-
cally neutral null model of the species richness gradient on 

Figure 6. Estimated midpoint attractor position (points) and strength (bars) using the MPA 1b model for (a) the full dataset and species 
grouped according to (b) the life-form, (c) biogeographic elements and (d) taxonomic groups (families). Gaussian midpoint attractor posi-
tion (parameter A) is plotted by dots and its strength (standard deviation of Gaussian attractor) (parameter B) as a vertical blue bar. The 
shaded area depicts domain limits. Note that if a midpoint attractor is located below the lower domain limit, only a monotonically decreas-
ing portion of the Gaussian curve was used for midpoint sampling.
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a geometrically constrained domain, failed to accurately 
reproduce the observed, positively skewed diversity pattern. 
Despite the positive correlation between MDE prediction 
and empirical richness (r = 0.72), all MPA models performed 
substantially better than the MDE model. The MPA models 
almost perfectly fitted the empirical species richness curves, 
regardless of the MPA algorithm used. The full set of regional 
vascular plant species richness was matched with a correla-
tion coefficient r > 0.99, reached by all four alternative MPA 
models. However, the model MPA1b achieved the best fit 
regarding all goodness-of-fit measures applied. The advan-
tage of MPA models lies in the inclusion of both ecologically 
neutral effects represented by geometric constraints and an 
ecologically informative MPA with two parameters, which 
effectively regulates the shape and location of the predicted 
richness pattern and represents environmental favourability 
for the studied species group.

Notably, the fitted shape parameters of MPAs were sensi-
tive to the model algorithm used. The MPA model param-
eters A and B were restricted to a unit range in the original 
work of Colwell  et  al. (2016), but we see no strict reason 
for this limitation, because the centre of diversity may lie in 
specific cases outside the domain, especially when the studied 
region covers only a part of the elevational gradient. When we 
allowed the MPA to be located outside the domain (model 
MPA 1b), the model fit to the data slightly increased and 
the estimated attractor position (parameter A) for all species 
was situated at 2430 m a.s.l., about 220 m below the domain 
limit. When the MPA peak is situated below the domain 
limit, the resulting probability density function truncated by 
the domain limits is the monotonically decreasing part of the 
Gaussian curve. When this is true, then the existence of a 
peak of empirical species richness within the domain must be 
caused by neutral processes linked to geometric constraints, 
in conjunction with an approximately Gaussian distribution 
of environmental favorability for the group in question.

The MPA probability function of the MPA 2 algorithm 
places species ranges directly at domain boundaries with 

substantially higher probability than the MPA 1 algorithm 
because it uses a censored rather than a truncated prob-
ability density function. In contrast, the MPA 1 algorithm 
compensates for the truncation of the MPA distribution by 
shifting the MPA to lower elevations; in the case of MPA 
1b (attractor position is not restricted by domain limits), 
the estimated MPA was actually situated below the lower 
domain limit for most analysed datasets: the whole flora, for 
13 families, for four biogeographic groups and for three life-
forms (Supporting information). The maximum difference 
in estimated MPA position between the MPA 1b and MPA 
2b models for the same species group was as much as 2250 
m. The discrepancy between models was accentuated when 
we fitted species groups with a centre of diversity in lower 
elevations, probably as a consequence of a high proportion of 
truncated ranges. The sensitivity of MPA parameters to model 
assumptions indicates that the midpoint position must be 
interpreted with caution, particularly if a substantial portion 
of evaluated species ranges reaches domain limits. Although 
many species in our dataset have a lower range boundary at 
or close to the lower domain limit, the algorithm MPA 1 
performed slightly better than MPA 2. This is in contrast to 
Colwell  et  al. (2016), who favoured the second algorithm, 
but the datasets used in their study contained usually only a 
few sampling sites along the elevation gradient (5–70 sites), 
and therefore, it was more likely that the observed species 
ranges would be alligned exactly with the lower domain limit. 
Because the interpretation of the underlying MPA probabil-
ity function is also more straightforward for algorithm MPA 
1, we recommend this algorithm for further use.

We also question the restriction of parameter B to unit 
definition range as proposed by Colwell et al. (2016). There is 
no strict mathematical reason for such restriction; this limita-
tion in Colwell et al. (2016) was empirically chosen because 
higher values did not yield better fits. Theoretically, if param-
eter B was set to infinity, then the MPA 1 would be equal to 
MDE. In several instances, we found that the estimated value 
for parameter B exceeded the unit interval in the MPA 1b 

Table 2. Variability in parameter estimates among different species groups classified according to the life-form, biogeographic element and 
taxonomic families. The effects of grouping on the variance of attractor location (parameter A) were tested with an F-test and a t-test was 
used to test the effects on attractor strength (parameter B).

