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Weak-anisotropy approximation of P-wave reflection coefficient in
anisotropic media of arbitrary symmetry and tilt

Ivan P$enéik' and Véronique Farra?

ABSTRACT

Applicability of the approximate expression for the P-wave
reflection coefficient at a weak-contrast reflector separating
two weakly anisotropic half-spaces of arbitrary symmetry is
extended to media of arbitrary symmetry and tilt. The reflec-
tion coefficient consists of the approximate P-wave reflection
coefficient at a weak-contrast interface separating two refer-
ence isotropic half-spaces and a correction term due to
anisotropy. Along an arbitrarily chosen profile, the “isotropic”
term depends on the density and P- and S-wave contrasts,
and the correction term depends linearly on the contrasts of
four profile weak-anisotropy (WA) parameters specifying
anisotropy along the profile. In addition, both terms depend

on the polar angle of incidence. In each half-space, the four
profile WA parameters can be expressed as a linear combina-
tion of 12 of 21 global WA parameters specifying anisotropy of
the half-space. Coefficients of this linear combination are func-
tions of the azimuth of the profile. WA parameters are a gen-
eralization of Thomsen parameters to arbitrary anisotropy and
represent an alternative to 21 independent elements of the stiff-
ness tensor. WA parameters can be used for the approximation
of other related concepts such as the reflection moveout or the
geometric spreading. Presented tests illustrate high accuracy
and flexibility of the proposed formula for the P-wave reflec-
tion coefficient. They also show that very accurate results can
be obtained for contrasts and anisotropy, which cannot be con-
sidered weak.

INTRODUCTION

Explicit formula for the P-wave reflection coefficient exists for iso-
tropic media (Cerveny, 2001; Aki and Richards, 2002; Chapman,
2004) and even for transversely isotropic (TI) media with vertical axis
of symmetry (VTI) (Daley and Hron, 1977; Graebner, 1992). These
equations, however, are rather complicated, so their simplifications
have been sought. For isotropic media see, e.g., Bortfeld (1961)
and Shuey (1985); for VTI media, see, e.g., Thomsen (1993). For
anisotropic media of lower symmetry, the situation is even more com-
plicated. P-wave reflection coefficient and other reflection and trans-
mission coefficients are calculated by solving a system of linear
algebraic equations (Fedorov, 1968; Gajewski and PSencik, 1987;
Cerven}’/, 2001). In all mentioned cases, it is difficult to see how indi-
vidual parameters specifying the anisotropic medium affect reflection
and transmission coefficients. For this reason, approximations are
sought. The first natural approximation is the assumption of a weak

contrast of velocities at an interface separating two homogeneous
anisotropic half-spaces (see, e.g., Ursin and Haugen, 1996; Riiger,
1997; Klimes, 2003; Golikov and Stovas, 2010; Jin and Stovas,
2020a). There have been attempts to remove the assumption of the
weak-contrast interface using higher-order approximations; for the
most recent, see Jin and Stovas (2021). Another frequent approxima-
tion is the weak-anisotropy approximation (see, e.g., Thomsen, 1993;
Riiger, 1997; Zillmer et al., 1997; VavryCuk and PSencik, 1998;
PSencik and Martins, 2001; Ivanov and Stovas, 2017). Many of
the considered coefficients including the one considered here are dis-
placement reflection/transmission coefficients. Some authors use co-
efficients normalized with respect to the vertical energy flux (Zillmer
etal., 1997; Jin and Stovas, 2020a, 2020b, 2021). In many studies, the
authors use Thomsen (1986) parameters or their various generaliza-
tions varying from one anisotropy symmetry to another.

In this study, we use the weak-contrast and weak-anisotropy ap-
proximations and present an approximate formula for P-wave
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displacement reflection coefficient applicable to weak-contrast in-
terfaces surrounded by media of anisotropy of arbitrary symmetry
and, in the case of higher-symmetry anisotropy, of arbitrary tilt.
The proposed expression is based on the formula of PSencik and
Martins (2001).

