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S U M M A R Y
A dynamic finite-fault source inversion for stress and frictional parameters of the Mw 6.3
2017 Lesvos earthquake is carried out. The main shock occurred on June 12, offshore the
southeastern coast of the Greek island of Lesvos in the north Aegean Sea. It caused 1 fatality,
15 injuries, and extensive damage to the southern part of the island. Dynamic rupture evolution
is modelled on an elliptic patch, using the linear slip-weakening friction law. The inversion is
posed as a Bayesian problem and the Parallel Tempering Markov Chain Monte Carlo algorithm
is used to obtain posterior probability distributions by updating the prior distribution with
progressively more constraints. To calculate the first posterior distribution, only the constraint
that the model should expand beyond the nucleation patch is used. Then, we add the constraint
that the model should reach a moment magnitude similar to that obtained from our centroid
moment tensor inversion. For the final posterior distribution, 15 acceleration records from
Greek and Turkish strong motion networks at near regional distances (≈ 30–150 km) in the
frequency range of 0.05–0.15 Hz are used. The three posterior distributions are compared to
understand how much each constraint contributes to resolving different quantities. The most
probable values and uncertainties of individual parameters are also calculated, along with
their mutual trade-offs. The features best determined by seismograms in the final posterior
distribution include the position of the nucleation region, the mean direction of rupture (towards
WNW), the mean rupture speed (with 68 per cent of the distribution lying between 1.4 and
2.6 km s–1), radiated energy (12–65 TJ), radiation efficiency (0.09–0.38) and the mean stress
drop (2.2–6.5 MPa).
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1 I N T RO D U C T I O N

Dynamic inversions of earthquake rupture aim at finding parame-
ters governing frictional and stress conditions on a fault. This can
be done in two ways. In the first approach, the stress on the fault is
calculated from the history of slip obtained via kinematic inversion,
and the two fields are then used to estimate parameters of the consti-
tutive law relating slip and friction (e.g. Fukuyama & Mikuno 1993;
Ide & Takeo 1997; Pulido & Irikura 2000; Peyrat et al. 2001; Tinti
et al. 2005; Burjánek & Zahradnı́k 2007). A more recent approach,
used here, is the fully dynamic inversion (e.g. Peyrat & Olsen 2004;
Di Carli et al. 2010; Ruiz & Madariaga 2011, 2013; Dı́az-Mojica
et al. 2014; Twardzik et al. 2014; Herrera et al. 2017; Gallovič et al.
2019a, b; Mirwald et al. 2019; Gallovič et al. 2020). In this approach,
simulations in which the elastodynamic equation is coupled with
the constitutive law are used and the parameters describing the law
and the initial stress on the fault are searched directly. The history

of slip during the rupture is obtained as a by-product and it is guar-
anteed to be consistent with physical laws. Solving a fully dynamic
inversion problem thus solves an associated kinematic inversion
problem. However, dynamic inversions also permit interpretation
of the earthquake properties in terms of physics. This is crucial for
understanding processes of rupture nucleation, propagation and ar-
rest, eventually enabling realistic simulations of near-source ground
motions (e.g. Aochi & Ulrich 2015).

There are several issues with dynamic inversions that complicate
interpretations of their results, and prevent their widespread use.
First, the appropriate form of the constitutive law that describes fric-
tion on geological faults is still a topic of intense research. Widely
applied empirical friction laws have been derived from small-scale
laboratory experiments (Dieterich 1979; Ruina 1983; Ohnaka & Ya-
mashita 1989; Chen & Spiers 2016, etc.), but little is known about
their applicability to the Earth’s crust (see Perfettini et al. 2003;
Marone et al. 2009; Viesca & Garagash 2015, for an extensive
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discussion on the topic). Since the differences between the relevant
laws are negligible at low frequencies and hard to distinguish within
the precision and accuracy of current seismological data, we use the
linear slip-weakening law (Ida 1972), which was introduced to reg-
ularize problems in fracture mechanics. Owing to its simplicity, it
has been used in almost all dynamic inversions published to date.
For an overview of other important friction laws, we refer the reader
to Bizzarri (2011).

Second, just as kinematic inversions, dynamic inversions are
non-unique and it is desirable to describe their uncertainty (Ruiz
& Madariaga 2013; Gallovič et al. 2019a, b). We achieve this by
casting the problem in a probabilistic, Bayesian framework and ex-
pressing the information about model parameters in the form of a
posterior probability density function. This function provides a for-
mal basis for analysing uncertainties of model parameters and their
trade-offs. Another advantage of the Bayesian framework is that it
enables researchers to clearly formulate their prior assumptions (in
the form of the prior probability density function) and to identify
how they affect the resulting inference.

Third, running a fully dynamic rupture simulation (representing
the forward part of the inverse problem) is computationally demand-
ing. Due to the non-linear relationship between model parameters
and data, many such simulations must be run to solve the inverse
problem, even in non-Bayesian methods. That is why the dynamic
rupture solver must be as fast as possible. To achieve this, we use
the highly efficient finite difference code FD3D TSN, which uti-
lizes GPU acceleration and requires approximately 1 s of single
GPU computational time per 1 s of rupture propagation (Premus
et al. 2020). An important strategy for making the inversion fea-
sible is to keep the dimension of the parameter space low. There
have been only a few inversions directly seeking a discretized dis-
tribution of stress and friction on the fault (Fukuyama & Mikumo
1993; Peyrat et al. 2001; Peyrat & Olsen 2004; Corish et al. 2007;
Gallovič et al. 2019a,b, 2020). Instead, simple parametrizations are
typically considered, such as models consisting of one or two el-
liptic subfaults (2011Di Carli et al. 2010; Ruiz & Madariaga 2011,
2013; Dı́az-Mojica et al. 2014; Twardzik et al. 2014; Herrera et al.
2017).

Finally, and most importantly for this study, interpreting the re-
sults of the inversion is difficult because it is not clear which con-
straints are responsible for the appearance of particular features.
For example, anticorrelation between the average slip and the rup-
tured area is likely to be observed in every earthquake with a well-
constrained seismic moment. In contrast, fine geometric and tem-
poral features of the rupture propagation may only be constrained
by using detailed seismic waveforms specific to the earthquake. We
investigate this issue by using progressively more information to
calculate three posterior distributions. For the first posterior distri-
bution, we use only the constraint that the rupture breaks at least 10
per cent of the available area and lasts more than 1 second. This con-
dition removes uninteresting models that produce negligible wave
radiation. For the second distribution, we add information about
the moment magnitude. The resulting distribution will character-
ize models with similar mechanism and magnitude compared to
the one from moment tensor inversion, regardless of the observed
waveforms. For the final posterior distribution, we use both mo-
ment magnitude and waveforms observed at near-regional seismic
stations. Comparing the three posterior distributions allows us to
separate features that are determined by the rupture condition, those
determined by magnitude, and those determined by waveforms.

We apply our method to the Mw 6.3 Lesvos earthquake that oc-
curred on 12 June 2017, 12:28 GMT, offshore the southeastern coast

of the Greek island of Lesvos in the Lesvos Basin, Aegean Sea. Ac-
cording to the Geophysical Institute of the National Observatory of
Athens (GI-NOA), it was a shallow crustal event with a hypocentral
depth of 12.0 ± 1.7 km. The stress state in the area is characterized
as transtensional, with minimum principal stress axis σ 3 oriented
in the NNE-SSW direction (Konstantinou et al. 2017). The earth-
quake likely ruptured the eastern segment of the Lesvos Basin fault,
oriented perpendicular to σ 3, dipping SSW with a normal faulting
mechanism (Kiratzi 2018). We show a map of the epicentral area in
Fig. 1.

Most of the damage caused by the earthquake occurred on the
southern coast of Lesvos. In what has been called the ‘Vrisa para-
dox’ (Papadimitriou et al. 2018), the heaviest structural damage was
observed in the small village of Vrisa about 20 km towards NW from
the main shock epicentre, despite the presence of closer towns and
villages. (e.g. Plomari, Akrasi, Vatera, etc.). One woman in Vrisa
died, and at least 15 people were injured. This has been attributed to
site effects, vulnerable infrastructure (Lekkas et al. 2017), and the
large spatial extent of slip and source directivity. The last two have
been examined by a kinematic inversion of seismic data (Kiratzi
2018), a kinematic inversion of GPS data (Chousianitis & Konca
2018), and an analysis of the aftershock sequence (Papadimitriou
et al. 2018). Both kinematic inversions conclude that the slip was
concentrated in a large patch with unilateral propagation of rupture
from the hypocentre towards the northwest, as also indicated by
centroid position reported shortly after the event at EMSC by Sokos
& Zahradnı́k (2017). Here we use data from local Greek and Turkish
stations to reanalyse the earthquake in a fully dynamic, Bayesian
framework.

