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A B S T R A C T

It has been suggested that the long-wavelength topography of Titan is related to lateral variations in the heat
flux from the ocean. Recent studies of the heat transfer in Titan’s ocean agree that the time-averaged heat flux
can vary in latitude by tens of percent, but they predict different distributions of heat flux anomalies at the
upper boundary of the ocean. In order to clarify this issue, we perform 115 numerical simulations of thermal
convection in a rotating spherical shell, varying the mechanical boundary conditions and dimensionless input
parameters (Rayleigh, Ekman and Prandtl numbers) by at least one order of magnitude. The results of the
simulations are examined in terms of the modified transitional number, 𝑅∗

𝐺 = 𝑅𝑎𝐸𝑘12∕7𝑃𝑟−1. Depending on
the relative importance of rotation, the heat flux maximum is located either at the equator (equatorial cooling)
or at the poles (polar cooling). We demonstrate that equatorial cooling occurs when 𝑅∗

𝐺 < 1 or 𝑅∗
𝐺 > 10 while

polar cooling occurs when 𝑅∗
𝐺 ∈ ⟨1, 10⟩. Based on this result, we predict that Titan’s ocean is in the polar

cooling mode and the heat flux distribution is controlled by zonal degree 2 and 4 harmonics. The predicted
heat flux shows a high degree of similarity with the axisymmetric part of Titan’s long-wavelength topography,
indicating a strong relationship between ocean dynamics and the processes in the ice shell.
1. Introduction

Several moons of the giant planets are thought to have liquid-water
oceans buried beneath their icy crusts (Nimmo and Pappalardo, 2016).
These oceans transport heat and chemicals from the deep interior to
the surface, influence the tectonic evolution of the ice crust and are
possible candidates for hosting life. Understanding the dynamics of
subsurface oceans is therefore critical for comprehending the evolution
of icy bodies and evaluating their habitability.

The subsurface oceans are inaccessible to direct observation, but
they can be studied by numerical simulations. The simulations are
carried out by solving the conservation equations for mass, momentum
and energy applied to a rotating viscous fluid (see Appendix A for
details). The main drawback of this approach is the order of magnitude
difference between the actual values of the parameters that control the
real ocean and those that can be achieved in numerical simulations. For
example, in numerical simulations of thermal convection in planetary
interiors, the Ekman number (𝐸𝑘, the ratio of viscous to Coriolis forces)
is usually five to ten orders of magnitude larger than its real value,
while the Rayleigh number (𝑅𝑎, the ratio of the thermal diffusion time
to the viscous buoyant rise time) is usually ten to fifteen orders of
magnitude smaller than that expected in natural systems. In spite of
this limitation, numerical simulations can provide valuable insight into
the dynamics of rotating convective systems since the results obtained
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for unrealistic Ekman and Rayleigh numbers can be extrapolated using
scaling laws. This approach has been used for several decades to
investigate magnetic fields generated in molten planetary cores (see,
e.g., Roberts and King (2013) for a review) and can also be applied to
subsurface oceans of icy moons (e.g. Soderlund et al., 2014; Soderlund,
2019; Amit et al., 2020).

Recent progress in computational algorithms (Schaeffer, 2013) to-
gether with increasing computational power have considerably widened
the range of accessible Ekman and Rayleigh numbers and made it
possible to test theoretical scaling laws and establish ‘‘empirical’’ scal-
ings. Assuming a shell with an inner to outer radius ratio of 0.6,
no-slip boundary conditions and gravity proportional to 𝑟−2, Gastine
et al. (2016) found five different scaling regimes: conductive, weakly
nonlinear, rapidly rotating, transitional and non-rotating. Cheng et al.
(2018) combined numerical simulations, laboratory experiments and
asymptotic predictions and proposed a similar classification but using
different terminology to describe the heat transfer modes (subcritical,
columnar, plumes, geostrophic turbulence, unbalanced boundary lay-
ers, and non-rotating heat transfer). The classifications by Gastine et al.
(2016) and Cheng et al. (2018) have been used as the basis for two
studies investigating the spatial variations in the heat flux at the upper
boundary of a subsurface water ocean (Soderlund, 2019; Amit et al.,
2020). Latitudinal variations in heat flux from the ocean have been
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proposed to have contributed to the formation of chaos terrains on
Europa (Soderlund et al., 2014), polar depressions on Titan (Kvorka
et al., 2018) and ice thickness variations on Enceladus (Čadek et al.,
2019b), and are likely to have played a significant role in the evolution
of icy moons.

Soderlund (2019) and Amit et al. (2020) show that, depending on
the relative importance of rotation, convection models predict three dif-
ferent cooling patterns: (i) the polar cooling, characterized by efficient
heat transfer at high latitudes, (ii) the equatorial cooling, characterized
by the maximum heat transfer near the equator, or (iii) the uniform
cooling, corresponding to convection systems that are not affected by
rotation. The studies agree that the lateral heat flux variations may be
significant (up to ∼ 50%), but their results are contradictory. Whereas
he model of Soderlund (2019) predicts the transition from equato-
ial to polar cooling with increasing influence of rotation, the model
y Amit et al. (2020) indicates the opposite trend — the transition from
olar to equatorial cooling. It is therefore difficult to draw conclusions
bout the cooling patterns relevant to icy moon oceans because the two
ets of results do not allow a unique interpretation.

The study of Amit et al. (2020) focuses on Titan where the variations
f oceanic heat flux have been estimated from analysis of topographic
ata (Kvorka et al., 2018). Amit et al. (2020) classify the heat transfer
egime in Titan’s ocean as transitional to non-rotating and argue for
nhanced polar cooling, which contrasts with the results of Soder-
und (2019) suggesting weak equatorial cooling in this regime. This
iscrepancy may be related to differences in geometry and boundary
onditions, or to the way in which the results are extrapolated to the
eal world. In both studies, convection is driven by a fixed tempera-
ure contrast between the inner and outer boundary, but the results
resented by Soderlund (2019) are obtained for a radius ratio of 0.9
nd free-slip boundary conditions, while the numerical simulations
iscussed in Amit et al. (2020) are performed for a radius ratio of 0.8
nd no-slip boundary conditions.

In macro-scale applications, no-slip is the proper boundary condi-
ion for a viscous fluid at a rigid boundary. Since the subsurface ocean
s treated as a fluid shell with rigid and impermeable boundaries, the
o-slip boundary condition seems to be the correct choice. However,
s pointed out by Kuang and Bloxham (1997), the use of the no-slip
ondition may be problematic because the Ekman number used in
umerical models is many orders of magnitude larger than in the real
luid. As a consequence, no-slip models tend to overestimate viscous
ffects, resulting in a thick Ekman layer (the boundary layer in which
he frictional force is balanced by the Coriolis force). Since the net
orque acting on the fluid shell is generally not equal to zero, the no-
lip boundary conditions lead to a differential rotation of the ocean
ith respect to the ice crust and the silicate core. In contrast, the free-

lip boundary condition effectively reduces the Ekman layer thickness
o zero, and since there is no viscous coupling across the boundaries,
he total angular momentum of the ocean is conserved (see also Kuang
nd Bloxham, 1999). The absence of friction forces in free-slip models
s accompanied by the development of strong zonal flows, possibly
nfluencing the heat transport in the ocean.

Current computational power does not allow numerical simulations
f thermal convection with realistic Ekman and Rayleigh numbers. To
void this problem, Soderlund (2019) and Amit et al. (2020) have
erformed a series of numerical simulations with parameters that are
omputationally tractable and interpreted the results using a scaling
nalysis. There are two problems that make it difficult to extrapolate
he results of convection simulations to the real world. First, we do not
now the superadiabatic temperature difference, 𝛥𝑇 , across the ocean.
iven that 𝑅𝑎 ∝ 𝛥𝑇 , this means that the Rayleigh number of the real
cean cannot be determined directly from the definition. Since the total
eat output of the convective system is usually known, several methods
ave been proposed to estimate the Rayleigh number from the Nusselt
umber, 𝑁𝑢, characterizing the total heat transfer across the fluid
2

omain. Soderlund (2019) and Amit et al. (2020) estimated the interval
of possible values of 𝑅𝑎 using the scaling laws for two end member
cases: a rapidly rotating ocean and a non-rotating ocean (Gastine et al.,
2015, 2016).

The second problem consists of finding the relationship between
the numerical simulations performed for unrealistic values of control
parameters and the real system, i.e. of determining the properties of
the real system from the results of the numerical modeling. This can be
done using a convective regime diagram (see, e.g., Fig. 1 in Soderlund
(2019) or Fig. 10 in Amit et al. (2020)). The implicit assumption
behind this approach is that each convective regime has its own specific
cooling pattern. This assumption is likely to be satisfied for rapidly
rotating convective systems but it may not be valid in the case of the
transitional regime where the heat flux pattern does not show a clear
trend (Amit et al., 2020). It is also worth mentioning that the convective
regime diagrams themselves are uncertain to some extent since they can
use different scaling laws to describe the same transition. For example,
the transition to the non-rotating regime can be described by either
the convective Rossby number (∝ 𝐸𝑘) or the transitional number 𝑅𝐺
(∝ 𝐸𝑘12∕7, see Table 2), which however differ by orders of magnitude at
Ekman numbers relevant to ocean worlds (see red-shaded area in Fig.
1 of Soderlund (2019)). Another problem is that the empirical scaling
relations are mostly based on numerical simulations with a radius ratio
of 0.6 or smaller while the ratio of the inner to outer radius of a
subsurface ocean is typically greater than 0.8.

Alternatively, one can characterize the system using a suitable
‘diagnostic’ parameter. This parameter must be sensitive to changes
in the heat flux pattern, insensitive to order-of-magnitude changes in
control parameters 𝐸𝑘 and 𝑅𝑎, and must be chosen such that the
heat flux characteristics can be unambiguously expressed in terms of
this parameter. This approach was used by Amit et al. (2020) who
analyzed the dependence of the heat flux characteristics on two diag-
nostic parameters: the local convective Rossby number, 𝑅𝑜𝑙𝑜𝑐 , and the
transitional Rayleigh number, 𝑅𝑇 (for the definitions, see Eqs. (15) and
(16) in Amit et al. (2020)).