In each of the two half-spaces separated by the reflecting inter-
face, we use three Cartesian coordinate systems: global, profile, and
crystal. The x3-axis of the global coordinate system is vertical, pos-
itive downward. The axes x; and x, are situated in the horizontal
plane so that the coordinate system is right-handed. The profile co-
ordinate system x! shares its x£-axis with the x;-axis of the global
coordinate system; its horizontal axes x! and x} may be rotated
with respect to the horizontal axes of the global coordinate system.
The superscript P indicates that we are dealing with the profile co-
ordinate system. The crystal coordinate system is designed for use
in higher-symmetry media. In such media, the coordinate planes or
axes of the crystal coordinate system coincide with the symmetry
elements of the studied anisotropy. In the TI case, for example, the
third coordinate axis of the crystal coordinate system may coincide
with the axis of symmetry of the TI medium. In the orthorhombic
case, the coordinate axes are parallel with the intersections of sym-
metry planes. In the triclinic case, the crystal coordinate system may
be chosen arbitrarily. A natural choice is its coincidence with the
global coordinate system. All three coordinate systems may be mu-
tually rotated. This rotation can be specified either by three unit
vectors specifying coordinate axes of one coordinate system with
respect to another, or, equivalently, by three Euler angles specifying
the rotation of one coordinate system with respect to another. See
Appendix A for more details.

For the parameterization of the medium, we use WA parameters
(see, e.g., Farra et al., 2016), which represent a generalization of
parameters introduced by Thomsen (1986) for VTI media. The
set of 21 WA parameters represents an alternative to 21 independent
elements of the stiffness tensor, commonly used for the description
of arbitrary anisotropy (Fedorov, 1968; Cerveny, 2001). WA param-
eters can be easily transformed from one Cartesian coordinate sys-
tem to another by the Bond transformation (Bond, 1943; Chapman,
2004). This makes WA parameters a very useful tool for studying
wave propagation in anisotropic symmetries of arbitrary orienta-
tion. WA parameters are especially useful when they are used within
the weak-anisotropy approximation of wave propagation in aniso-
tropic media (see, e.g., Farra and PSencik, 2016; Farra et al., 2016).
WA parameters may be related to any of the three above-introduced
coordinate systems. In the global coordinate system, we call them
global WA parameters, and in the profile coordinate system, we call
them profile WA parameters and indicate them by the superscript P.
WA parameters in the crystal coordinate system are named after the
symmetry that they specify, e.g., TT WA, OR WA, or TRI WA
parameters, meaning WA parameters specifying transverse iso-
tropic, orthorhombic, or triclinic symmetry, respectively. They
are marked by the corresponding superscripts TI, OR, or TRL

In the next section, we present the approximate formula for the P-
wave reflection coefficient along a profile. The formula depends on
contrasts of four profile WA parameters, P- and S-wave reference
velocities, and the density. We introduce WA parameters and show
how to express profile WA parameters in terms of global WA
parameters. In the section which follows, we briefly describe the
procedure for calculation of the reflection coefficient. Then, we test
the accuracy of the approximate formula on three models of varying
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anisotropy symmetry, anisotropy strength, and velocity contrast at
the reflector. The main part of the paper ends with a short conclu-
sion. The paper is supplemented by two appendices. In Appendix A,
equations transforming crystal WA parameters into global ones are
given. Appendix B contains matrices of density-normalized elastic
moduli of models used in synthetic tests.

THEORETICAL BACKGROUND

The present study is based on the approximate equation for the
P-wave reflection coefficient given by PSencik and Martins
(2001), who transform the P-wave reflection coefficient expressed
in terms of density-normalized elastic parameters A, derived by
Vavrycuk and PSencik (1998), into the coefficient expressed in
terms of WA parameters. We transform equation 7 of PSencik
and Martins (2001), which is expressed in terms of global WA
parameters and angles of incidence ¢ and 6 specifying the direc-
tion of the slowness vector of an incident plane wave propagating
in the upper half-space, into the equation providing the reflection
coefficient along an arbitrarily chosen horizontal profile. We de-
note the angles of incidence by ¢; and 0; to distinguish them from
Euler angles introduced later. The approximate equation for the
reflection coefficient is expressed in terms of profile WA param-
eters and the polar incidence angle 6;, the angle which the slow-
ness vector makes with the x3-axis. The azimuthal incidence angle
@;, the angle which the axis x!' makes with the axis x|, enters the
equation through the relation between profile and global WA
parameters.