2 M E T H O D

2.1 Forward problem

The forward problem consists of a dynamic rupture simulation and
a calculation of synthetic waveforms in a layered isotropic medium.
For the former, we use the Fortran code FD3D TSN (Premus et al.
2020), which uses finite differences on a staggered grid of 4th order
in space and of 2nd order in time. The code solves the elastody-
namic equation in a 3-D box, allowing for discontinuous displace-
ment (slip) on a pre-defined fault. The mechanical conditions on the
fault, which is placed at one of the vertical faces of the box and im-
plemented using the traction-at-split-node approach, are governed
by the linear slip-weakening friction law (Ida 1972). This law relates
shear traction T (x, t) and slip s(x, t) at each point x on the fault
and time t and consists of two parts:

1. The rupture criterion: The slip rate at x is zero until the mag-
nitude of shear traction at that point reaches the strength Tu .

2. Constitutive law: The on-fault traction during slip is a function
of the accumulated slip d(x, t) = ∫t

0 ‖ṡ(x, τ )‖dτ , and the slip-rate
direction:

T (x, t) = − f (d (x, t))
ṡ (x, t)

‖ṡ (x, t)‖ , (1)

where (see Fig. 2a):

f (d) =
{

Tu

(
1 − d

Dc

)
+ Td for 0 ≤ d ≤ Dc

Td for d > Dc

. (2)

Here Dc is the so-called characteristic slip distance and Td is
dynamic friction.
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Figure 1. Map of the epicentral area of the 2017 Mw 6.3 Lesvos earthquake (for wider geographic view, see the inset). Strong-motion stations used for the
dynamic inversion are shown as red triangles. The black rectangle shows the projection of the assumed fault plane used in the inversion. The blue solid line is
the top fault edge at the surface. The blue beachball shows the centroid moment tensor of the Mw 6.3 main shock inferred in this study, while the red beachball
shows the GCMT centroid for the same event. Black dots are the aftershocks within two months after the event, as determined by GI-NOA. The hypocentre
located by GI-NOA is denoted as a blue star. Fault traces from The European Database of Seismogenic Faults (EDSF, Basili et al. 2013) are shown as black
lines. The red lines show inferred and mapped faults from Chatzipetros et al. (2013) and Ganas et al. (2013).

The initial shear traction T i points in the up-dip direction (to rep-
resent normal faulting), approximating the centroid rake direction
of the event (–83◦, see Section 2.5). The direction of traction is not
fixed, but changes only negligibly during the dynamic simulation.
We set Td to zero, as is commonly done in dynamic inversions (e.g.
Ruiz & Madariaga 2011, 2013; Twardzik et al. 2014; Gallovič et al.
2019a, b). Indeed, we have verified that shifting ‖T i‖, Tu, Td and
T f by a fixed value has a negligible effect on the simulation results.

The boundary conditions at the remaining faces of the computa-
tional box consist of a free surface enforced by the stress-imaging
technique (Levander 1988; Graves 1996; Kristek et al. 2002) at the
top face, and perfectly matched layers (Berenger 1994) as absorbing
conditions at the remaining faces. We note that a significant speed-
up in FD3D TSN is achieved by assuming that the fault is vertical.
To partially compensate for neglecting the actual dip of the fault,
we stretch the along-dip positions of the velocity model interfaces,
so that they conform to the actual depths along the fault. Since the
synthetic ruptures do not reach the surface, the error caused by ig-
noring the actual dip in the first stage of the calculation is negligible
(Gallovič et al. 2019b).

As a result of the dynamic rupture simulation, we obtain the
evolution of traction and slip rate at each gridpoint on the fault. The
slip rates are then convolved with Green’s functions pre-calculated
using the Axitra software (Cotton & Coutant 1997). But unlike the
FD3D simulation, we supply Axitra with the centroid dip and rake
to calculate the Green’s functions (see application and validation of
this approach by Gallovič et al. 2019b). The resulting elementary
seismograms are summed over every gridpoint and as a result,
synthetic displacements on specified stations are obtained. As a
final step, we apply the fourth-order causal Butterworth filter to
each of the seismograms, the same as used for the data (see Section
2.5).

2.2 Dynamic model parametrization

The distribution of friction and initial stress on the fault is defined
by a single elliptic patch model (Ruiz & Madariaga 2011, 2013;
Dı́az-Mojica et al. 2014; Herrera et al. 2017, see Fig. 2b). It is
relatively simple, which is appropriate due to the small complexity
of the event indicated by (i) previous studies of the earthquake
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Figure 2. (a) The linear slip weakening friction law. The magnitude of shear stress at each point x on the fault has the initial value Ti (x) (see Fig. b) and obeys
linear elasticity until it is larger or equal than Tu (shear strength). It then decreases linearly with accumulated slip d until it reaches the final stress T f = Td

at d = Dc . The inset shows the case when slip stops before reaching Dc , in which case T f > Td . Stress drop is defined as Ti − T f . The area �W under
the red dotted line is the available strain energy surface density. The area G F under the blue curve is the fracture energy surface density (energy dissipated
from �W per area of rupture). The quantity G R = �W − G F is the radiated energy density. Integrals of these quantities over the fault plane are the available
strain energy change �E , fracture energy EF , and radiated energy ER , respectively. For the extension to 3-D, see Ripperger et al. (2007). (b) The elliptic
parametrization used for the dynamic inversion. The shear strength Tu is finite and constant inside an elliptic patch and infinite elsewhere. The geometry of the
ellipse is defined by the along-strike and along-dip coordinates of its centre, xc and yc, the along-strike and along-dip components of one of the semi-major
axes, ax , ay , and the length of the semi-minor axis, b. The angle between the semi-major axis and the horizontal line is denoted by φ. The geometry of the
nucleation zone (red) is parametrized by the coordinates of its centre xnucl , ynucl and the radius Rnucl . The magnitude of the shear stress Ti inside the nucleation
zone is defined relatively to Tu by the positive parameter δ: Ti = Tu (1 + δ). Elsewhere on the patch, Ti has a constant value of γ Tu . Outside of the patch, it is
zero.

(Chousianitis & Konca 2018; Kiratzi 2018), (ii) our moment tensor
inversion (see Text S1) and (iii) the limited frequency range we use.
In addition, the limited number of parameters makes the elliptic
patch model suitable for a Bayesian inversion.

The geometry of the patch is parametrized by five parameters
(Fig. 2b): The position of its centre along strike, xc, and along dip
(measured from bottom to top), yc, the components ax , ay of the
vector connecting the centre and the tip of the semi-major axis, and
the length of the semi-minor axis b. The strength is set to a constant
value of Tu inside the patch and to a very large value outside of
it, so the patch is the only region in which rupture may propagate.
The characteristic slip distance is set to a constant value of Dc

everywhere on the fault.
The magnitude of the initial shear traction Ti inside the patch

is a piecewise constant function with the value of Tu(1 + δ),
with positive δ, on a small circular nucleation zone from which
rupture begins, and the value of Tuγ , with γ between 0 and
1, on the rest of the patch. Finally, the geometry of the nu-
cleation zone is determined by three parameters: the along-
strike and along-dip locations xnucl , ynucl of its centre and its
radius Rnucl .

To sum up, we parametrize the model by 12 model parameters
(Fig. 2b): 8 that describe the geometry of the elliptic patch and
the nucleation zone (xc, yc, ax , ay, b, Rnucl , xnucl , ynucl ), 2 that de-
termine the magnitude of the initial shear stress (γ, δ) and 2 that
define frictional properties (Tu, Dc).

2.3 The inverse problem

2.3.1 Bayesian framework

We describe our knowledge about the parameters in terms of a
probability density function on the space of model parameters M.
This is a function f : M → R

+
0 such that the true value of the

parameter combination m = (m1, m2 . . . , m12) is contained in a

set A ⊂ M with probability

P (A) =
∫

A
f (m1, m2 . . . , m12) dm . (3)

For the sake of brevity, we also refer to probability density func-
tions as probability distributions, or simply distributions.

Even before analysing the constraints y on the earthquake in
detail, we have some prior knowledge about the parameters. For
example, we know that the hypocentre of the earthquake is located
near Lesvos island, we have some estimates about the extent of the
rupture, maximum stress drop, etc. We formalize this knowledge
in terms of the prior probability density function ρpr (m), which we
fully describe in Section 2.4. We then update our prior knowledge
by taking y into account. Mathematically, this is represented by
passing to the posterior probability density function ρ(m| y) using
Bayes’ formula:

ρ (m| y) = cL (m| y) ρpr (m) . (4)

Here, L(m| y) is the likelihood function, which represents the
probability density function of y given that the true model parame-
ters are equal to m, and c is a normalizing constant such that ρ(m| y)
integrates to 1.