The purpose of this paper is to clarify the discrepancy between the
results of Soderlund (2019) and Amit et al. (2020) and to estimate
the distribution of the heat flux coming from Titan’s subsurface ocean.
To resolve this issue we perform a series of numerical simulations in
3d spherical geometry in which we vary Rayleigh, Ekman and Prandtl
numbers (Prandtl number, 𝑃𝑟, is the ratio of momentum diffusivity to
thermal diffusivity) and change the mechanical boundary conditions.
The results of these simulations are interpreted in terms of different
diagnostic parameters and used to estimate the Rayleigh number of
Titan’s ocean. In particular, we attempt to answer the following two
questions: (i) What is the most appropriate parameter for the clas-
sification of cooling patterns in convective systems weakly affected
by rotation? (ii) How much is the extrapolation of the numerical
models affected by the choice of the mechanical boundary condition?
Answering these questions is essential for understanding the heat trans-
fer in subsurface oceans of icy moons and the role it plays in the
thermo-mechanical evolution of the ice crust.

2. Control and diagnostic parameters

The heat and mass transfer in the ocean is controlled by three
dimensionless parameters: the Rayleigh, Ekman and Prandtl numbers
(see Appendix A for details). The values of the control parameters
appropriate to Titan’s ocean are given in the third column of Table 1.
While the Ekman and Prandtl numbers can easily be calculated using
the formulas in Table 1, the accurate determination of the Rayleigh
number is difficult since we do not know the superadiabatic tem-
perature contrast 𝛥𝑇 in the subsurface ocean. This problem can be
circumvented by using the total heat flow in combination with a scaling
law that relates the control parameters to the Nusselt number (the ratio

of total to conductive heat transfer across the ocean). The issue of
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Table 1
Parameters controlling heat and mass transfer in the ocean. Here, 𝛼 denotes the thermal
xpansivity, 𝑔𝑜 is the gravitational acceleration at the outer boundary, 𝛥𝑇 is the

superadiabatic temperature contrast between the boundaries, 𝐷 is the thickness of the
cean, 𝜅 is the thermal diffusivity, 𝜈 is the kinematic viscosity, and 𝛺 is the rate of

rotation. The values of 𝑅𝑎 and 𝐸𝑘 in the third column correspond to Titan where the
thickness of the ocean is estimated to be between 100 and 500 km (see Table B.3).
The scaling used to determine the Rayleigh number is discussed in Appendix B.

Parameter Definition Value on Titan This study

Rayleigh number (𝑅𝑎) 𝛼𝑔𝑜𝛥𝑇𝐷3∕(𝜅𝜈) 4 ⋅ 1019 − 9 ⋅ 1021 2.1 ⋅ 106–3.8 ⋅ 107
Ekman number (𝐸𝑘) 𝜈∕(𝛺𝐷2) 1 ⋅ 10−12–4 ⋅ 10−11 10−5–10−3
Prandtl number (𝑃𝑟) 𝜈∕𝜅 10 1–10

determining the Rayleigh number from the total heat flow is discussed
in Appendix B.

The Prandtl number in Table 1 is defined as the ratio of kinematic
viscosity 𝜈 to thermal diffusivity 𝜅, where both 𝜈 and 𝜅 are considered
o be material constants. However, in a number of studies, includ-
ng Soderlund (2019) and Amit et al. (2020), 𝑃𝑟 is identified with
he turbulent Prandtl number and its value is set to 1. This choice is
sually justified by the fact that momentum transfer and heat transfer
re not independent because they both depend on the same turbulent
ddies (the principle known as the Reynolds analogy). In order to
etermine the sensitivity of the heat flux pattern to the Prandtl number,
e consider three values: 𝑃𝑟 = 1 (turbulent value), 3 and 10 (molecular
alue).

One of the goals of this paper is to estimate the latitudinal variations
f the heat flux at the outer boundary of Titan’s ocean. The heat flux
ariations can be characterized by two parameters (Amit et al., 2020).
he first one is the latitudinal position of the heat flux maximum. Based
n the position of this maximum, convection models can be subdivided
nto two end-member types — the equatorial cooling models where
he heat transfer is maximum near the equator, and the polar cooling
odels where the maximum heat transfer occurs at high latitudes. The

ooling pattern can be quantified by the ratio

ℎ∕𝑙 =
⟨𝑞⟩ℎ − ⟨𝑞⟩𝑙

⟨𝑞⟩ℎ + ⟨𝑞⟩𝑙
, (1)

where ⟨𝑞⟩ℎ is the average heat flux at high latitudes (𝜃 > 𝜃𝑡𝑐), ⟨𝑞⟩𝑙 is
the average heat flux at low latitudes (𝜃 < 𝜃𝑡𝑐), and 𝜃𝑡𝑐 = arccos(𝑟𝑖∕𝑟𝑜)
(for more details, see Eqs. (11)–(13) in Amit et al. (2020)). The value
of 𝑞ℎ∕𝑙 is positive for polar cooling and negative for equatorial cooling.
The second parameter is the magnitude of the heat flux anomaly (Olson
and Christensen, 2002), defined as the peak-to-peak amplitude of the
zonally averaged heat flux, 𝑞𝑧, divided by twice the mean heat flux, 𝑞,

𝑞∗ =
𝑞𝑧𝑚𝑎𝑥 − 𝑞𝑧𝑚𝑖𝑛

2𝑞
. (2)

In order to answer the question of how the heat flux pattern depends
on the thermal regime of the ocean, we need to know the criteria
that separate the thermal regimes from each other. The transition to
the non-rotating regime can be characterized by the convective Rossby
number, 𝑅𝑜𝑐 (Gilman, 1977), which is defined as the large scale ratio
of the Coriolis force to the buoyancy force (Table 2). The convective
Rossby number is a suitable measure for comparing weakly rotating
systems but it fails as a diagnostic of the transition to the rapidly rotat-
ing regime which occurs at 𝑅𝑜𝑐 ≪ 1. According to King et al. (2010),
this transition is controlled by the competition between the viscous
and thermal boundary layers which occurs at 𝑅𝑎𝐸𝑘7∕4 ≈ 1 (hereafter
denoted by 𝑅𝐾 , see Table 2). A similar condition (𝑅𝑎𝐸𝑘12∕7 ∼ 1 − 100,
𝐺 in Table 2) was obtained by Gastine et al. (2016) who analyzed
ore than 200 models covering a broad parameter range with 𝐸𝑘 and
𝑎 spanning seven orders of magnitude (see also Eq. (24) in Julien et al.

2012b)). The parameter 𝑅𝐺 may also serve as an alternative to the
onvective Rossby number. As demonstrated by Gastine et al. (2016,
ig. 16b), the Nusselt number (i.e., the total heat flow) is not affected
3

y rotation when 𝑅𝐺 ≳ 100. The last diagnostic parameter in Table 2 is
he local convective Rossby number, which controls the breakdown of
eostrophic balance in the thermal boundary layer (Julien et al., 2012a;
astine et al., 2016).

. Results of numerical simulations

We investigate thermal convection in a subsurface ocean using the
avier–Stokes–Boussinesq model. The basic equations and the numer-

cal method are described in Appendix A. The computational domain
s a spherical shell of inner radius 𝑟𝑖 and outer radius 𝑟𝑜. The radius

ratio 𝑟𝑖∕𝑟𝑜 is set to 0.8 in all simulations. Convection is driven by a
fixed temperature contrast between the inner and outer boundary and
the gravity acceleration is proportional to 𝑟−2. All models presented in
this section have free-slip boundaries. The results obtained for models
with no-slip boundary conditions are discussed in Section 4. The full
list of the models explored in this study and the resulting values of 𝑁𝑢,
𝑅𝑒 (Reynolds number), 𝑞∗ and 𝑞ℎ∕𝑙 are given in Tables C.4 and C.5 in
Appendix C.

Fig. 1 shows the heat flux characteristics 𝑞∗ and 𝑞ℎ∕𝑙 introduced in
Section 2 as a function of diagnostic parameters 𝑅𝑜𝑐 , 𝑅𝑜𝑙𝑜𝑐 , 𝑅𝐾 and
𝑅𝐺. The results obtained for 𝑃𝑟 = 1, 3 and 10 are plotted in blue,
red and green, respectively. Inspection of the figure reveals that the
time-averaged heat flux at the surface of the ocean strongly depends
on the Prandtl number, which has been overlooked in previous studies
(note that both Soderlund (2019) and Amit et al. (2020) use 𝑃𝑟 = 1).
The Prandtl number can influence not only the amplitude of the heat
flux variations (panels a,c,e,g) but also the position of the global heat
flux maximum (panels b,d,f,h). For example, for 𝑅𝐾 = 1 (Fig. 1f), the
model with 𝑃𝑟 = 10 predicts enhanced polar cooling (𝑞ℎ∕𝑙 ≈ 0.4) while
the models with 𝑃𝑟 = 1 and 3 predict equatorial cooling (𝑞ℎ∕𝑙 ≲ −0.4).

Note that unlike the definitions of 𝑅𝑜𝑐 and 𝑅𝑜𝑙𝑜𝑐 , where the Prandtl
number appears in the denominator (Table 2), the definitions of 𝑅𝐾
and 𝑅𝐺 assume that the transition from the rapidly rotating to the non-
rotating regime does not depend on the Prandtl number. Motivated by
the fact that the buoyancy force in the momentum equation is scaled
by 𝑅𝑎∕𝑃𝑟 (see Eq. (A.1)), we introduce the modified dimensionless
numbers 𝑅∗

𝐾 and 𝑅∗
𝐺,

𝑅∗
𝐾 = 𝑅𝐾∕𝑃𝑟, 𝑅∗

𝐺 = 𝑅𝐺∕𝑃𝑟 , (3)

with the aim to minimize the scatter of the results. As shown in Fig. 2,
the classification of the heat flux pattern in terms of 𝑅∗

𝐾 and 𝑅∗
𝐺 is

independent of the value of 𝑃𝑟, meaning that all models with the same
𝑅∗
𝐾 or 𝑅∗

𝐺 show either polar cooling or equatorial cooling, depending
on the sign of 𝑞ℎ∕𝑙. The graphs obtained for 𝑅∗

𝐾 and 𝑅∗
𝐺 are almost the

same, which is not surprising given the similar definitions of 𝑅𝐾 and
𝑅𝐺. In the following, we will use 𝑅∗

𝐺 which is based on simulations with
𝑔 ∝ 𝑟−2 and 𝑟𝑖∕𝑟𝑜 = 0.6 (Gastine et al., 2016), while 𝑅𝐾 was numerically
studied for an electrically conducting fluid, 𝑔 ∝ 𝑟 and 𝑟𝑖∕𝑟𝑜 = 0.35 −
0.4 (King et al., 2010), i.e. for the parameters corresponding to the
Earth’s core rather than a subsurface ocean.