Groups Model
Parameter A Parameter B

SD (obs) SD (rnd) F-value p-value Signif. Avg. (obs) Avg (rnd) t-value p-value Signif.

Life-form (n = 5) MPA1a 208.5 19.4 0.81 0.579 714.8 1160.4 −1.97 0.060 (.)
MPA1b 518.0 40.0 1.46 0.362 857.4 1688.4 −1.71 0.082 (.)
MPA2a 217.4 62.5 5.38 0.066 (.) 480.6 703.6 −2.05 0.055 (.)
MPA2b 230.9 109.1 1.82 0.287 498.4 926.4 −1.70 0.082 (.)

Biogeographic 
(n = 11)

MPA1a 621.9 146.7 17.97 < 0.001 *** 826.8 1025.3 −2.97 0.007 **

MPA1b 950.9 344.7 7.61 0.002 *** 1048.8 1355.9 −2.95 0.007 **
MPA2a 342.1 86.5 15.63 < 0.001 *** 541.5 643.1 −3.26 0.004 **
MPA2b 380.0 134.5 7.98 0.001 ** 572.3 672.3 −2.72 0.011 *

Taxonomic (n = 23) MPA1a 536.5 382.1 1.97 0.060 (.) 1115.2 1212.6 −0.69 0.249
MPA1b 931.8 714.2 1.70 0.110 1773.2 1846.5 −0.26 0.400
MPA2a 250.1 200.3 1.56 0.153 594.0 794.5 −2.84 0.005 **
MPA2b 267.2 313.9 0.72 0.772 637.2 1111.3 −2.91 0.004 **

Statistical significance: 0 *** < 0.001 ** < 0.05 (.) < 0.1.
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models for certain species groups, when the a priori range for 
parameter B was set to the [0, 2] interval. This result indicates 
low climatic control on midpoint placement for these groups, 
or, in other words, high ecological plasticity of these groups. 
However, a priori restriction of the model parameters may be 
useful when the Bayesian model fails to converge.

Ecological interpretations

The absolute decline of species richness towards high eleva-
tions is presumably determined by low temperature, as 
has been experimentally confirmed from our study region 
(Klimeš and Doležal 2010, Dvorský et al. 2016). Conditions 
above the elevation of the highest vascular plant occurrence 
at 6150 m a.s.l. are clearly inhospitable: annual mean tem-
perature falls below −10°C, and freezing temperatures occur 
every single day of the year (Klimeš and Doležal 2010, 
Dvorský et al. 2015). The upper limits of plant species in this 
area belong to the highest records on Earth (Dvorský et al. 
2015), and we repeatedly searched for plants growing above 
the highest known plant occurrence, but thus far with nega-
tive results. We are therefore confident that the upper range 
limits used in this study are not truncated because of the geo-
graphic extent of our study area, but represent a hard bound-
ary set by species’ physiological tolerance.

In contrast, species richness at the lowest elevations may 
be depressed by increasing aridity, but not so strictly as by 
the low temperatures at upper domain limits (Dvorský et al. 
2017). Climate in the lower parts of Ladakh is arid, but even 
moisture-demanding species can find suitable habitats along 
streams and on occasional spring fens. Therefore, we assume 
that drought limitation may rather affect relative species 
abundances than their absolute range limits. However, the 
decline in species richness towards the lower domain limit 
has several potential non-biological explanations: elevations 
below 3000 m a.s.l. in the study region are geographically 
restricted to valleys of the Indus, Dras and Shyok rivers in the 
northwest part of the region (Fig. 1). It is thus possible that 
species growing in comparable elevations in adjacent regions 
are truly missing from the same elevations in Ladakh, simply 
because of dispersal limitations and/or stochastic extinctions 
of small local population, following the principles respon-
sible for species–area relationship. This idea is also supported 
by the less pronounced richness peak calculated by the bin 
method with equal-area bins than by the method with fixed 
elevational bins.

To assess how common range truncation by geographic 
constraints may be, we conducted a literature survey on spe-
cies range limits in adjacent regions. We identified 615 spe-
cies (60% of the total plant diversity in Ladakh) that were 
reported from lower elevations in other regions than their 
actual lowest elevation of occurrence in Ladakh in our data-
set. This finding provides additional support to our con-
clusion that environmental favourability is monotonically 
decreasing with elevation within our study domain as was 
predicted by the MPA model, and the observed decrease in 
species richness towards low elevations has other reasoning 

than climate. This inference is not in conflict with an esti-
mated hump-shaped pattern of diversity by asymptotic point-
sample estimates for elevational bands (Fig. 4), because this 
approach adjusted only for sampling bias and species–area 
relationships but not for the neutral effects of geometric con-
straints. Likewise, Grytnes and Vetaas (2002), in a study from 
Nepal, concluded that the observed hump-shaped diversity 
pattern is a product of a linearly decreasing underlying trend 
and domain boundaries.