In this study, we divide our updating process into three steps.
In the first step, we assume that we have no information about the
earthquake other than that it lasted for at least one second and rup-
tured more than twice the area of the nucleation zone. This rupture
condition, which we label r , leaves only models that successfully
rupture beyond their nucleation zone and excludes uninteresting
models that cannot produce any ground displacements at seismic
stations. Formally, the likelihood function for this condition can be
written as

L0 (m|r ) ∝ IR (m) , (5)

where R is the set of all models that meet the rupture condition
and IR is its indicator function. Plugging eq. (5) into eq. (4) with
y = r , we obtain the posterior distribution

ρ0 (m|r ) = c0 IR (m) ρpr (m) , (6)
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where c0 is a normalizing constant. Since the exact shape of R is
unknown, neither the value of c0 nor the precise form of IR can
be determined beforehand. However, this is not important when
estimating the distribution with a suitable Monte Carlo method,
such as the Parallel Tempering algorithm (see Section 2.3.2).

In the second step, we add to y an estimate of the earthquake’s
moment magnitude M0

w , so that y = (r, M0
w). When we solve the

forward problem with model m, we obtain the corresponding mo-
ment magnitude Mw(m). Due to observational and modelling errors,
neither M0

w nor Mw(m) will be exact. However, if we suppose that
the errors are normally distributed, it turns out (Tarantola 2005) that
the combined error is also normally distributed with variance σ 2

Mw

which is equal to the sum of the original variances. The likelihood
function is then:

L1

(
m|M0

w

) ∝ exp

(
−

(
Mw (m) − M0

w

)2

2σ 2
Mw

)
. (7)

Using ρ0 as the prior distribution and updating it using eq. (4), we
obtain the posterior distribution

ρ1

(
m|r, M0

w

) = c1 L1

(
m|M0

w

)
ρ0 (m|r )

= c1 IR (m) exp

(
−

(
Mw (m) − M0

w

)2

2σ 2
Mw

)

× ρpr (m) , (8)

where c1 is again a normalizing constant. This distribution is in-
dependent of ground displacement observations, except for the in-
formation about the moment magnitude. As such, it allows us to
identify model parameters and features that are required for the
earthquake to rupture with approximately the given magnitude, but
are not necessarily specific to the actual earthquake.

In the final step, we supplement the preceding constraints with the
observed seismograms dobs, that is y = (r, M0

w, dobs). Assuming
normally distributed errors as before, the likelihood function for
this update is

L2 (m|dobs) ∝ exp

(
−‖d (m) − dobs‖2

2σ 2
d

)
, (9)

where d(m) are the synthetic seismograms calculated from the
model m, and σ 2

d is the total observational and modelling variance.
Using this likelihood function and using ρ1 as the prior distribution,
eq. (4) now yields

ρ2

(
m|r, M0

w, dobs

) = c2 IR (m) exp

(
−‖d (m) − dobs‖2

2σ 2
d

−
(
Mw (m) − M0

w

)2

2σ 2
Mw

)
ρpr (m) , (10)

where c2 is another normalizing constant. In Section 3.2, we com-
pare the prior distribution and the three posteriors to extract the
information contained in each of the constraints.

Since the model space M has 12 dimensions, the probability
distributions are hard to visualize and interpret. Nevertheless, if
we decompose M as a Cartesian product of spaces A and B such
that M = A × B, we can calculate, for any distribution ρ on
M , its marginal distribution ρA(mA| y) for mA ∈ A by integrating
ρ(mA, mB | y) over B:

ρA (mA| y) =
∫

B
ρ (mA, mB | y) dmB . (11)

Plots of the marginal distributions give us a picture about the orig-
inal (joint) distribution, but they must be approached with caution

because some information is lost by the integration. In particular,
that the marginal distribution has a maximum at some mA ∈ A is
neither a sufficient nor necessary condition for the joint distribution
to have a maximum at (mA, mB) for some mB ∈ B. To simplify
notation in the following text, we use the same symbols ρpr , ρ0, ρ1

and ρ2 for both the marginal and the joint distributions.

2.3.2 Sampling the posterior distributions with the Parallel
Tempering algorithm

Even though eqs (6), (8) and (10) show the functional form of the
sought posterior distributions, a major complication immediately
arises when one wants to calculate them in practice. The values
of the functions IR(m), Mw(m) and d(m) which appear in these
formulas are only available through costly numerical simulations;
we do not have analytical expressions for them. If we try to nu-
merically evaluate the distributions on a regular grid spanning the
model space, the calculation quickly becomes unfeasible as the di-
mension of the model space increases and most time is spent on
models with negligible probability density. Moreover, the values of
the normalizing constants are unknown.

Monte Carlo methods solve this problem by efficiently drawing
samples of a posterior distribution and using the obtained ensem-
ble to approximately characterize the distribution. A popular tech-
nique used for Monte Carlo sampling is the Metropolis–Hastings
(MH) algorithm (Metropolis et al. 1953; Hastings 1970; see also
Sambridge & Mosegaard 2002), which uses a random walker that
moves through the model space according to a prescribed proposal
distribution, and accepts or rejects models according to a mathe-
matically derived rule. The rule guarantees that given enough steps,
the accepted models will sample the target distribution. However,
the original MH algorithm works best for distributions with a single
local maximum. For distributions with multiple local maxima, the
walker may get trapped in a close neighborhood of a particular one
without ever exploring the others.

One of the extensions of the MH algorithm that solve this prob-
lem, already utilized for dynamic source inversion by Gallovič et al.
(2019a, b), is the Parallel Tempering algorithm (also known as
Replica exchange Monte Carlo; Swendsen & Wang 1986). This al-
gorithm samples the target distribution by performing the MH algo-
rithm on multiple chains, each of which, if working independently,
would sample a tempered distribution ρT (m| y) : = kT [ρ(m| y)]

1
T .

Here T is a parameter called temperature, generally different for
each chain, and kT are normalizing constants, the knowledge of
which is not required by the algorithm. The target distribution is
sampled by chains at T = 1. The chains at higher temperatures
are auxiliary and their purpose is to help the T = 1 chains to
jump over areas of low probability. This is achieved by allowing
the chains at different temperatures to randomly swap their mod-
els. Indeed, since the tempered distributions, sampled by chains at
T > 1, are flatter than the target distribution (converging to the uni-
form distribution as T → ∞), these chains can traverse areas that
would be unavailable for chains at T = 1. For more details, see
Sambridge (2013).

Once a large enough ensemble of samples is obtained, it can be
used to approximate the important integrals characterizing the distri-
bution, including the normalizing constant. For example, the mean
and the variance of the distribution are estimated by calculating
the mean and the variance, respectively, of the sampled ensemble.
Samples of the marginal probability density functions (see eq. 11)
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716 F. Kostka et al.

are obtained by projecting samples of the joint distribution to the
target space of interest.

To approximately reconstruct the original distribution from its
samples, we use the kernel density estimation technique (KDE, see,
e.g. Zambom & Dias 2013). In the case of 1-D spaces (general-
ization to higher dimensions is straightforward), the distribution is
estimated by the formula:

ρest (x) = 1

|S| h

∑
s∈S

K

(
x − s

h

)
, (12)

where S is the collection of the obtained samples, |S| is its size, h is
a positive real parameter called the bandwidth and K (x) is a smooth
even function with unit integral, called the kernel. Here, we use the
Gaussian kernel:

K (x) = 1√
2π

exp

(
− x2

2

)
. (13)

Compared to the more standard method of plotting histograms of
the samples, KDE estimates are smooth functions and on average,
converge faster to the true distribution as the number of samples
increases (Wasserman 2004). Nevertheless, the dependence on the
bin width is replaced by the dependence on the bandwidth h. We
choose h equal to 1/40 of the respective parameter range. This
value is similar to the bandwidths calculated according to the rule
of thumb suggested by Scott (1992).

2.4 Prior distribution on the model space

The joint prior distribution ρpr of the 12 model parameters is as-
sumed to be uniform on the set P ⊂ M defined by the following
four constraints:

1. All parameters lie within the intervals specified in Table 1.
2. The parameter b specifying the length of the semi-minor axis

is smaller or equal to the length of the semi-major axis a:

b ≤ a =
√

a2
x + a2

y . (14)

3. The centre of the nucleation zone lies within the patch.
4. The patch is completely contained within the fault.

The purpose of constraint #2 is to avoid ambiguity in specifying
the semi-major and semi-minor axes. Constraint #3 ensures that rup-
ture always initiates within the patch, which represents a weakened
area on the fault. Constraint #4 ensures that the patch always has
an elliptic shape. We note that we allow both ax and ay to take pos-
itive and negative values, permitting occurrences of pairs (ax , ay)
and (−ax , −ay) which represent the same model. This introduces
redundancy into the inversion, but it is nevertheless convenient as
it eliminates unnecessary barriers in the Monte Carlo sampling.