Inspection of Fig. 2b shows that the graph of 𝑞ℎ∕𝑙 intersects the
horizontal axis at two points corresponding to a transition from equa-
torial to polar cooling (at 𝑅∗

𝐺 ≈ 1) and from polar to equatorial cooling
(at 𝑅∗

𝐺 ≈ 10). The first transition represents a change from strong
equatorial cooling at 𝑅∗

𝐺 ≲ 0.1, where 𝑞ℎ∕𝑙<−0.4 and 𝑞∗>1, to moderate
to strong polar cooling at 𝑅∗

𝐺 ≳ 1, where 𝑞ℎ∕𝑙=0.1−0.4 and 𝑞∗=0.3−0.6.
The transition is likely to be related to changes in the boundary layers,
namely to the breakdown of the geostrophic turbulence followed by
a regime of ‘‘unbalanced boundary layers’’ (Cheng et al., 2018). This
interpretation is consistent with theoretical and experimental studies
which show that this type of transition is described by the scaling law
𝑅𝑎 ∝ 𝐸𝑘−1.80 −𝐸𝑘−1.65 (Julien et al., 2012b; Ecke and Niemela, 2014).

The second transition (at 𝑅∗
𝐺 ≈ 10) is less pronounced than the first

one and is not accompanied by a significant change in 𝑞∗. As we will
∗
show later (Fig. 4), the heat flux pattern obtained for 𝑅𝐺 ≈ 10 has a
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Table 2
Diagnostic parameters used in this study. The values in the third column are obtained using the scaling described in Appendix
B. For a detailed discussion of different diagnostic parameters, see Soderlund (2019).
Parameter Definition Value on Titan This study

Convective Rossby number (𝑅𝑜𝑐 ) (𝑅𝑎𝐸𝑘2∕𝑃𝑟)1∕2 0.04–0.1 0.05–2.2
𝑅𝐺 𝑅𝑎𝐸𝑘12∕7 40–100 0.5–150
𝑅𝐾 𝑅𝑎𝐸𝑘7∕4 13–42 0.4–120
Local convective Rossby number (𝑅𝑜𝑙𝑜𝑐 ) 𝑅𝑎𝐸𝑘8∕5∕𝑃𝑟3∕5 185–380 0.4–150
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strong degree 4 zonal component and the transition does not represent
a qualitative change in heat flux structure but rather a competition
between the polar and equatorial maxima. The changes in the heat
flux pattern are likely to be associated with the decreasing influence
of rotation on a global scale and are not necessarily related to the
processes in the boundary layers.

The values of 𝑅∗
𝐺 for which 𝑞ℎ∕𝑙 = 0 are the same for different

values of 𝐸𝑘 and 𝑃𝑟, suggesting that the transitions between polar and
equatorial cooling depend only on the diagnostic parameter 𝑅∗

𝐺 and
do not depend on the specific choice of control parameters. Note that
parameters 𝑅𝑜𝑐 and 𝑅𝑜𝑙𝑜𝑐 predict the same transitions (Fig. 1b,d) but
the position of the transition points depends on the Ekman number. For
example, in the case of 𝑅𝑜𝑐 (Fig. 1b), the transition from equatorial
o polar cooling occurs at 𝑅𝑜𝑐 = 0.34 for 𝐸𝑘 = 5 ⋅ 10−4 (squares),
t 𝑅𝑜𝑐 = 0.27 for 𝐸𝑘 = 10−4 (circles) and at 𝑅𝑜𝑐 = 0.19 for
𝑘 = 10−5 (triangles). We can see that the value of 𝑅𝑜𝑐 at which

he transition occurs decreases with decreasing 𝐸𝑘, suggesting that
he transition value of 𝑅𝑜𝑐 will be smaller than 0.1 for 𝐸𝑘 relevant
o Titan’s ocean (Tables 1 and 2). An opposite trend is found for
𝑜𝑙𝑜𝑐 where the transition value increases as the Ekman number is
ecreased (compare the blue circles and triangles in Fig. 1d). This
uggests that to characterize the transition from equatorial to polar
ooling the diagnostic parameter must be proportional to 𝑅𝑎𝐸𝑘𝛼 where
is between 1.6 (corresponding to 𝑅𝑜𝑙𝑜𝑐) and 2 (corresponding to 𝑅𝑜𝑐).

These constraints are compatible with the theoretical (𝛼 = 1.67) and
experimental (𝛼 ∈ ⟨1.65, 1.80⟩) results mentioned above and indicate
that 𝑅∗

𝐺 (𝛼 = 1.71) is a relevant parameter to assess the heat flux pattern
in Titan’s ocean.

While both 𝑅𝑜𝑐 and 𝑅𝑜𝑙𝑜𝑐 fail to describe the first transition in a
coherent way, the second transition can be equally well described by
two conditions: 𝑅∗

𝐺 = 10 and 𝑅𝑜𝑐 = 1 (see Fig. 1b). In Fig. 3, the
transitions derived in this study are plotted in the parameter space
with the 𝑥 and 𝑦 axis representing the influence of rotation (𝐸𝑘) and
the modified supercriticality of the Rayleigh number (𝑅𝑎𝐸𝑘4∕3∕𝑃𝑟),
respectively (cf. Fig. 10 in Amit et al. (2020)). We can see that the
values of the parameters relevant to Titan (indicated in red) lie between
the lines 𝑅∗

𝐺 = 1 and 𝑅∗
𝐺 = 10 suggesting that Titan’s ocean is in

the polar cooling mode. This conclusion is consistent with the analysis
based on the convective Rossby number, although as discussed above,
this parameter is not suitable for the classification of the heat flux
pattern as the lower bound of the interval in which the ocean is in the
polar cooling mode depends on the Ekman number. Three black dashed
lines in the middle of Fig. 3 show the lower bounds of 𝑅𝑜𝑐 obtained for
𝐸𝑘 between 10−5 and 5 ⋅10−4. The dependence of the transitional value
f 𝑅𝑜𝑐 on 𝐸𝑘 can be estimated by considering that 𝑅𝑜𝑐 = 𝑅∗

𝐺
1∕2𝐸𝑘1∕7

see Table 2 and Eq. (3)). Since the transition from equatorial to polar
ooling occurs at 𝑅∗

𝐺 ≈ 1 and this condition is independent of the choice
f 𝐸𝑘, the transitional value of 𝑅𝑜𝑐 is approximately equal to 𝐸𝑘1∕7,
mplying that for realistic values of the Ekman number (𝐸𝑘 < 10−10),

the transitional value of the Rossby number is smaller than 0.04.
Fig. 4 shows the zonally averaged heat flux at the upper boundary

of the ocean plotted as a function of the latitude. The curves are
computed for three different values of 𝑃𝑟 and different combinations of
parameters 𝑅𝑎 and 𝐸𝑘, corresponding to 𝑅∗

𝐺 between about 0.25 and
15. The heat transfer in the ocean is illustrated in Figs. 5 and 6 where
we show the mean temperature and velocity fields for the models with
𝑃𝑟 = 1 and 10, respectively. We will first discuss Figs. 4 and 5 and then
compare Figs. 5 and 6.
4

The heat flux distribution obtained for 𝑅∗
𝐺 < 0.5 (Fig. 4a,b) is

haracterized by a strong degree 2 component and a pronounced
quatorial cooling. The flow (Fig. 5a,b) is organized by the Coriolis
orce into narrow structures (Taylor columns) that are parallel to the
otation axis. The Reynolds stresses transfer the angular momentum
f the cylindrical flow towards the equatorial region close to the
uter boundary, giving rise to a prograde equatorial flow (Christensen,
002) which tends to homogenize the temperature of the ocean near
he equator (Guervilly and Cardin, 2017). The concentration of warm
ater outside the tangent cylinder (the cylinder of radius 𝑟𝑖 whose
xis is identical with the rotation axis) then leads to an efficient heat
ransfer at low latitudes. The cold region within the tangent cylinder
s characterized by a stable thermal structure impeding the convective
luid motion (Olson et al., 1999).

As 𝑅∗
𝐺 increases, the magnitude of the heat flux in the equatorial

egion decreases, which is accompanied by an increase in heat transfer
t high latitudes (Fig. 4c–e). During the transition from the equatorial
o polar cooling, the models show a complex heat flux pattern, with
ronounced peaks at mid-latitudes (Fig. 4d), implying a strong degree
component. The change in the heat flux pattern is a consequence of

he increasing influence of inertial and buoyancy forces (Fig. 5c–e). The
ylindrical flow structures gradually break down and the convective
eat transfer at high latitudes starts to play a dominant role. The heat
ransfer inside the tangent cylinder at mid-latitudes is enhanced by
he convective heating of waters near the surface while the prograde
onal flow inhibits the convective transfer of heat in the equatorial
egion (Yadav et al., 2016).