Species groups

The fit of MPA models to the full set of species was almost 
perfect; therefore, dataset separation into distinct species 
groups by their taxonomy, biogeographic affinity or life 
form could not have improved the overall model fit. On the 
contrary, we observed a slightly worse fit for separately fit-
ted groups than for the whole plant diversity of the area. 
Nevertheless, the evaluation of models for species subsets 
revealed considerable variation in attractor shape parameters 
among the groups (Fig. 6). We interpret the perfect fit to the 
full species set, despite the presence of ecologically distinct 
species groups, as an analogy to the central limit theorem, 
which predicts that regardless of the distribution of separate 
samples, the summation converges towards normal distribu-
tion (Šizling  et  al. 2009). This is likely why the Gaussian 
attractor is so successful in MPA models. The only model 
parameter that suggests that ecological divergence among 
species groups contributes to the overall richness pattern 
is the inflated (for all species, compared to within groups) 
attractor parameter B, regulating the strength of the attractor. 
When we separated species to groups using various grouping 
criteria, the strength of the MPA generally increased (param-
eter B decreased).

Species groupings based on their biogeographical affin-
ity had the greatest divergence among them, for attractor 
positions and strength. This is not surprising because cli-
matic niche mirrors both elevational and latitudinal range. 
Similarly, Rana et al. (2019) concluded that trees with differ-
ent biogeographic affinity in east Himalaya greatly differed 
in their elevational predominance, but the mixing of groups 
in middle elevations could not explain the formation of the 
richness peak.

Surprisingly, phylogenetic signal in attractor parameters 
was relatively weak. With the exception of the Saxifragaceae, 
the positions of the MPA overlapped and the strength of 
MPAs was relatively weak. Variability in thermal tolerances 
within taxonomic groups at the rank of family is obviously 
still high, probably because of rapid evolution of adaptations 
to low-temperature stress (Araújo et al. 2013, Liu et al. 2020). 
Notably, the 12 species found at elevations above 6000 m 
a.s.l. belonged to six different families. This evolutionary 
convergence illustrates well the limited niche conservatism 
with respect to thermal tolerances at the level of family (cf. 
Prinzing et al. 2001).

Classification based on life-form provided seemingly sur-
prising results: the MPA in the MPA 1b model for trees was 
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located higher than for forbs, graminoids or shrubs (Fig. 6b). 
This result may seem contradictory, but only at first glance: 
MPA strength was much higher for trees, which means that 
their midpoints are restricted to elevations around 3000–
3500 m a.s.l., while the midpoints of the latter life-forms 
are distributed more evenly along the elevational gradient. 
Drought limitation and human pressure may be responsible 
for a steeper decline of tree species richness at low elevations 
as compared to other groups, while physiological constraints 
control the upper tree-line (Dolezal et al. 2019).

Here we compared fit to separate models for each group, 
but integration of species grouping into one model is poten-
tially feasible. The question is, what then should be the opti-
misation criterion, when the fit to the empirical richness of our 
less complex model treating all species together is equal or even 
better than the fit to sets of coherent species groups? Resolving 
this issue is critical for understanding the ecology of species, 
otherwise hidden within the universal richness gradient.

Conclusions

MPA, but not MDE, models proved to be useful for fitting 
and interpreting empirical richness data. However, MPA 
models must be interpreted with caution because model 
parameters are sensitive to the setting of a model algorithm 
and the two parameters of the MPA interact in their effects 
on the resulting shape of predicted richness curves.

Using the best performing MPA model, we found that the 
empirical unimodal skewed species richness pattern of vascular 
plants in the Himalaya is jointly driven by a decreasing climatic 
suitability gradient and by neutral domain boundary effects. 
Sampling bias is a potential source of richness underestima-
tion, especially at the geographically truncated domain bound-
aries, but with our extensive dataset, it played a minor role. 
The inclusion of ecologically distinct groups did not decrease 
goodness-of-fit measures, but it weakened the strength of the 
MPA. According to differences in MPA parameters among 
species groups, the main distinction criterion was biogeo-
graphic affinity, rather than taxonomic rank or life-form.
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