We sample the prior distribution ρpr with a random number gen-
erator, uniformly generating models within the bounds given by
constraint #1 and then only accepting those that satisfy constraints
#2–4. KDE estimates of 1-D marginal priors of ρpr , reconstructed
from 100 000 samples, are shown as black curves in Fig. 3. Since
the 1-D distributions of parameters ax and ay are not very informa-
tive, we instead show derived quantities a (length of the semi-major
axis) and φ, which is the angle between the vector (ax ,ay) and the
horizontal line, φ = atan2(ay, ax ). After obtaining the samples,
we identify values of φ differing by 180◦, as they describe the same
model. Similarly, since xc and yc necessarily have very similar dis-
tributions to xnucl and ynucl , respectively (due to constraint #3), we
instead show two derived quantities that characterize the connecting

vector �r = (xc − xnucl , yc − ynucl ): Cdist , which is the length of
�r relative to the elliptic patch (equal to 0 when the nucleation is
at the centre of the patch and equal to 1 when it is at the boundary),
and Cang , which is the angle between �r and the horizontal line,
Cang = atan2( �ry, �rx ).

We note that while the joint prior distribution function of the
model parameters is uniform on P , marginal distributions of the
geometric model parameters (except for Rnucl ) shown in Fig. 3 are
non-uniform. There are two reasons for this. First, due to constraints
#2–4, P has a non-rectangular shape, and the effective bounds over
which the joint distribution is integrated (eq. 11) may depend on
the value of the parameter for which the marginalization is carried
out. Secondly, the derived parameters a, φ, Cdist and Cang were
obtained by a coordinate transformation, and the joint distribution
is therefore modified by a non-uniform Jacobian factor.

2.5 Data and model setup

Based on the full-waveform centroid moment tensor (CMT) in-
version performed before the dynamic inversion by the software
ISOLA (Zahradnı́k & Sokos 2018) and summarized in Text S1, we
adopt the fault plane geometry and mechanism with strike/dip/rake
values 113◦/40◦/–83◦ and M0

w = 6.24 (eqs 7, 8 and 10). The map
projection of the fault plane is shown in Fig. 1.

Within 150 km from the centroid, the earthquake was recorded
by 55 strong-motion stations of the Geodynamic Institute of the
National Observatory of Athens (GI-NOA) and Bogazici University
Kandilli Observatory and Earthquake Research Institute (KOERI).
We excluded stations very close to each other (with almost the same
waveforms) to reduce station redundancy.

For the computation of the Green’s functions, we adopt a five-
layer model after Karagianni et al. (2002), Fig. S6. However, many
of the recordings are affected by significant basin and site effects,
which are not included in our Green’s functions. To select stations
suitable for the inversion, we used Axitra to calculate synthetic
seismograms for a point source located at the GI-NOA hypocentre
in the low-frequency range of 0.05–0.08 Hz and excluded stations
with visibly poor fits with the observed seismograms. For example,
stations in the city of Izmir were removed because of a significant
path effect likely caused by the presence of the Izmir basin, which
cannot be reproduced in our 1-D model. In the end, we selected the
15 stations shown in Fig. 1. The event has good angular coverage of
stations to the east (azimuths from –10◦ to 170◦), but poor coverage
to the west as that direction corresponds to the open sea.

Acceleration records were tapered with a rectangular time win-
dow starting at the origin time of 2017/06/12 12:28:37 GMT and
with a duration of 80 s. The records were then bandpass filtered
between 0.05 and 0.15 Hz by the 4th order Butterworth filter, and
integrated into displacements. The lower frequency bound is nec-
essary to remove low-frequency instrumental noise from the data.
The upper bound is chosen to lower the influence of the imperfect
velocity model, as well as uncertainties in fault geometry.

We set the standard deviation σMw
(eqs 7, 8, 10) to 0.1, repre-

senting roughly the variability of magnitudes from different stud-
ies/agencies (Table S1). The total seismogram standard deviation
σd (eqs 9 and 10) is set to 2.5 cm. A similar relative estimate of
seismogram uncertainty was also used in the dynamic inversions by
Gallovič et al. (2019a, b). We note that it is close to the theoretical
estimate by Hallo & Gallovič (2016) based on synthetic simula-
tions with randomly varied velocity models. To account for the
uncertainty in the origin time and to balance for relatively weak or
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Bayesian dynamic inversion of the 2017 Lesvos earthquake 717

Table 1. Prior ranges of model parameters, and modes and 68 per cent highest density regions (HDR) of posterior distributions ρ0, ρ1 and ρ2. The symbols
denoted by asterisks are the model parameters directly searched in the inversion, the rest is derived from them using explicit formulas or obtained as a result of
dynamic rupture simulations (emergent quantities). In the last three columns, we use the notation [l Mu ], where l and u are the lower and upper bounds of the
68 per cent HDR and M is the mode of the distribution. When the HDR is not an interval, we instead write M [S], where S is the total size of the HDR.

Parameter name Meaning Prior min. Prior max. Mode and 68 per cent HDR

ρ0 ρ1 ρ2

Model parameters
ax (km)∗ Along-strike component of the semi-major axis −17.5 17.5 −11.1 [18.8] −6.0 [17.0] −8.6 [15.5]
ay (km)∗ Along-dip component of the semi-major axis −17.5 17.5 −11.3 [18.4] 5.9 [16.5] [−7.5 − 0.37.5]
a (km) Length of the semi-major axis – – [10.114.317.4] [5.98.012.6] [7.119.013.5]
b (km)∗ Length of the semi-minor axis 0.0 24.75 [4.78.912.6] [2.43.85.7] [2.74.76.5]
φ (◦) Angle of the semi-major axis – – 135 [101] 0.541 [118] 174 [86]
xc (km)∗ Along-strike position of the elliptic centre 1 34 [12.917.622.1] [10.217.423.3] [15.217.620.0]
yc (km)∗ Along-dip position of the elliptic centre 1 34 [13.217.722.3] [11.717.623.6] [18.020.922.9]
Cdist Elliptic distance of the nucleation zone and the elliptic

centre
– – [0.460.780.96] [0.350.600.85] [0.330.620.84]

Cang (◦) Angle of the vector connecting the nucleation zone with
the elliptic centre

– – 268 [232] 270 [227] [115180226]

γ ∗ Initial background shear traction in the elliptic patch,
relative to Tu

0.2 1.0 [0.500.960.99] 0.68 [0.51] [0.240.410.61]

Tu (MPa)∗ Shear strength 1.0 18.0 [10.416.917.8] [8.814.017.1] [3.96.412.0]
δ∗ Initial shear stress excess at the nucleation zone, relative

to Tu

0.0 0.2 [0.090.180.20] [0.100.180.19] [0.110.170.19]

Rnucl (km)∗ Radius of the nucleation zone 0.1 3.0 [1.52.72.9] [1.62.83.0] [1.72.52.9]
Dc (m)∗ Characteristic slip-weakening distance 0.05 0.5 0.08 [0.26] [0.050.080.28] [0.050.080.25]
xnucl (km)∗ Along-strike position of the nucleation zone 1 34 [10.016.525.1] [9.114.224.2] [16.919.322.3]
ynucl (km)∗ Along-dip position of the nucleation zone 1 34 [11.016.725.7] [11.017.924.7] [16.620.123.0]
Sel (km2) Area of the elliptic patch – – [97285550] [53109182] [77137215]
Rnucl/R̃m Ratio of Rnucl to the estimate of the critical nucleation

length.
– – [0.561.182.60] [0.781.232.60] [0.901.242.10]

κ Similarity parameter – – [0.291.326.10] [0.331.233.17] [0.511.111.97]
Emergent quantities
Mw Moment magnitude – – [6.436.937.34] [6.146.276.39] [6.086.186.28]
Sr (km2) Ruptured area – – [036463] [57105161] [76126187]
�σE (MPa) Slip-weighted mean stress drop – – [4.88.112.1] [4.17.410.9] [2.23.66.5]
Vr (km/s) Slip-weighted mean rupture speed – – [2.33.04.7] [1.42.73.4] [1.41.72.6]
ER (TJ) Radiated energy – – 8 [272] [1568210] [123565]
EF (TJ) Fracture energy – – [018217] [026149] [3880174]
G F (MJ/m2) Average fracture energy surface density – – [0.00.41.4] [00.31.3] [0.10.41.3]
η Radiation efficiency – – [0.750.921.00] 0.90 [0.44] [0.090.200.38]
ψ̄ (◦) Slip-weighted mean rupture direction – – 89 [222] 90 [222] 180 [103]
Tr (s) Equivalent duration of rupture – – 5.7 [8.2] [2.43.66.0] [4.46.28.3]

strong nucleation of dynamic rupture, we uniformly shift synthetic
seismograms at all stations by the time �t within (−3.2 s, 3.2 s)
that results in the minimum misfit.

3 R E S U LT S

Let us describe the sampling of the individual posterior distributions
ρ0, ρ1 and ρ2. For the rupture-constrained posterior distribution ρ0,
we took 100 000 samples of the prior distribution and accepted only
models that satisfied the predefined rupture condition r , that is with
rupture lasting at least one second and breaking more than twice
the area of the nucleation zone. About 70 per cent of prior samples
did not meet the condition, leaving approximately 30 000 samples
of ρ0.