The maximum polar cooling is obtained when 𝑅∗
𝐺 = 2−6 (Fig. 4f,g).

he columnar flow induced by the Coriolis force has disappeared and
he Reynolds stress is too weak to drive the prograde zonal flow
Fig. 5f,g). Homogenization of angular momentum (Aurnou et al.,
007) leads to the reversal of the equatorial zonal flow from prograde
Fig. 5f) to retrograde (Fig. 5g) and the increase in the magnitude
f zonal flow velocity inside the tangent cylinder. The mean vertical
elocity in the equatorial region is close to zero. However, this finding
hould be interpreted with caution since turbulent heat transfer due
o non-axisymmetric, instantaneous radial velocities may still be sig-
ificant (Soderlund et al., 2013), as indicated by the local increase in
eat flux near the equator. The efficiency of convective heat transfer
ncreases at high latitudes where the effect of rotation on the flow
s smaller than in the equatorial region (Guervilly and Cardin, 2017),
hough not negligible (note that the mean radial velocities still exhibit
significant amount of axial alignment).

The transition at 𝑅∗
𝐺 = 10 is accompanied by an increase of the

eat transfer efficiency near the equator and a return to the equatorial
ooling (Fig. 4h,i). The heat flux is dominated by zonal degree 2 and 4
erms, with peaks at the poles and the equator and two minima at mid-
atitudes. The amplitude of the heat flux variations decreases and the
attern becomes less sensitive to changes in 𝑅∗

𝐺. The equatorial region
s characterized by strong retrograde flow and Hadley-like meridional
irculation (Soderlund, 2019), with warm water rising near the equator
nd cold water sinking at ‘‘subtropical’’ latitudes (Fig. 5h,i). At 𝑅∗

𝐺 ≈
6, the flows inside the tangent cylinder have no preferred spatial
rientation, indicating that the effect of rotation on the convection is
egligible. When 𝑅∗

𝐺 ≫ 10 the influence of rotation becomes negligible
nd the normalized heat flux is close to 1 (not shown here, but see
ig. 3a in Soderlund (2019)).
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Fig. 1. Heat flux characteristics 𝑞∗ and 𝑞ℎ∕𝑙 plotted as a function of different diagnostic parameters. The dashed lines mark the transition from equatorial (𝑞ℎ∕𝑙 < 0) to polar
𝑞ℎ∕𝑙 > 0) cooling. For the definition of parameters 𝑅𝑜𝑐 , 𝑅𝑜𝑙𝑜𝑐 , 𝑅𝐾 and 𝑅𝐺 , see Table 2.
b
w
(

As discussed in connection with Figs. 1 and 2, the models with
ifferent Prandtl numbers give rather different values of 𝑞∗, especially
or 𝑅∗

𝐺 between 1 and 10. Comparison of the curves in Fig. 4 shows that
n most cases an increase in 𝑃𝑟 causes a decrease in the amplitude of the
eat flux peaks but only weakly affects the shape of the variations. The
5

f

iggest difference is found for 𝑅∗
𝐺 between 1 and 3 where the models

ith 𝑃𝑟 = 10 show a pronounced local maximum near the equator
Fig. 4d–f).

An increase in 𝑃𝑟 generally leads to an enhancement of viscous
orces and a reduction of turbulence (due to reduction of inertia forces).
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Fig. 2. Heat flux characteristics 𝑞∗ and 𝑞ℎ∕𝑙 plotted as a function of modified diagnostic parameters 𝑅∗
𝐾 = 𝑅𝐾∕𝑃𝑟 and 𝑅∗

𝐺 = 𝑅𝐺∕𝑃𝑟. The symbols are the same as in Fig. 1. The
ashed lines in panels b and d mark the transition from equatorial (𝑞ℎ∕𝑙 < 0) to polar (𝑞ℎ∕𝑙 > 0) cooling.
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Fig. 3. Boundaries between the areas of polar and equatorial cooling plotted as
a function of parameters 𝐸𝑘 (decreasing from left to right) and 𝑅𝑎𝐸𝑘4∕3∕𝑃𝑟. The
boundaries are shown for two diagnostic parameters: the modified transition number
𝑅∗

𝐺 (preferred solution) and the convective Rossby number 𝑅𝑜𝑐 . The parameters relevant
to Titan’s ocean (the red area in the graph on the right) lie between the lines 𝑅∗

𝐺 = 1
and 𝑅∗

𝐺 = 10 (full lines), suggesting that Titan’s ocean is in the polar cooling mode
(𝑞ℎ∕𝑙 > 0). The dashed lines show the transitions obtained from the analysis of the
onvective Rossby number. While the upper bound of the interval in which 𝑞ℎ∕𝑙 > 0

is uniquely defined by 𝑅𝑜𝑐 = 1, the lower bound decreases as the Ekman number is
decreased. The three dashed lines in the middle of the figure correspond to (from left
to right) 𝐸𝑘 = 5 ⋅ 10−4, 10−4 and 10−5. For the ocean to be in the polar cooling mode,
𝑅𝑜𝑐 must be smaller than 0.04 when 𝐸𝑘 ≲ 10−10. The symbols on the left side of the
graph represent the numerical simulation (see Fig. 1 for the legend).

As a consequence, low 𝑃𝑟 fluids produce more vigorous convection
(higher Reynolds numbers), but lower heat transfer rates (lower Nusselt
numbers) than moderate 𝑃𝑟 fluids (for a review, see King and Aurnou
(2013)). Inspection of Figs. 5 and 6 shows that the models with 𝑃𝑟 = 10
follow the same trends as those with 𝑃𝑟 = 1, but also reveals significant
differences in the magnitude and spatial distribution of temperature
and flow velocities. A full understanding of these differences would
6

o

require a comprehensive analysis of the results which is beyond the
scope of this study.

4. Role of boundary conditions

As mentioned in the introduction, Soderlund (2019) and Amit et al.
(2020) differ in their conclusions regarding Titan’s cooling pattern.
While the former study suggests weak equatorial cooling, the results
of the latter study are consistent with enhanced polar cooling. This dis-
crepancy may be related to differences in boundary conditions: Unlike
the study by Soderlund (2019), which investigates models with free-slip
boundaries, the simulations by Amit et al. (2020) are performed with
no-slip boundary conditions. It has been predicted that the thickness
of the Ekman layer goes to zero for low Ekman numbers (Zhang and
Jones, 1993), implying that the free-slip and no-slip models should give
similar heat flux patterns for realistic values of 𝐸𝑘 (∼ 10−12 − 10−11).

owever, such values can hardly be reached by the present-day nu-
erical simulations because of insufficient computing power. Although
o-slip is the proper boundary condition for a viscous fluid at a rigid
oundary, computationally feasible no-slip models may overestimate
iscous effects (Kuang and Bloxham, 1997), resulting in a heat flux
attern that is different from that obtained for models with free-slip
oundaries.

In Fig. 7, we compare the results obtained for models with no-
lip (black) and free-slip (blue) boundary conditions. The models are
omputed for 𝑃𝑟 = 1, i.e. the same as in the studies by Soderlund
2019) and Amit et al. (2020). The heat flux characteristics 𝑞∗ and 𝑞ℎ∕𝑙

re plotted as a function of the parameter 𝑅∗
𝐺 but the same conclusions

an be drawn for the convective Rossby number, 𝑅𝑜𝑐 . Inspection of the
igure shows that the two types of models give similar results for 𝑅∗

𝐺 ≲
.7, but they predict significantly different heat flux characteristics for
∗
𝐺 > 1. While the no-slip models show the transition from equatorial

o polar cooling with increasing 𝑅∗
𝐺, the free-slip models show a more

omplex trend, suggesting the existence of a distinct cooling pattern in
he transitional regime (1 < 𝑅∗

𝐺 < 10) manifested by an increase in heat
lux at 𝑅∗

𝐺 ≈ 2.
Fig. 8 shows the zonally averaged heat flux at the upper boundary
f the ocean plotted as a function of the latitude for six different values
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Fig. 4. Time and zonally averaged heat flux at the upper boundary of the ocean plotted as a function of the latitude for different values of 𝑅∗
𝐺 . The blue, red and green curves

correspond to 𝑃𝑟 = 1, 3 and 10, respectively. The heat flux is normalized such that the total heat flux is 1. The values of parameters 𝑅𝑎 and 𝐸𝑘 corresponding to the individual
curves can be found in Table C.5. Note that the plots have different vertical scales. Time averaging is performed over at least 0.02 viscous diffusion times. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
of 𝑅∗
𝐺. The heat flux in models with small 𝑅∗

𝐺 (Fig. 8a) is characterized
by a strong degree 2 component and a pronounced equatorial cooling.
As 𝑅∗

𝐺 increases, the magnitude of the heat flux in the equatorial
region decreases, which is accompanied by an increase in convective
heat transfer at high latitudes (Fig. 8b). During the transition from the
equatorial to polar cooling, the no-slip models retain some resemblance
to the fast-rotating models (note the broad heat flux maximum at the
equator), in contrast to the free-slip models which show a more com-
plex heat flux pattern, with two pronounced peaks at mid-latitudes. The
polar cooling reaches a maximum at 𝑅∗

𝐺 ≈ 2 for both the free-slip and
no-slip models (Fig. 8c,d). However, while the heat flux curve obtained
for the free-slip boundary condition shows a significant decrease near
the equator and two pronounced maxima at the poles, and therefore
corresponds to the spherical harmonics 𝑌20, the heat flux in the no-slip
model is dominated by a degree 4 pattern, with a local maximum at
the equator and two minima at mid-latitudes. As 𝑅∗

𝐺 further increases
(Fig. 8e), the polar cooling becomes less efficient. In the case of the no-
slip boundary condition, the shape of the heat flux curve remains the
same as in the polar cooling mode shown in Fig. 8d, but the amplitude
of the heat flux variations decreases. In contrast, the decrease of polar
amplitudes in the free-slip models is accompanied by an increase of the
heat transfer efficiency near the equator and a return to the equatorial
cooling (Fig. 8f).

Our results suggest that the discrepancy between the conclusions
7

of Soderlund (2019) and Amit et al. (2020) is related to the different
boundary conditions. Based on the numerical simulations with free-
slip boundary conditions corresponding to 𝑅∗

𝐺 between 2.5 and 490,
Soderlund (2019) predicts the transition from equatorial to polar cool-
ing with increasing influence of rotation (i.e. with decreasing 𝑅∗

𝐺, see
Fig. 3 therein). This is in good agreement with the results obtained in
our study and shown in panels d–h of Fig. 8 (note that 𝑅∗

𝐺 in Fig. 3
in Soderlund (2019) decreases from left to right). However, Soderlund
(2019) fails to identify the transition from polar to equatorial cooling
which occurs at 𝑅∗

𝐺 ≈ 1, because this value is outside the range of tested
parameters. The existence of this transition was demonstrated by Amit
et al. (2020) who performed numerical simulations with no-slip bound-
ary conditions for 𝑅∗

𝐺 ranging from 0.4 to 45 (see Fig. 7 therein). Our
results confirm the general trend predicted for no-slip models by Amit
et al. (2020), namely the transition from equatorial to polar cooling
with increasing 𝑅∗

𝐺, but give slightly different heat flux curves. This
discrepancy may be related to the different lateral resolutions of the
models or to the differences in gravitational acceleration (𝑔 ∝ 𝑟 in Amit
et al. (2020) while 𝑔 ∝ 𝑟−2 in the present study).

5. Comparison with Titan’s topography

Fig. 9 shows two end-member models of how the heat flux from
the ocean can influence the shape of the ice shell. The first model
(Fig. 9a) assumes that the ice shell is rigid and the heat is transferred by
conduction. A higher-than-average heat flux from the ocean causes the
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Fig. 5. Temperature and velocity fields averaged over time and longitude. All models are computed for 𝑃𝑟 = 1 and correspond to those shown in Fig. 4 (blue lines). Symbol 𝛿𝑇
denotes the dimensionless temperature variations taken relative to the average temperature profile while 𝑣𝜙 and 𝑣𝑟 are the azimuthal and radial components of the flow velocity,
respectively, given in Rossby number units, 𝑈∕(𝛺𝐷), where 𝑈 is the mean velocity in the ocean. The minimum and maximum values of 𝛿𝑇 , 𝑣𝜙 and 𝑣𝑟 are given on the left-hand
side of each cross section. Red (blue) denotes positive (negative) values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
melting of ice and subsequent thinning of the ice shell. The decrease in
pressure along the ice–water boundary is then compensated by negative
surface topography, in agreement with the Airy compensation model
(Kvorka et al., 2018; Čadek et al., 2019a).

The convection scenario (Fig. 9b) has not yet been investigated
in detail, but its potential importance has been recognized recently
in several studies of early magma oceans (e.g. Labrosse et al., 2018;
Morison et al., 2019; Agrusta et al., 2020). The convecting ice shell
is on average warmer and less viscous than in the conductive case,
which causes that the molten ice in the region of the enhanced heat
flux is continuously replenished by the low viscosity ice flowing from
the interior of the ice shell. The shape of the bottom boundary remains
unchanged and since the temperature of ice above the region of the
enhanced heat flux is on average higher than elsewhere, the model is
characterized by elevated topography, in agreement with the Pratt com-
pensation model. The same heat flux anomaly can therefore produce
either positive or negative topography, depending on which mode of
heat transfer is dominant. The question of whether Titan’s ice shell is
presently convecting or whether heat is transferred only by conduction
is difficult to answer because the parameters controlling the onset of
convection (grain size, thickness of the ice shell, temperature of the
ocean, etc.) are not known with sufficient accuracy. In this section, we
8

address this issue by comparing the results of our numerical simulations
with Titan’s long-wavelength topography.

The map of Titan’s topography referenced to the geoid and ex-
panded to spherical harmonic degree and order 5 is shown in Fig. 10a.
The topography is characterized by depressions near the poles and
several elevated areas at mid-latitudes. A significant portion (53%,
measured by the L2-norm) of the topographic signal is produced by
zonal degree 2 and degree 4 terms (Fig. 10b). The topography is highly
compensated (Durante et al., 2019) and is not significantly affected by
tidal heating in the ice shell (Čadek et al., 2021).

The results presented in Section 3 suggest that the heat flux from
Titan’s ocean is maximum at the poles and its pattern is dominated by
the same harmonic components as the topography (𝓁 = 2 and 4, 𝑚 = 0,
see Fig. 10c). Comparison of panels b and c of Fig. 10 reveals a high
degree of similarity between some of the heat flux models derived in
this study and the equatorially symmetric part of Titan’s topography,
thus supporting the hypothesis that the heat transfer in Titan’s ice shell
occurs by conduction and the latitudinal variations in topography are
caused by uneven heating at the ice–water boundary. The correlation
between the topography and the heat flux is excellent for all models
with 𝑃𝑟 = 10 (plotted in green) and also for models 25 (𝑃𝑟 = 1) and 56
(𝑃𝑟 = 3). Note that models 25 and 79 are almost identical.
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Fig. 6. As in Fig. 5 but for 𝑃𝑟 = 10.
The magnitude of heat flux induced topography depends on the
amplitude and wavelength of the heat flux variations and the viscosity
of ice at the base of the ice shell, which in turn depends on the
temperature of the ocean and the grain size of ice (see Fig. 5 in Kvorka
et al. (2018)). The total heat production of Titan is estimated to be
between 250 and 545 GW (Kalousová and Sotin, 2020), corresponding
to an average heat flux of 3.2 − 6.9mW/m2. The amplitude of the heat
flux variations can be determined from Fig. 2. Taking into account that
𝑅∗
𝐺 = 3−10 on Titan (Table B.3), we get 𝑞∗ = 0.25−0.5, which multiplied

by the average heat flux results in an amplitude of 0.8−3.4mW/m2. For
simplicity, we will assume that the thickness of the ice shell is 100 km
and the temperature of the ocean is 262 K (i.e., equal to the melting
temperature of pure water ice). As shown by Kvorka et al. (2018), the
topographic lows (≲ −300 m) observed in Titan’s polar regions can
be explained by a conductive ice shell model with 10 mm grain size
and a heat flux amplitude of 1mW/m2, or 3 mm grain size and a heat
flux amplitude of 3mW/m2. These values are well within the range of
grain sizes expected on icy moons (Barr and McKinnon, 2007) and are
likely compatible with the assumption of conduction dominated heat
transfer (Běhounková et al., 2013).

Although our model provides a plausible explanation of degree 2
and 4 zonal topography, it cannot account for the longitude dependent
part of the topographic signal or the fact that the topography is more
pronounced in the southern than in the northern hemisphere. It is there-
fore likely that other effects, such as ethane precipitation (Choukroun
9

and Sotin, 2012), climatically controlled erosion (e.g. Moore and Pap-
palardo, 2011) or convection in Titan’s high pressure ice layer (Choblet
et al., 2017a), can also contribute to the development of the long-
wavelength topography, or that some of the topographic features are
of ancient origin.

Our results provide indirect evidence that the heat in Titan’s ice
shell is transferred by conduction. However, it cannot be excluded that
the ice shell is vigorously convecting and the heat flux from the ocean
has little to no effect on the topography. If this is the case then it
is likely that Titan’s surface is shaped by external processes, such as
aeolian and fluvial erosion, methane and ethane precipitation, etc., and
internal processes associated with lateral variations in ice properties,
such as porosity or presence of methane clathrate (Čadek et al., 2021).

6. Conclusions

The evolution of Titan’s ice shell is primarily controlled by the heat
transferred from the core to the surface. The heat produced in the deep
interior is redistributed by ocean circulation, which is modulated by
the Coriolis force, resulting in a latitudinal gradient in heat flux at the
base of the ice shell. The recent studies by Soderlund (2019) and Amit
et al. (2020) agree that the time-averaged heat flux can vary by tens
of percent, but they differ in the predicted distribution of heat flux
anomalies. In the present study, we show that this difference is related
to the different boundary conditions used in the simulations. Although
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Fig. 7. Heat flux characteristics 𝑞∗ and 𝑞ℎ∕𝑙 as a function of the convective Rossby number computed for models with no-slip (black) and free-slip (blue) boundary conditions.
The Prandtl number is set to 1 in all simulations. Circles, squares and diamonds correspond to 𝐸𝑘 = 10−4, 5 ⋅ 10−4 and 10−3, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Time and zonally averaged heat flux at the upper boundary of the ocean plotted as a function of the latitude. The blue and black curves correspond to models with
free-slip and no-slip boundary conditions, respectively. The models are computed for 𝑃𝑟 = 1 and different values of the parameter 𝑅∗

𝐺 , Eq. (3). The values of parameters 𝑅𝑎 and
𝐸𝑘 corresponding to the individual curves can be found in Tables C.4 and C.5. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
the models with free-slip and no-slip boundary conditions are expected
to give similar results for 𝐸𝑘 → 0, they can predict different heat flux
patterns for control parameters that are accessible with current com-
puter power. Since the Ekman number used in numerical simulations
is many orders of magnitude larger than in the real ocean, the no-slip
models tend to overestimate viscous effects and, therefore, their results
should be interpreted with caution.

One of the limitations of previous studies was that they did not
investigate the dependence of the heat flux distribution on the Prandtl
number. We show that even small changes in the Prandtl number can
have a large impact on the magnitude of the heat flux anomaly. The
effect of the Prandtl number is especially pronounced in the transitional
regime where models with 𝑃𝑟 = 1 show significantly stronger polar
cooling than those with 𝑃𝑟 = 10.

In order to determine the heat flux distribution at the upper bound-
ary of Titan’s ocean, we constructed a set of about 80 ocean mod-
els, varying all relevant control parameters (𝑅𝑎,𝐸𝑘, 𝑃 𝑟) by at least
one order of magnitude. The heat flux characteristics of the models
10
were interpreted in terms of the modified transitional number 𝑅∗
𝐺 =

𝑅𝑎𝐸𝑘12∕7𝑃𝑟−1. Depending on the relative importance of rotation, the
heat flux from the ocean is concentrated either near the equator (equa-
torial cooling) or at high latitudes (polar cooling). Our analysis suggests
that equatorial cooling occurs when 𝑅∗

𝐺 < 1 or 𝑅∗
𝐺 > 10 while polar

cooling occurs when 𝑅∗
𝐺 ∈ ⟨1, 10⟩. Based on this result, we predict

that the heat flux on Titan peaks near the poles and is dominated by
zonal degree 2 and 4 terms. The predicted heat flux distribution is nega-
tively correlated with the axisymmetric part of Titan’s long-wavelength
topography, suggesting a coupling between ocean dynamics and the
evolution of the ice shell (Kvorka et al., 2018). It is likely that variations
in the heat flux from the ocean also influence the evolution of other icy
moons (e.g. Soderlund et al., 2014; Čadek et al., 2019b).