We sampled the posterior distributions ρ1 and ρ2 by two inde-
pendent runs of the Parallel Tempering algorithm, using eqs (8)
and (10), respectively. Initial models (different for each chain) were
randomly picked from the prior distribution ρpr . MCMC proposals
for each parameter had normal probability densities centred around
its present value with a standard deviation equal to 2 per cent of

its allowed range. We used parallel computing on 6 GPUs of our
in-house cluster, with 2 MPI threads per GPU and 8 MCMC chains
per MPI thread. The temperature of two chains in each thread was
set to 1, so they sampled the target distribution, while the remaining
temperatures were randomly sampled from a log-normal distribu-
tion between 1 and 100. An additional MPI thread controlled the
swapping of models among the chains.

For each distribution, the number of models visited by all chains
was approximately 2 500 000 within 35 d. To ensure more accurate
sampling, only every 10th accepted sample was recorded and the
first sixth of the recorded samples were discarded to account for the
so-called burn-in phase. Finally, we discarded the samples that did
not satisfy the rupture condition and kept only models sampled at
T = 1. This way, about 50 000 samples were obtained for ρ1 and
ρ2 each.

3.1 Best-fitting models

To provide the reader with an intuitive sense of the parameters
and robust features of the sampled models, we first examine three
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718 F. Kostka et al.

Figure 3. KDE estimates of 1-D marginal distributions for the model parameters and quantities derived from them, obtained with the Parallel Tempering
algorithm. Different colours correspond to the prior distribution (ρpr ) and posterior distributions incrementally constrained by the rupture condition (ρ0),
moment magnitude (ρ1) and seismograms (ρ2) (see legend). Vertical bars show the modes of each distribution. The numbers show the Hellinger distances
between distributions, with colour-coding representing the respective pair of distributions under comparison (for example, the distance between ρpr and ρ0

is shown as a black-and-green number). Only the 12 parameters in the first three rows are independent, the quantities Sel = πab, Rnucl/R̃m (eq. 17) and κ

(eq. 18) were calculated from them. The KDE of seismogram variance reduction (VR) for samples of ρ2 is shown at the bottom right.

models sampled from ρ2 that best fit the observed seismograms.
Spatial distributions of their slip, stress drop, and rupture time are
shown in Fig. 4. The fits between observed and synthetic waveforms
for these models have variance reductions of 63–64 per cent. In
Fig. 5 we plot the waveform fit of the best-fitting model along with
KDE estimates of synthetic seismograms generated from the whole
ρ2 ensemble. The KDE of variance reduction for ρ2 is shown in
Fig. 3. We note that 65, 30 and 3 per cent of models have variance
reductions larger than 50, 55 and 60 per cent, respectively.

The feature in which the models are the most similar is the centre
coordinates of their nucleation zones, within 2 km. The dimensions
of the elliptic patch are similar for the best-fitting models, though
model #1 is somewhat more elongated than the other two. However,
the rupture in model #1 only breaks 85 per cent of the whole patch,
stopping before reaching its lower left tip. The inclination angles φ

of each elliptic patch differ quite strongly and this parameter is rather
broadly distributed in the ρ2 ensemble. Nevertheless, for all three
models, the nucleation zone is to the right of the centre of the ellipse,
as is the case for 90 per cent of models in the ensemble. The rupture
propagates predominantly to the WNW, as it is soon arrested at the
ESE edges of the patch. However, in contrast to the relatively robust
directional preference with respect to the strike direction, the data
do not seem to distinguish between upward or downward spreading.
We note that kinematic inversions of Kiratzi (2018) and Chousianitis
& Konca (2018) suggest even more pronounced unilateral rupture
propagation.

The average slip-weighted stress drops �σE of the three models
are 5.7, 3.4 and 3.1 MPa, respectively. Model #1 has the lowest slip-
weighted average rupture speed (1.25 km s–1 versus 1.38 km s–1 and
1.91 km s–1). It also has larger values of both Tu and Dc than the
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Bayesian dynamic inversion of the 2017 Lesvos earthquake 719

Figure 4. Distributions of the final slip, stress drop and rupture time (rows) for the three best-fitting models (columns). Only the positive part of the stress drop
is shown. The red ellipses show the boundaries of the elliptic patches within which rupture may propagate.

other two models (9.6 MPa versus 8.5 MPa versus 7.8 MPa, and
0.43 m versus 0.12 m versus 0.14 m). Consequently, model #1 also
has the largest average fracture energy surface density, obtained by
dividing the fracture energy by the total ruptured area (1.6 MJ m–2

versus 0.7 MJ m–2 versus 0.6 MJ m–2). The total radiated energies
(see Fig. 2 here or Fig. 1 and eq. C2 of Ripperger et al. 2007) of
all three models range from 20 TJ (model #1) to 40 TJ (model
#2). As we discuss below, this is the quantity best resolved by the
seismograms. The seismic moments of the models are similar (3.4–
3.7 ×1018 Nm). All three models have pronounced nucleation,
which is a common feature in the ρ2 ensemble.

3.2 Characteristics of the posterior distributions

In this section, we analyse various parameters and how well they are
constrained when incrementally updating the prior distribution ρpr

by the rupture condition (posterior distribution ρ0), the constraint
on the moment magnitude (ρ1), and the observed seismograms

(ρ2). A comparison of KDE estimates of marginal distributions
of ρpr , ρ0, ρ1 and ρ2 for model parameters (or parameters derived
from them, such as a, φ, Cang and Cdist ) is shown in Fig. 3. Fig. 6
shows marginal posterior distributions for emergent quantities, that
is quantities that emerge as outputs of rupture simulation, such as
the moment magnitude Mw or the radiated energy ER .

To compare the information contained in ρpr , ρ0, ρ1 and ρ2, we
measure their mutual dissimilarity in terms of the Hellinger distance
H (Shemyakin 2014):

H (ρi , ρ j ) =
(

1 −
∫
R

√
ρi (x) ρ j (x)dx

)1/2

. (15)

It is a metric on the space of probability distribution densities,
equal to 0 for identical distributions and 1 for disjoint distributions.
For the sake of conciseness, we use the notation Hi, j = H (ρi , ρ j ).
Large values of H1,2, for example, suggest that the information con-
tained in seismograms is quite different from that contained in the
moment magnitude. Evaluating data informativeness by comparing
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720 F. Kostka et al.

Figure 5. Displacement seismograms at the 15 selected stations in the frequency range of 0.05–0.15 Hz. Observed seismograms are black, synthetic
seismograms of the best-fitting model are red. KDE estimates of synthetic seismogram posterior distribution, calculated at each time step, are blue. Numbers
on the right show the maximum amplitude of the observed seismograms (black) and variance reduction at individual stations for the best-fitting model (red).
The red number at the bottom is the overall variance reduction of the best-fitting model. The time axis begins on 12 June 2017, 12:28:38.26 GMT.
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Bayesian dynamic inversion of the 2017 Lesvos earthquake 721

Figure 6. KDE estimates of 1-D marginal distributions for emergent quantities, obtained with the Parallel Tempering algorithm. Different colours correspond
to the posterior distributions incrementally constrained by the rupture condition (ρ0), moment magnitude (ρ1), and seismograms (ρ2) (see legend). Vertical
bars show the modes of each distribution. The numbers show the Hellinger distances between distributions, with colour-coding representing the respective pair
of distributions under comparison.

Table 2. Model parameters and derived quantities sorted according to the
value of the Hellinger distance H0,1 between posteriors ρ0 and ρ1, and the
Hellinger distance H1,2 between posteriors ρ1 and ρ2. The ratios of the sizes
of the respective HDRs, rHDR0,1 and rHDR1,2, are also shown.

Rank Parameter H0,1 rHDR0,1 Parameter H1,2 rHDR1,2

1 Sel 0.48 0.28 xnucl 0.48 0.36
2 b 0.47 0.42 ynucl 0.34 0.47
3 a 0.33 0.93 Cang 0.33 0.48
4 κ 0.25 0.49 κ 0.26 0.51
5 φ 0.12 1.17 γ 0.20 0.72
6 Rnucl/R̃m 0.10 0.89 Tu 0.19 0.98
7 Tu 0.09 1.13 φ 0.16 0.72
8 Cdist 0.07 1.02 Rnucl/R̃m 0.15 0.66
9 Rnucl 0.07 0.90 Sel 0.14 1.07
10 γ 0.06 1.04 a 0.12 0.95
11 Dc 0.05 0.91 b 0.11 1.15
12 ynucl 0.05 0.93 Rnucl 0.06 0.91
13 xnucl 0.03 1.00 Dc 0.06 0.87
14 δ 0.03 0.94 δ 0.05 0.91
15 Cang 0.03 0.98 Cdist 0.01 1.00

the prior and posterior distributions was also emphasized by Min-
son et al. (2014) in their Bayesian kinematic inversion of the great
Tōhoku earthquake. In Tables 2 and 3 we list each model parameter
and emergent quantity, respectively, sorted by H0,1 and H1,2. We
note that since H is a metric, it satisfies the triangle inequality. For
example, |H0,1 − H1,2| ≤ H0,2 ≤ H0,1 + H1,2.