The approach developed in this work is applicable to icy moons
where the ocean is underlain by a layer of high-pressure ice, which
guarantees that the temperature at the bottom boundary of the ocean
is constant. This is clearly not the case of Enceladus where the ocean
circulation may be affected by uneven tidal heating in its porous
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Fig. 9. The response of the ice shell to variations in ocean heat flux is controlled by
the viscosity of ice. (a) If the ice shell is rigid and transfers the heat by conduction,
lateral variations in heat flux cause thinning of the shell in regions of high heat
flux and thickening of the shell in regions of low heat flux (Kvorka et al., 2018).
(b) If the viscosity of ice near the base of the ice shell is low and heat transfer
occurs by convection, the shape of the bottom boundary remains essentially unchanged.
The surface topography is smaller than in the conduction case and has the opposite
sign (Kihoulou et al., 2021). We assume that in both cases the surface temperature is
constant, in accordance with the conditions prevailing on Titan.

core (Choblet et al., 2017b), or Europa where the temperature of the
oceanic floor may vary due to magmatic processes in the silicate man-
tle (Běhounková et al., 2021). Throughout the paper, we neglect the
effect of salinity variations on the density of ocean water. As recently
shown by Zeng and Jansen (2021), this effect may be important but
it is difficult to implement due to the lack of knowledge about the
composition of Titan’s ocean. In the case of polar cooling, the presence
of freshwater lenses due to melting in the polar regions could lead to
further increase in heat flux at high latitudes (Lobo et al., 2021).
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Appendix A. Governing equation and numerical method

The models discussed in this paper have been obtained by simul-
taneously solving the Navier–Stokes equation including the Coriolis
force, the transport equation for temperature and the mass conservation
equation for an incompressible fluid. The variables in the equations
are non-dimensionalized using the following scaling parameters: the
thickness of the ocean, 𝐷 = 𝑟𝑜 − 𝑟𝑖, the superadiabatic temperature
contrast, 𝛥𝑇 , and the viscous diffusion time, 𝜏 = 𝐷2∕𝜈, where 𝜈 is the
kinematic viscosity. The governing equations then take the form (cf.
Gastine et al., 2016):

− ∇𝑝′ + ∇2𝒗′ − 𝑅𝑎
𝑃𝑟

𝑇 ′𝑓 (𝑟)𝒆𝑟 −
2
𝐸𝑘

𝒆𝑧 × 𝒗′ = 𝜕𝒗′
𝜕𝑡′

+ 𝒗′ ⋅ ∇𝒗′, (A.1)

𝜕𝑇 ′

𝜕𝑡′
= 1

𝑃𝑟
∇2𝑇 ′ − 𝒗′ ⋅ ∇𝑇 ′, (A.2)

∇ ⋅ 𝒗′ = 0. (A.3)
11

𝜈

Here, 𝑡′ = 𝑡∕𝜏 is the dimensionless time, 𝒗′ = 𝒗(𝜏∕𝐷) is the dimen-
ionless velocity, 𝑇 ′ = (𝑇 − 𝑇𝑜)∕𝛥𝑇 is the dimensionless temperature
with 𝑇𝑜 the temperature at the outer boundary), 𝑝′ = 𝑝(𝜏𝜌∕𝜈) is the
imensionless pressure (with 𝜌 the density), 𝑓 (𝑟) = 𝑟2𝑜∕𝑟

2 is the function
escribing the radial variations of the gravitational acceleration, 𝒆𝑟 is
he radial unit vector, 𝒆𝑧 is the unit vector parallel to the angular
elocity vector, and 𝑅𝑎, 𝐸𝑘 and 𝑃𝑟 are the control parameters defined
n Table 1. Note that 𝐸𝑘 in Table 1 is a factor of two larger than that
sed in Soderlund (2019).

The dimensionless temperature, 𝑇 ′, is fixed to 1 on the inner bound-
ry and to 0 on the outer boundary. Two types of mechanical boundary
onditions are considered: no-slip,
′ = 𝟎, (A.4)

nd free-slip,
′ ⋅ 𝒆𝑟 = 0, 𝝈′ ⋅ 𝒆𝑟 − (𝒆𝑟 ⋅ 𝝈′ ⋅ 𝒆𝑟)𝒆𝑟 = 𝟎, (A.5)

here 𝝈′ is the dimensionless stress.
Eqs. (A.1)–(A.3) are reformulated as a system of first order partial

ifferential equations (i.e., in terms of variables 𝒗′, 𝝈′, 𝑇 ′ and ∇𝑇 ′) and
olved using a pseudo-spectral method based on spherical harmonic
xpansions in angular coordinates and finite differences in radius. The
xpansions are truncated at degree 𝓁𝑚𝑎𝑥 = 120 − 215 and the spher-
cal harmonic coefficients are discretized in 65–97 unevenly spaced
hebyshev points in radius. At each time step, the nonlinear terms are
valuated on an auxiliary grid consisting of 3𝓁𝑚𝑎𝑥∕2+1 Gauss–Legendre
oints in latitude and 3𝓁𝑚𝑎𝑥 + 1 equally spaced points in longitude,
nd transformed back to the spectral domain using the Gauss–Legendre
ntegration method and the fast Fourier transform (Martinec, 1989).
he time derivatives are discretized using a hybrid approach in which
he Crank–Nicolson method is applied to the diffusion terms and an
xplicit second order Adams–Bashforth method is applied to the non-
inear terms and the Coriolis force. The method described above has
een implemented in the Fortran language and tested against the results
f Gastine et al. (2016).

ppendix B. Control parameters relevant to Titan’s ocean

The evaluation of 𝑃𝑟 and 𝐸𝑘 is straightforward because the molec-
lar values of 𝜈 and 𝜅 for water are known and the thickness of the
cean (𝐷) can be estimated from geophysical observations (Table B.3).
he evaluation of the Rayleigh number,

𝑎 =
𝛼𝑔𝑜𝛥𝑇𝐷3

𝜅𝜈
, (B.1)

requires the knowledge of the adiabatic temperature contrast across the
ocean (𝛥𝑇 ). An estimate of 𝛥𝑇 can be derived using the relationship
between the Rayleigh number and the Nusselt number (𝑁𝑢), whose
value can be determined from the heat output of the icy satellite. Using
the scaling laws for two end-members, corresponding to the rapidly
rotating (RR) and non-rotating (NR) heat transfer regimes, Soderlund
(2019) obtained

𝛥𝑇𝑁𝑅 = 7.3
(

𝜈
𝛼𝑔𝑜𝜌𝐶𝑝

)1∕4
𝑞3∕4 , (B.2)

𝛥𝑇𝑅𝑅 = 2.1

(

𝛺4𝜅
𝜌2𝐶2

𝑝 𝜈𝛼3𝑔3𝑜

)1∕5

(𝑞2𝐷)1∕5 , (B.3)

here 𝑞 is the average heat flux. Eqs. (B.2) and (B.3) follow from
he relationships 𝑁𝑢 = 0.07𝑅𝑎1∕3 (Gastine et al., 2015) and 𝑁𝑢 =
.15𝑅𝑎3∕2𝐸𝑘2 (Gastine et al., 2016), respectively. The total heat produc-
ion of Titan and the parameters of its ocean are not fully known (e.g.
ance et al., 2018). In this paper, we assume that 𝐷 ∈ ⟨100, 500⟩ km,
̄ ∈ ⟨3, 7⟩mW/m2 (Kalousová and Sotin, 2020), 𝜌 = 1200 kg m−3,
0 = 1.4 m s−2, 𝛼 = 3.2 ⋅ 10−4 K−1, 𝐶𝑝 = 2800 J kg−1K−1 and diffusivities

−6 2 −7
and 𝜅 represent material parameters (𝜈 = 1.8 ⋅10 m /s, 𝜅 = 1.8 ⋅10
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Fig. 10. (a) Topography of Titan (i.e., the height measured from the geoid) expanded to spherical harmonic degree and order 5. Topography is computed using the shape model
by Corlies et al. (2017), gravity model by Durante et al. (2019) and the standard formula for the static tidal and centrifugal potentials. The contour interval is 100 m. (b)
Equatorially symmetric and zonally averaged topography of Titan as a function of latitude. (c) Latitudinal variations in the heat flux computed for free-slip models with 𝑅∗

𝐺 ranging
between 3 and 10 (cf. Table B.3). The models with 𝑃𝑟 = 1, 3 and 10 are plotted in blue, red and green, respectively. As in the case of panel b, we only plot the equatorially
symmetric part of the field (𝐶20𝑌20 +𝐶40𝑌40). To facilitate the comparison, topography and heat flux are normalized to 1 and 𝑞𝑧 is plotted with the opposite sign. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. B.11. Square of the convective Rossby number as a function of the modified
Rayleigh number. The data plotted in the figure can be found in Table C.5.

m2/s). Substituting these values into Eqs. (B.1)–(B.2) then gives 𝑅𝑎 ∈
⟨2.5 ⋅ 1019, 1023⟩.

An alternative estimate of 𝑅𝑎 can be obtained using the ‘diffusivity-
free’ scaling proposed for free-slip models by Christensen (2002) and
12
elaborated by Aubert (2005) and Christensen and Aubert (2006). As-
suming that the diffusivities play a minor role in global heat trans-
fer, Christensen and Aubert (2006) introduced a new type of the Nusselt
number that characterizes the advected heat flow:

𝑁𝑢∗ = 1
4𝜋𝑟𝑜𝑟𝑖

𝑄𝑎𝑑𝑣
𝜌𝐶𝑝𝛺𝐷𝛥𝑇

= (𝑁𝑢 − 1)𝐸𝑘∕𝑃𝑟 , (B.4)

where 𝑟𝑜 and 𝑟𝑖 are the outer and inner radii of the ocean, 𝑄𝑎𝑑𝑣 is
the advected heat flow, i.e. the total heat flow 𝑄 corrected for the
conductive heat flow 𝑄𝑐𝑜𝑛𝑑 , and 𝑁𝑢 is the Nusselt number defined as

𝑁𝑢 = 𝑄
𝑄𝑐𝑜𝑛𝑑

= 1
4𝜋𝑟𝑜𝑟𝑖

𝑄𝐷
𝜌𝐶𝑝𝜅𝛥𝑇

. (B.5)

Note that definition (B.5) is slightly different from the definition used
by Soderlund (2019) and Amit et al. (2020), which does not include the
correction for sphericity. Similarly, one can define a modified Rayleigh
number that depends on 𝑄𝑎𝑑𝑣 and does not depend explicitly on 𝛥𝑇 :

𝑅𝑎∗𝑄 = 1
4𝜋𝑟𝑜𝑟𝑖

𝛼𝑔𝑜𝑄𝑎𝑑𝑣

𝜌𝐶𝑝𝛺3𝐷2
= 𝑅𝑎(𝑁𝑢 − 1)𝐸𝑘3∕𝑃𝑟2 . (B.6)

Using an extensive set of simulations, Christensen and Aubert (2006)
showed that the relationship between 𝑁𝑢∗ and 𝑅𝑎∗𝑄 can be approxi-
mated by a simple power-law expression, valid for a broad range of
parameters:

𝑁𝑢∗ = 𝑐 𝑅𝑎∗ 𝛾 , (B.7)
𝑄
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Table B.3
Values of control and diagnostic parameters expected for different thicknesses of Titan’s ocean. The modified Rayleigh number,
𝑅𝑎∗𝑄, and the Rayleigh number, 𝑅𝑎, are obtained from Eqs. (B.6) and (B.9), respectively, where 𝑄𝑎𝑑𝑣 = 250−545 GW (Kalousová
and Sotin, 2020), 𝑟𝑜 = 2500 km and 𝑟𝑖 = 𝑟𝑜 −𝐷. The remaining parameters are calculated using the definitions given in Tables
Tables 1 and 2 and Eq. (3).
Parameter Realistic range

𝐷 [km] 100 200 300 400 500
𝑅𝑎∗𝑄 (4.5–9.9)⋅10−7 (1.2–2.6)⋅10−7 (0.6–1.2)⋅10−7 (3.2–7.1)⋅10−8 (2.2–4.8)⋅10−8

𝐸𝑘 3.9⋅10−11 9.8⋅10−12 4.3⋅10−12 2.4⋅10−12 1.6⋅10−12

𝑅𝑎 (4.5–6.8)⋅1019 (3.5–5.4)⋅1020 (1.2–1.8)⋅1021 (2.9–4.4)⋅1021 (5.7–8.6)⋅1021
𝑅𝑜𝑙𝑜𝑐 252–379 217–326 200–302 191–288 185–279
𝑅𝑜𝑐 0.08–0.10 0.06–0.07 0.05–0.06 0.04–0.05 0.04–0.05
𝑅∗

𝐺 6.5–9.8 4.8–7.2 4.0–6.0 3.6–5.4 3.3–5.0
𝑅∗

𝐾 2.8–4.2 1.9–2.9 1.6–2.4 1.4–2.1 1.3–1.9
T
R

where 𝑐 and 𝛾 are parameters which can determined using a regression
analysis. Considering that 𝑅𝑎∗𝑄∕𝑁𝑢∗ = 𝐸𝑘2𝑅𝑎∕𝑃𝑟 = 𝑅𝑜2𝑐 , where 𝑅𝑜𝑐 is
the convective Rossby number (Table 2), Eq. (B.7) can be rewritten as

𝑅𝑜2𝑐 = 𝑏𝑅𝑎∗𝑄
𝛽 , (B.8)

where 𝑏 = 1∕𝑐 and 𝛽 = 1 − 𝛾. Since 𝑅𝑎 = 𝑅𝑜2𝑐𝑃𝑟∕𝐸𝑘2 = 𝑏𝑅𝑎∗𝑄
𝛽𝑃𝑟∕𝐸𝑘2,

we can express the Rayleigh number as follows:

𝑅𝑎 = 𝑏𝛺
2𝐷4

𝜅𝜈

(

1
4𝜋𝑟𝑜𝑟𝑖

𝛼𝑔𝑜𝑄
𝜌𝐶𝑝𝛺3𝐷2

)𝛽

, (B.9)

where we assumed that 𝑄𝑎𝑑𝑣 ≈ 𝑄.
The diffusivity-free scaling, Eq. (B.7), was derived for rapidly ro-

tating dynamos with 𝑟𝑖∕𝑟𝑜 = 0.35 (Christensen and Aubert, 2006).
Therefore it is questionable whether this kind of scaling can be applied
to Titan’s ocean which is only weakly affected by rotation, 𝑟𝑖∕𝑟𝑜 ≳ 0.8
and magnetic effects are negligible. In this paper, we determine the
bounds of 𝑅𝑎 from Eq. (B.9) but with parameters 𝑏 and 𝛽 derived from
our own dataset. We first convert 𝐸𝑘, 𝑅𝑎, 𝑃𝑟 and 𝑁𝑢 in Table C.5 to
𝑅𝑜𝑐 and 𝑅𝑎∗𝑄 and plot the dependence of 𝑅𝑜2𝑐 on 𝑅𝑎∗𝑄 (Fig. B.11) to
verify the validity of Eq. (B.8). Using the least squares method, we then
obtain 𝑏 = 14.73 ± 0.58 and 𝛽 = 0.525 ± 0.004. These values correspond
to 𝑐 = 0.068 and 𝛾 = 0.48, which do not differ much from the values
erived by Christensen and Aubert (2006).

The estimates of 𝑅𝑎 obtained from Eq. (B.9) are presented in
able B.3. The admissible values of 𝑅𝑎 are found within the interval
4.5 ⋅1019, 1022⟩, which lies well within the range of values derived from
qs. (B.2) and (B.3). It has been argued that the diffusion-free scaling
roposed by Christensen and Aubert (2006) is problematic because it is
ased on simulations where dissipation is far from negligible. According
o Cheng and Aurnou (2016), the scaling is likely only valid for the
ystems where 𝑅𝑎 ∼ 𝑅𝑎𝑐𝑟𝑖𝑡, i.e. for the heat transfer occurring very near
o the onset of convection. If this was the case, the use of Eq. (B.9)
n the context of the transitional regime would lead to a significant
nderestimation of the Rayleigh number. The fact that this approach
ives similar values as those obtained independently from Eqs. (B.2)
nd (B.3) indicates that Eq. (B.9), where 𝑏 = 14.73 and 𝛽 = 0.525,
an serve as a useful tool when evaluating the Rayleigh number in
ubsurface oceans of icy moons.

ppendix C. List of simulations

We have performed 83 simulations with free-slip boundary condi-
ions and 32 simulations with no-slip boundary conditions. The basic
haracteristics of the simulations are summarized in Tables C.4 and C.5.
he symbol 𝑅𝑒 denotes the time-averaged convective Reynolds number
for the definition see Eq. (8) in Amit et al. (2020)), 𝓁𝑚𝑎𝑥 is the cut-off
egree and 𝑁𝑟𝑎𝑑 is the number of the Chebyshev points. All simulations
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resented in the paper are available on request.
able C.4
esults of no-slip simulations.
Model No. 𝑁𝑟𝑎𝑑 𝓁𝑚𝑎𝑥 𝑃𝑟 𝐸𝑘 𝑅𝑎 𝑁𝑢 𝑅𝑒 𝑞∗ 𝑞ℎ∕𝑙

1n 97 120 1 1⋅10−4 4.0⋅106 5.97 208.72 0.44 −0.26
2n 97 120 1 1⋅10−4 4.4⋅106 6.28 228.53 0.42 −0.22
3n 97 120 1 1⋅10−4 5.2⋅106 7.14 272.14 0.35 −0.17
4n 97 120 1 1⋅10−4 6.0⋅106 7.90 306.73 0.32 −0.12
5n 97 120 1 1⋅10−4 6.8⋅106 8.75 334.81 0.26 −0.07
6n 97 120 1 1⋅10−4 7.6⋅106 9.52 372.68 0.21 −0.03
7n 97 120 1 1⋅10−4 8.4⋅106 10.26 407.91 0.18 0.01
8n 97 120 1 1⋅10−4 9.1⋅106 10.87 432.71 0.22 0.03
9n 97 130 1 1⋅10−4 1.1⋅107 12.17 493.91 0.24 0.06
10n 97 130 1 1⋅10−4 1.3⋅107 13.31 557.66 0.27 0.08
11n 97 130 1 1⋅10−4 1.4⋅107 13.83 588.17 0.27 0.09
12n 97 130 1 1⋅10−4 1.6⋅107 14.65 650.86 0.26 0.09
13n 97 130 1 1⋅10−4 1.9⋅107 15.74 714.57 0.26 0.10
14n 97 130 1 1⋅10−4 2.2⋅107 16.63 795.72 0.23 0.10
15n 97 130 1 1⋅10−4 2.5⋅107 17.42 866.33 0.23 0.09
16n 97 130 1 1⋅10−4 2.8⋅107 18.15 919.09 0.22 0.08
17n 97 130 1 1⋅10−4 3.3⋅107 19.18 1026.97 0.20 0.08
18n 97 140 1 1⋅10−4 3.8⋅107 20.12 1075.46 0.19 0.07
19n 97 120 1 5⋅10−4 2.1⋅106 9.30 263.15 0.22 0.04
20n 97 120 1 5⋅10−4 2.9⋅106 10.65 317.78 0.19 0.05
21n 97 120 1 5⋅10−4 3.7⋅106 11.70 373.34 0.17 0.04
22n 97 120 1 5⋅10−4 4.4⋅106 12.52 421.91 0.16 0.03
23n 97 130 1 5⋅10−4 5.7⋅106 13.78 486.19 0.13 0.01
24n 97 130 1 5⋅10−4 7.0⋅106 14.92 547.64 0.14 0.00
25n 97 140 1 5⋅10−4 1.1⋅107 17.64 703.41 0.11 −0.02
26n 97 140 1 5⋅10−4 1.3⋅107 18.69 774.82 0.11 −0.03
27n 97 140 1 5⋅10−4 1.8⋅107 20.59 908.05 0.11 −0.04
28n 97 120 1 1⋅10−3 2.3⋅106 11.04 326.09 0.14 0.01
29n 97 120 1 1⋅10−3 3.8⋅106 13.41 430.67 0.10 −0.02
30n 97 120 1 1⋅10−3 4.8⋅106 14.43 485.84 0.11 −0.03
31n 97 120 1 1⋅10−3 6.8⋅106 16.19 590.23 0.10 0.00
32n 97 120 1 1⋅10−3 9.8⋅106 18.20 712.78 0.10 −0.01

Table C.5
Results of free-slip simulations.