To quantify the uncertainty of the parameters, we evaluate the
size of their 68 per cent highest density regions (HDR). These
are the regions that contain 68 per cent of the posterior density,
such that the density within them is always larger than the density
outside (Hyndman 1996). In particular, they always contain the
largest mode of the distribution. For Gaussian distributions, the size
of the HDR corresponds to two times their standard deviation. We
list the modes and the HDRs of ρ0, ρ1 and ρ2 in Table 1. We use the

Table 3. Emergent quantities sorted according to the value of the Hellinger
distance H0,1 between posteriors ρ0 and ρ1, and the Hellinger distance H1,2

between posteriors ρ1 and ρ2. The ratios of the sizes of the respective HDRs,
rHDR0,1 and rHDR1,2, are also shown.

Rank Parameter H0,1 rHDR0,1 Parameter H1,2 rHDR1,2

1 Mw 0.73 0.28 ER 0.50 0.27
2 Sr 0.59 0.22 η 0.40 0.66
3 ER 0.35 0.72 ψ̄ 0.38 0.46
4 Tr 0.34 0.44 �σE 0.34 0.63
5 η 0.21 1.79 Tr 0.33 1.07
6 Vr 0.21 0.83 Vr 0.32 0.61
7 EF 0.20 0.69 Mw 0.29 0.82
8 G F 0.11 0.94 EF 0.21 0.91
9 �σE 0.08 0.93 Sr 0.13 1.07
10 ψ̄ 0.01 1.00 G F 0.12 0.94

notation p [l Mu] to denote that the distribution of parameter p has
mode M and l and u are the lower and upper bounds of its HDR.
To compare the relative resolution of a parameter in distribution ρi

and in its updated distribution ρ j , we calculate the inverse ratio of
their HDR sizes:

rHDRi, j =
∣∣HDR

(
ρ j

)∣∣
|HDR (ρi )| . (16)

Low values of rHDRi, j signify good relative resolution. We list
the values of rHDR0,1 and rHDR1,2 in Table 2 (for model parameters)
and in Table 3 (for emergent quantities).

2-D marginal distributions for selected pairs of quantities are
shown in Fig. 7. To quantify their correlation, we use the Spearman
correlation coefficient (SC). 2-D distributions for a more extensive
list of quantities are shown in Figs S7–S9.
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722 F. Kostka et al.

Figure 7. KDE estimates of 2-D marginal distributions of the posteriors ρ0, ρ1 and ρ2 for selected pairs of quantities. The distributions are normalized by
their respective maxima. SC denotes the value of the Spearman correlation coefficient.

3.2.1. Model parameters

The model parameters whose distributions appreciably change upon
transition from ρpr to ρ0 (Hpr,0 > 0.1) are Tu, δ and Rnucl (Fig. 3).
In ρpr , the distributions are flat, while in ρ0 they are increasing
(the sharp decay to zero at the boundaries is an artefact of the
KDE method). This transition from a uniform to a monotonous
distribution is also seen in parameters γ (increasing) and Dc (de-
creasing), although there the change is only small. Distributions
of these five parameters change only negligibly after the update
from ρ0 to ρ1 (Fig. 3), which shows that they are not further
affected by the magnitude. Nevertheless, distributions of param-
eters Tu and γ do visibly change after the seismogram update
(H1,2 ≈ 0.2), developing peaks in the lower halves of their allowed
ranges.

The only model parameters that strongly change in the transition
from ρ0 to ρ1 are the lengths of the semi-major axis a and the
semi-minor axis b, with H0,1 = 0.33 and 0.47, respectively. The
ρ1 distributions of both parameters peak at lower values than the
ρ0 distributions. In the case of a, the shift in the mode position is
the main contributor to the change, and the uncertainty does not
decrease very much (rHDR0,1 = 0.93). In the case of b, there is a
significant reduction of uncertainty (rHDR0,1 = 0.42), the largest
among model parameters in the ρ0 → ρ1 transition. Nevertheless,
the total area of the elliptic patch, Sel = πab (whose KDE is

also shown in Fig. 3), gets resolved even more sharply than a or
b individually (rHDR0,1 = 0.28). The distributions of these three
quantities are adjusted only a little when passing to the posterior ρ2.
Hence, they are mostly determined by moment magnitude.

The only other parameter for which ρ0 and ρ1 appreciably differ
(H0,1 > 0.1) is the inclination angle of the patch, φ. In ρ0, it peaks
near 45◦ and 135◦, as more elliptic patches fit within the fault
(prior constraint #4 in Section 2.4) at these angles. Contrarily, the
ρ1 distribution of φ is much flatter, probably because the elliptic
patches sampled from this posterior tend to be smaller, so their
orientation only weakly affects the probability of them fitting within
the fault. In ρ2, the parameter has a single peak around 0◦ (≡ 180◦),
suggesting that elongation of the patch along strike is preferred
when the seismograms are included. However, this peak is rather
broad (the size of the HDR is 86◦, which is 48 per cent of its possible
range and rHDR1,2 = 0.72). As we have shown in Section 3.1, φ

considerably varies even among the best fitting models.
Finally, the ρ2 distributions of the parameters xnucl , ynucl and Cang

are strongly determined by seismograms only, with H1,2 of 0.48,
0.34 and 0.33, respectively. The along-strike location of the nucle-
ation zone, xnucl , has the greatest reduction in uncertainty among
model parameters (rHDR1,2 = 0.36). Its HDR size is 5.4 km, com-
pared to the 6.4 km we observe in the along-dip location, ynucl

(rHDR1,2= 0.47). The distance of the most probable nucleation
zone location and the GI-NOA hypocentre (see the 2-D distribution
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of (xnucl , ynucl ) in Fig. S7c) is 6.3 km. Finally, parameter Cang , which
is better resolved than φ (with the absolute HDR size equal to 31
per cent of its allowed range and rHDR1,2 = 0.48), peaks around
180◦. This corresponds to the nucleation zone being located to the
ESE from the centre of the ellipse. We consider the fact that we can
resolve the position of the nucleation zone and the rupture direc-
tion as evidence that the seismograms are sensitive to finite-fault
features of the source.

3.2.2 Emergent quantities

For emergent quantities, the differences between the ρ0 posterior
and the other two posteriors are often more pronounced than for
most model parameters and their Hellinger distances are larger on
average (see Fig. 6 and Table 3). The ρ0 posterior for Mw is wide
and asymmetric, spanning values from 4.5 to 7.6, with a peak at
6.93. The ρ1 posterior for Mw has a symmetric peak at 6.27, only
slightly larger than the target value of M0

w = 6.24. The size of its
HDR is 0.25. The ρ2 posterior has a slightly lower mode (6.18) and
smaller HDR (0.2).

Ruptures sampled from ρ0 are fast, with mean slip-weighted rup-
ture speed Vr ∼ [2.33.04.7] km s–1 and tend to have large radiation
efficiency η ([0.750.921.00]). Both quantities (which are strongly cor-
related in all distributions, see Fig. 7) are shifted towards lower
values in the remaining two posteriors, especially in ρ2. Since the
shear wave speed β is between 3.36 and 3.95 km s–1 on most of the
fault, an appreciable fraction of models sampled from ρ0 and even
ρ1 have supershear average rupture speed. For ρ2, this is true only
for a negligible number of models. We note that for some models
in ρ2, the rupture speed surpasses β on a small part of the fault, but
the supershear propagation is unsustained.

The total ruptured area Sr has similar distributions to Sel and like
that parameter, it is strongly resolved by magnitude (rHDR0,1 =
0.22, the lowest among all emergent quantities). However, the dis-
tributions of Sr are slightly denser in lower values, since not all
models rupture the whole elliptic patch. Note that some distribu-
tions of the quantities η, Vr , Sr and Tr have two peaks; the minor
peaks correspond to the partially ruptured models.

The distributions of the slip-weighted mean stress drop �σE are
similar for ρ0 and ρ1. In ρ2, the peak of the distribution gets shifted to
lower values by about 50 per cent and narrowed (rHDR1,2 = 0.63),
so that �σE [2.23.66.5] MPa.

The quantity whose uncertainty is reduced the most when seis-
mograms are used, having rHDR1,2 = 0.27, is the radiated energy
ER ([123565] TJ in ρ2). Its Hellinger distance H1,2 is 0.50, the largest
among both model and emergent quantities. In contrast, the frac-
ture energy EF ([3880174] TJ in ρ2) and its average area density
G F ([0.10.41.3] MJ m–2) have rHDR1,2 = 0.91, H1,2 = 0.21 and
rHDR1,2 = 0.94, H1,2 = 0.12, respectively. This makes EF and
G F , together with Sr , the emergent quantities whose distributions
are the least affected by the seismogram information.