Model No. 𝑁𝑟𝑎𝑑 𝓁𝑚𝑎𝑥 𝑃𝑟 𝐸𝑘 𝑅𝑎 𝑁𝑢 𝑅𝑒 𝑞∗ 𝑞ℎ∕𝑙

1 97 215 1 1⋅10−5 1.0⋅108 7.10 1247.33 1.11 −0.32
2 97 215 1 1⋅10−5 1.7⋅108 10.52 2153.53 0.90 −0.24
3 97 215 1 1⋅10−5 2.3⋅108 14.39 2616.59 0.70 −0.19
4 97 215 1 1⋅10−5 2.7⋅108 19.37 2871.43 0.47 −0.07
5 97 215 1 1⋅10−5 3.0⋅108 21.01 3500.73 0.41 0.13
6 97 215 1 1⋅10−5 3.7⋅108 28.97 4178.88 0.36 0.15
7 97 215 1 1⋅10−5 4.5⋅108 39.24 4921.19 0.34 0.21
8 97 120 1 1⋅10−4 4.0⋅106 3.22 360.27 0.59 −0.16
9 97 120 1 1⋅10−4 4.4⋅106 3.60 396.74 0.44 −0.07
10 97 120 1 1⋅10−4 5.2⋅106 3.95 485.07 0.33 0.01
11 97 120 1 1⋅10−4 6.0⋅106 4.71 546.20 0.33 0.05
12 97 120 1 1⋅10−4 6.8⋅106 5.67 606.49 0.41 0.13
13 97 120 1 1⋅10−4 7.6⋅106 6.94 662.77 0.45 0.21
14 97 120 1 1⋅10−4 8.4⋅106 8.58 713.20 0.45 0.29
15 97 120 1 1⋅10−4 9.1⋅106 9.71 758.09 0.60 0.34
16 97 130 1 1⋅10−4 1.1⋅107 11.85 886.62 0.70 0.42
17 97 130 1 1⋅10−4 1.3⋅107 13.89 979.09 0.74 0.41
18 97 130 1 1⋅10−4 1.4⋅107 14.69 1026.22 0.74 0.41

(continued on next page)
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Table C.5 (continued).
Model No. 𝑁𝑟𝑎𝑑 𝓁𝑚𝑎𝑥 𝑃𝑟 𝐸𝑘 𝑅𝑎 𝑁𝑢 𝑅𝑒 𝑞∗ 𝑞ℎ∕𝑙

19 97 130 1 1⋅10−4 1.6⋅107 16.46 1105.56 0.69 0.38
20 97 130 1 1⋅10−4 1.9⋅107 18.78 1207.74 0.67 0.34
21 97 130 1 1⋅10−4 2.2⋅107 21.25 1275.30 0.51 0.31
22 97 130 1 1⋅10−4 2.5⋅107 23.60 1346.26 0.50 0.27
23 97 130 1 1⋅10−4 2.8⋅107 26.22 1382.94 0.40 0.23
24 97 130 1 1⋅10−4 3.3⋅107 29.82 1460.08 0.35 0.22
25 97 140 1 1⋅10−4 3.8⋅107 32.77 1703.00 0.34 0.19
26 97 120 1 5⋅10−4 8.8⋅105 3.36 244.43 0.70 0.39
27 97 120 1 5⋅10−4 9.8⋅105 3.99 256.70 0.65 0.35
28 97 120 1 5⋅10−4 2.1⋅106 9.38 398.56 0.34 0.16
29 97 120 1 5⋅10−4 2.9⋅106 12.77 473.55 0.33 0.14
30 97 120 1 5⋅10−4 3.7⋅106 15.50 534.36 0.29 0.11
31 97 120 1 5⋅10−4 4.4⋅106 18.36 610.20 0.24 0.02
32 97 130 1 5⋅10−4 5.7⋅106 22.10 685.10 0.26 −0.06
33 97 130 1 5⋅10−4 7.0⋅106 24.79 838.93 0.29 −0.09
34 97 140 1 5⋅10−4 1.1⋅107 30.77 1217.00 0.27 −0.11
35 97 140 1 5⋅10−4 1.3⋅107 33.33 1477.21 0.28 −0.12
36 97 140 1 5⋅10−4 1.8⋅107 38.42 1550.83 0.25 −0.13
37 97 120 1 1⋅10−3 2.3⋅106 17.36 471.86 0.25 −0.08
38 97 120 1 1⋅10−3 3.8⋅106 22.52 666.71 0.27 −0.11
39 97 120 1 1⋅10−3 4.8⋅106 25.00 743.68 0.27 −0.12
40 97 120 1 1⋅10−3 6.8⋅106 29.00 879.40 0.24 −0.12
41 97 120 1 1⋅10−3 9.8⋅106 33.65 1063.69 0.19 −0.11
42 69 159 3 1⋅10−4 4.0⋅106 4.22 117.26 1.15 −0.39
43 69 159 3 1⋅10−4 6.0⋅106 5.68 170.70 1.05 −0.38
44 69 159 3 1⋅10−4 6.8⋅106 6.10 202.00 1.03 −0.36
45 69 159 3 1⋅10−4 8.4⋅106 6.79 263.71 0.90 −0.27
46 69 159 3 1⋅10−4 1.1⋅107 7.44 369.99 0.67 −0.08
47 76 159 3 1⋅10−4 1.4⋅107 10.53 383.92 0.65 −0.07
48 76 159 3 1⋅10−4 1.9⋅107 14.55 504.78 0.44 0.13
49 69 159 3 1⋅10−4 2.5⋅107 20.64 609.23 0.50 0.25
50 69 159 3 1⋅10−4 3.3⋅107 28.17 643.68 0.50 0.23
51 69 159 3 5⋅10−4 2.9⋅106 10.96 215.54 0.51 0.20
52 69 159 3 5⋅10−4 3.7⋅106 13.65 244.65 0.50 0.19
53 69 159 3 5⋅10−4 4.4⋅106 16.37 264.39 0.47 0.18
54 69 159 3 5⋅10−4 5.7⋅106 20.24 315.41 0.39 0.13
55 69 159 3 5⋅10−4 7.0⋅106 22.00 330.67 0.36 0.14
56 69 159 3 5⋅10−4 1.1⋅107 30.90 403.92 0.28 0.04
57 64 159 3 1⋅10−3 2.3⋅106 15.41 194.48 0.35 0.13
58 64 147 3 1⋅10−3 3.8⋅106 21.98 243.03 0.26 0.04
59 64 147 3 1⋅10−3 4.8⋅106 25.63 286.39 0.18 0.00
60 64 147 3 1⋅10−3 6.8⋅106 30.93 354.74 0.21 −0.03
61 69 159 10 1⋅10−4 4.0⋅106 5.36 26.56 1.28 −0.46
62 69 159 10 1⋅10−4 6.0⋅106 7.46 35.71 1.26 −0.44
63 69 159 10 1⋅10−4 6.8⋅106 7.96 42.41 1.16 −0.42
64 69 159 10 1⋅10−4 8.4⋅106 9.19 51.25 1.08 −0.41
65 69 159 10 1⋅10−4 1.1⋅107 11.03 70.21 0.99 −0.38
66 69 159 10 1⋅10−4 1.4⋅107 13.09 83.45 0.95 −0.37
67 69 159 10 1⋅10−4 1.9⋅107 16.14 111.02 0.82 −0.31
68 81 159 10 1⋅10−4 2.5⋅107 18.84 175.25 0.70 −0.21
69 69 159 10 1⋅10−4 3.3⋅107 23.47 224.16 0.58 −0.15
70 69 159 10 5⋅10−4 2.1⋅106 10.29 50.27 0.53 −0.13
71 69 159 10 5⋅10−4 2.9⋅106 13.24 57.39 0.45 −0.07
72 69 159 10 5⋅10−4 3.7⋅106 15.39 80.57 0.41 −0.01
73 69 159 10 5⋅10−4 4.4⋅106 17.56 93.56 0.36 0.04
74 65 159 10 5⋅10−4 5.7⋅106 21.24 103.41 0.29 0.07
75 69 159 10 5⋅10−4 7.0⋅106 24.24 116.48 0.33 0.09
76 69 159 10 5⋅10−4 1.1⋅107 30.77 153.27 0.34 0.12
77 65 147 10 1⋅10−3 2.3⋅106 16.13 72.62 0.32 0.08
78 65 159 10 1⋅10−3 3.8⋅106 22.20 90.79 0.34 0.09
79 65 159 10 1⋅10−3 4.8⋅106 25.31 98.39 0.31 0.10
80 65 159 10 1⋅10−3 6.8⋅106 30.39 119.13 0.29 0.08
81 73 186 10 1⋅10−3 1.1⋅107 38.21 339.68 0.23 0.03
82 73 186 10 1⋅10−3 1.6⋅107 46.43 350.49 0.17 0.01
83 73 186 10 1⋅10−3 2.1⋅107 50.43 374.25 0.17 −0.01
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