To explore rupture directivity, we examine the slip-weighted
mean direction of rupture ψ̄ , defined as the angle between the
horizontal line and the slip-weighted mean rupture velocity vec-

tor
∫patch p/|p|2sd S

∫patch sd S , where p(x) is the gradient of rupture time. It is

strongly correlated to the model parameter Cang , with SC > 0.7 for
all posterior distributions (Fig. 7). Marginal distributions of ρ0 and
ρ1 for ψ̄ are nearly identical. Local peaks are distributed at multiples
of 90◦, but only the peaks at 0◦ and 180◦ have the same height. This
is not surprising, because the dynamic problem is symmetric only

with respect to the strike. The distribution of ψ̄ changes substan-
tially in the ρ1 → ρ2 transition (H1,2 = 0.38) . Its rHDR1,2 is 0.46,
the second biggest reduction in uncertainty among emergent quan-
tities, after Er . The HDR of the ρ2 distribution lies approximately
between 112◦ and 215◦, which shows a strong seismogram prefer-
ence for rupture spreading in the negative strike direction (towards
WNW).

The final important quantity which is clearly affected by the
waveform data is the equivalent duration of rupture Tr , calculated
by dividing the seismic moment of each model by the maximum
of its source time function. Even though the sizes of its ρ1 and
ρ2 HDRs are similar (rHDR1,2 = 1.07), the ρ2 posterior peaks at
≈ 6.2 s, which is about 70 per cent larger than for ρ1. We plot the
KDEs of source time functions sampled from ρ1 and ρ2 in Fig. 8,
in which the different duration is clearly visible. While the ρ1 STFs
(Fig. 8a) form a diffuse large peak at the beginning, the ρ2 STFs
(Fig. 8b) are sharper, consisting of two lower peaks connected by a
3–4 s long plateau.

4 D I S C U S S I O N

We have performed a detailed Bayesian analysis of the dynamic
inversion of the 2017 Mw 6.3 Lesvos earthquake, assuming an el-
liptic patch model. Thanks to careful sampling with the Parallel
Tempering algorithm, we have identified how different quantities
become resolved as progressively more information is added into
the inversion. Specifically, we have analysed the chain of distribu-
tions ρpr → ρ0 → ρ1 → ρ2, corresponding to updating the prior
(ρpr ) by constraints on the rupture condition (ρ0), magnitude (ρ1)
and seismograms (ρ2), according to the Bayes’ formula (4). We
emphasize that if the inversion were performed by considering only
the final posterior distribution, ρ2, one could mistakenly attribute
the resolution of a particular parameter only to the seismograms,
even though the parameter may have gotten resolved mainly by the
rupture condition or the magnitude information. Therefore, careful
interpretation of results is needed.

We found that the final marginal posteriors ρ2 of every model
parameter are appreciably different from the prior distributions ρpr ,
with the minimum value of Hellinger distance Hpr,2 equal to 0.15
for parameter Cdist (see the black-and-blue numbers in Fig. 3). How-
ever, the update causing the biggest change varies among parame-
ters. The quantities whose distributions are mainly affected by the
rupture criterion (i.e. the greatest change happens in the ρpr → ρ0

transition, while the ρ1 and ρ2 distributions are very close to ρ0)
are δ and Rnucl . Parameters a and b are mostly constrained by the
moment magnitude (ρ0 → ρ1), as is the total ruptured area Sr . The
distributions of the model parameters xnucl , ynucl , Cang and γ , and
emergent quantities Er , η, ψ̄ �σE and Vr are mainly affected by
seismograms (ρ1 → ρ2). Finally, the distributions of parameters Dc

and Cdist do not change very much in either transition, but the
small changes accumulate and their ρ2 distributions are appreciably
different from ρpr .

The seismogram information seems to push both Tu and γ to-
wards lower values. This may be because seismograms require lower
values of the background initial stress Tuγ , in accordance with the
preference of lower values of the slip-weighted stress drop �σE

in ρ2 (Fig. 6). Indeed, Tu and γ are weakly negatively correlated
in ρ2 (see Fig. 7), suggesting a tendency to keep Tuγ constrained.
Low values of γ mean large contrast between the stress at the nu-
cleation zone and the rest of the patch. They are also more likely
to lead to subshear rupture speeds (Andrews 1976; Dunham 2007;
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Figure 8. KDE estimates of source–time functions for (a) ρ1 and (b) ρ2, normalized at each time instance by the respective maximum. The source time function
for the best-fitting model of this study is shown as the blue curve. The source–time functions from the SCARDEC database (Vallée & Douet 2016) and Kiratzi
(2018) are shown as the red and green curves, respectively.

Xu et al. 2015), which could be significant for fitting the observed
seismograms.

The change in distributions of parameters Tu, δ and Rnucl due to
the rupture condition (the ρpr → ρ0 transition, see subsection 3.2.1)
calls for an explanation. A natural way to interpret it is that there
exists a parameter-dependent minimum nucleation radius, Rm , such
that a model does not meet the rupture condition unless Rnucl > Rm .
Since there is no analytic formula for Rm , we adopt an approxi-
mate closed-form expression for the critical radius from Galis et al.
(2015):

R̃m =
√

33

211
π

μDc

Tuγ 3/2
√

(1 + δ − γ )
. (17)

It was derived for runaway ruptures, which break the whole patch,
and should be considered as an upper bound for Rm . We plot the
KDE of the non-dimensional ratio Rnucl/R̃m in Fig. 3. The distribu-
tion of the parameter changes significantly between ρpr (in which
it is essentially decreasing from zero since the small peak is an
artefact of the KDE method) and ρ0, in which it peaks at ≈ 1.2. The
remaining posteriors also peak near that value. Importantly, less than
1 per cent of all models sampled from ρ0 have Rnucl/R̃m smaller
than ≈ 0.3. We interpret this as the nucleation condition choosing
only models with Rnucl/R̃m greater than this minimum value. It
also explains why the ρ0 distribution of Dc is decreasing, while
the ρ0 distributions of parameters Tu, δ and Rnucl are increasing.
Further, since the parameters in eq. (17) can mutually compensate
their effects on R̃m , we can expect that they are not independent
in the posteriors (as they are in ρpr ). This is most notable in the
2-D marginal distributions of the pair (δ, Tu), which have a roughly
semi-circular shape with non-zero values only when both Tu and δ

are large enough (Fig. 7).
Another non-dimensional parameter, which was shown to control

the transition between failed and successful rupture in elongated
homogeneous barrier patches with sufficient width (Madariaga
& Olsen 2000), is the similarity parameter κ , defined in our
parametrization as:

κ = bTuγ
2

μDc
. (18)

Ruiz & Madariaga (2011, 2013), Twardzik et al. (2014), Her-
rera et al. (2017), and Mirwald et al. (2019) inverted for its

value and obtained relatively similar values for well-fitting mod-
els, between 1.0 and 2.0. We plot its marginal distributions in
Fig. 3. We find that its HDR in the ρ2 posterior is 0.5–2.0,
compared to its ρpr HDR of 0.14–3.5, which is a good reduc-
tion in uncertainty. The peak in all three posterior distributions
is centred around similar values (≈ 1.1 − 1.3), but it gets nar-
rower in both the ρ0 → ρ1 (rHDR0,1 = 0.49) and the ρ1 → ρ2

(rHDR1,2 = 0.51) transitions. The first sharpening is likely re-
lated to the resolution of parameter b by the magnitude information
(rHDR0,1 = 0.42), while the second is either caused by the resolu-
tion of γ (rHDR1,2 = 0.72), or it cannot be attributed to a single
parameter.

The quantity whose uncertainty is reduced the most when seismo-
grams are used is the radiated energy ER . That ER is better resolved
by seismograms than the fracture energy EF seems reasonable, as
it is the energy carried away from the fault by elastic waves that
reach seismic stations. In addition, since for a fully fractured patch,
the fracture energy is proportional to Tu Dc Sr , and Sr is well deter-
mined, there are two ways in which EF could be resolved. Either
both Tu and Dc need to be well resolved or they may be individ-
ually unresolved but mutually anticorrelated so that their product
is approximately constant. Instead, neither parameter is strongly
resolved and their correlation coefficients are small but positive
in all posterior distributions (Fig. 7). The chosen frequency band
(0.05–0.15 Hz) may be the reason for this weak (relative to other pa-
rameters) resolution. As higher frequencies become available, finer
details of the earthquake might become visible, possibly permitting
better resolution of Dc (Guatteri & Spudich 2000) and consequently
EF .

As seen above, statistical dependencies between pairs of parame-
ters can be explored by examining 2-D marginal distributions. How-
ever, like the 1-D marginals, these need to be interpreted carefully.
Some dependencies are observed in all three posteriors (Fig. 7), such
as the positive correlation between Vr and η, expected from sim-
ple rupture-mechanical models (e.g. Kanamori & Brodsky 2004)
or the weak negative correlation between Vr and Dc (noted also by
Mirwald et al. 2019, in their inversion of the 2017 Mw 7.1 Puebla-
Morelos earthquake). However, conservation of correlations across
updates of distributions should not be taken for granted, even when
we might expect the correlations from physical considerations. For
example, since M0 = μSr s̄, where s̄ is the average slip, we would
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expect M0 to be positively correlated to s̄. Indeed, the two param-
eters are strongly positively correlated in ρ0 (SC > 0.9). But when
passing to ρ1 and ρ2, M0 and s̄ become weakly negatively corre-
lated instead. We note that for M0 and Sr , the parameters remain
positively correlated, but the correlation weakens in the transition
from ρ0 to ρ1 and ρ2 (see Fig. S8).

On the other hand, quantities that are almost completely uncor-
related in ρ0 may become correlated in ρ1 and ρ2 (Fig. 7). For
example, we observe a weak positive correlation between xnucl and
Vr in ρ2, that is models sampled from ρ2 tend to rupture faster
when nucleating farther along strike. The quantities �σE and Sr are
another example; a strong negative correlation (also observed by
Mirwald et al. 2019) appears upon the passage from ρ0 to the mag-
nitude constrained ρ1. This scaling is what we would expect from
the circular crack model, in which M0 ∝ �σ (Sr )3/2 (Madariaga
1979). The anticorrelation between emergent parameters �σE and
Sr translates to an anticorrelation between model parameters γ and
b (Fig. 7). We note that one of these parameters is geometric, while
the other controls initial shear stress. Therefore, fixing geometric
model parameters (e.g. to those of the best fitting model, Twardzik
et al. 2014), and exploring only stress-frictional parameters under-
estimates the uncertainty of the latter, though faster exploration is
obtained as a trade-off.

5 C O N C LU S I O N

We have carried out a Bayesian dynamical inversion of the 2017
Mw 6.3 Lesvos earthquake using a single elliptic model with stress
and friction defined by 12 parameters. We have calculated three
different posterior probability distributions for those parameters by
requiring 0) only that the model they describe continues to rupture
after nucleation, (1) that it produces moment magnitude close to a
value determined from a CMT inversion and (2) that it produces
displacement waveforms that fit recordings from near regional sta-
tions.

We compared the distributions to assess the degree to which
each piece of information constrains various parameters. We found
that the parameters δ (nucleation stress overshoot relative to shear
strength) and Rnucl (radius of nucleation zone) are sensitive mainly
to the rupture condition, so that neither magnitude nor seismo-
grams strongly constrain them further. Lengths of the semi-major
and semi-minor axes of the elliptic patch, a and b, are mainly deter-
mined by moment magnitude. Finally, the along-strike and along-
dip coordinates of the nucleation zone xnucl , ynucl , the relative angle
between nucleation and centre of the patch Cang and the ratio γ of
the initial traction to the shear strength are determined chiefly by
seismograms.

We also examined emergent quantities, obtained as results of
dynamic rupture simulations. The surface area of rupture is the
emergent quantity best resolved by the magnitude information. The
quantity best resolved by the seismogram information is the radiated
energy, with its final posterior distribution peaking at 35 TJ and
with 68 per cent of values between 12 and 65 TJ. Most models
sampled from the final posterior are characterized by slow mean
rupture velocity (1.4–2.6 km s–1), low radiation efficiency (10–40
per cent), and low slip-weighted mean stress drop (2.2–6.5 MPa).
The rupture is further characterized by pronounced nucleation and
subshear propagation directed predominantly towards WNW.

The presented analysis of resolvability of source parameters is
limited to the considered elliptic models and seismogram frequency
range and station distribution similar to this study. Nevertheless, our

approach to assessing the roles of various constraints in Bayesian in-
version by comparing 1-D distributions can be generalized to other
dynamic earthquake source studies. Even for more complex source
models with a large number of possibly correlated model param-
eters, the approach could prove useful in analysing gross rupture
properties, such as radiated energy, seismic moment, average stress
drop, or average rupture velocity.
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Gallovič, F., Valentová, Ľ., Ampuero, J.-P. & Gabriel, A.-A., 2019a. Bayesian
dynamic finite-fault inversion: 1. Method and synthetic test, J. geophys.
Res., 124, 6949–6969.
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Earth Environ, 1(40), doi:10.1038/s43247-020-00038-x.

Ganas, A., Oikonomou, I. & Tsimi, C., 2013. NOAfaults: a digital database
for active faults in Greece, Bull. Geol. Soc. Greece. 47, 518–530.

Graves, R.W., 1996. Simulating seismic wave propagation in 3D elastic
media using staggered-grid finite differences, Bull. seism. Soc. Am., 86,
1091–1106.

Guatteri, M. & Spudich, P., 2000. What can strong-motion tell us about
slip-weakening fault-friction law?, Bull. seism. Soc. Am., 90(1), 98–116.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1: Map view of the stations used in the centroid moment
tensor inversion (Text S1 and Figs S2–S5). The blue star is the
GI-NOA hypocentre.
Figure S2: Horizontal grid search (36 trial positions, increments of
2 km) for the centroid at a depth of 8 km. The star shows the NOA
epicentre for reference. The centroid position, characterized by the
largest correlation between observed and synthetic displacements
in the frequency range of 0.03 and 0.07 Hz, located 2 km west and
6 km north from the epicentre, is shown by the largest beachball, trial
position #28. The balls are colour-coded according to the double-
couple percentage (all >90 per cent). Note the stability of the focal
mechanism across the grid.
Figure S3: Waveform fit for the CMT solution (position #28 in
Fig. S2, strike/dip/rake = 113◦/40◦/–83◦, frequency range from
0.03 0.07 Hz, the total variance reduction VR = 79 per cent).
Real and synthetic displacements are shown as black and red lines,
respectively. The blue numbers denote the variance reductions of
the individual components.
Figure S4: (a) A three-point source model. Three point-source
models with deviatoric moment tensors are searched by iterative
deconvolution of ISOLA (Zahradnı́k & Sokos 2018) software in the
assumed fault plane, frequency range 0.05–0.10 Hz. The sources
are shown by circles, sized according to their scalar moment, and

colour-coded according to their rupture time (t = 0 is the origin
time). The large black circle at the top is a referential moment
scale, not a solution. The 3-point solution was calculated repeat-
edly, each time removing one station (jackknifing), thus producing
multiple triplets of circles (some of them coincide) to estimate un-
certainty. The plot demonstrates a stable evolution of the rupture
from the southeast to the northwest. The process starts with an early
subevent (turquoise-coloured) near the epicentre (marked by an iso-
lated diamond near the trial position #52), continues with the major
subevent in the middle of the fault, and ends with a third moment-
release episode at about 6–8 seconds after origin time. Variance
reduction from the stations shown in Fig. S5 varied during jack-
knifing from VR = 0.69–0.76. The focal mechanism of the major
subevent was almost constant, the mechanisms of the remaining two
subevents varied within 30◦ Kagan angle from the CMT solution
during the jackknifing. (b) The mechanisms of the best solution
from all stations. The largest subevent is at position #38, followed
by positions #32 and #12. Strong stability of the mechanism is
seen.
Figure S5: Waveform fit for the three-point source model of Fig.
S4(b). The frequency range is 0.05–0.10 Hz, the total variance re-
duction VR = 71 per cent (when considering only the two largest
subevents, or just a single largest subevent, variance reduction drops
to VR = 66 and 60 per cent, respectively). The real and synthetic
displacements are shown as black and red lines, respectively. The
blue numbers denote the variance reductions of the individual com-
ponents.
Figure S6: The seismic velocity and mass density model assumed
in the inversion adapted from Karagianni et al. (2002) by removing
its low-velocity channel. The quality factors are Qp =300 and Qs

=150 for depths smaller than 32 km. At larger depths, QP =QS =
1000.
Figure S7: KDE estimates of 2-D marginal posteriors of (a) ρ0, (b)
ρ1 and (c) ρ2 for pairs of model parameters. The letters SC stand
for Spearman’s correlation coefficient. The colour scale is relative
to the maximum value of the distribution in each plot. The blue star
and the red circle in the last panel of each figure denote the position
of the GI-NOA hypocentre and the centroid inferred by our CMT
inversion, respectively.
Figure S8: KDE estimates of 2-D marginal posteriors of (a) ρ0,
(b) ρ1 and (c) ρ2 for pairs of emergent quantities. The letters
SC stand for Spearman’s correlation coefficient. The colour scale
is relative to the maximum value of the distribution in each
plot.
Figure S9: KDE estimates of 2-D marginal posteriors of (a) ρ0,
(b) ρ1 and (c) ρ2 for pairs of model (vertical axes) and emergent
(horizontal axes) quantities. The letters SC stand for Spearman’s
correlation coefficient. The colour scale is relative to the maximum
value of the distribution in each plot.
Table S1: Comparison of centroid solutions found by different stud-
ies. Only the nodal plane used in this study is shown.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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