Equation 7 of PSencik and Martins (2001) in the above-intro-
duced notation reads

: 1 1 p?
Rpp(0;) =R33(0;) +5 A€l + (A65_8

> 5 Ayf - Aef) sin®#;

a2
1 pe 2
+§Aex sin“@;tan*0;, Q)

where Ris$ denotes the P-wave reflection coefficient in the reference
model, in which the two half-spaces are isotropic. It reads
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The symbol A is used to denote the contrasts of quantities between
the bottom half-space (quantities with subscript 2) and the upper
half-space (quantities with subscript 1), e.g., Aa=a, —a;. A
bar over a term denotes an average, e.g., @ = 1/2(a; + a,). The
terms o and f denote the P- and S-wave velocities of isotropic
half-spaces of the reference model, respectively, and p is the density.
As mentioned previously, the term 6; denotes the polar incidence
angle. We can see that the P-wave reflection coefficient depends
on the contrasts of four profile WA parameters, e%, f, 57, and
yf , on the polar incidence angle 0;, and also on the contrast of refer-
ence velocities @ and f and the density p. Along the profile with the
azimuth ¢;, the four profile WA parameters of each half-space can
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be expressed in terms of 12 global WA parameters using the trans-
formation equations:

ef = e, cost g; + €, sin* p; + 5, cos? g; sin® g

+ 2€16cOS° @; sin @; + 2€54 coOs @; sin’ @;,
e =e,,
80 = 5,sin? g; + &, cos? @; + 2y, sin @; cos g;,
}’f =7, sin’ g; + Vy cos® ; + €45 cOs @; sin @ “)
For details leading to these equations, see Appendix A.

The 12 global WA parameters used in equation 4 are a part of the
complete set of 21 global WA parameters defined as follows:
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The terms Ay, 1,0 =1, 2, ..., 6, denote the density-normalized

elastic moduli in the Voigt notation and « and f denote the reference
P- and S-wave velocities in the reference isotropic medium. They
are the same as those used in equations 1 and 2.

The above-described specification of the P-wave reflection coef-
ficient 1 has a series of advantages. First, it can be applied to
anisotropy of arbitrary symmetry including tilted higher-symmetry
anisotropy. Second, the same set of WA parameters can be used for
the description of any anisotropic symmetry. There is no need to
change the parameterization when shifting from one anisotropy
symmetry to another. Third, the use of WA parameters allows varia-
tion in the choice of the reference velocities, and thus to tune the
accuracy of the approximate formula. Because we are interested in
the use of reflection coefficients for prevailingly small angles of
incidence (directions close to vertical), it is preferable to use veloc-
ities close or equal to vertical velocities as the reference velocities.
However, there is no problem in using horizontal or any other veloc-
ities as the reference velocities. The formula 1 is simple and trans-
parent.

The formula 1 is even with respect to 0;, i.e., it yields the same
results for 8; as well as —8,. This means that the reflection coefficient
1 is reciprocal (VavryCuk and PSencik, 1998). In fact, exact displace-
ment reflection coefficients from interfaces separating half-spaces of
arbitrary anisotropy often do not deviate much from reciprocal behav-
ior as will be shown in the “Tests of accuracy” section. It means that
the displacement P-wave reflection coefficients do not differ signifi-
cantly from normalized coefficients (Cerven}’f, 2001, Section 5.4.3;
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Chapman, 2004, Section 6.3.2), which are reciprocal. This is due
to the similarity of normal components of ray-velocity vectors of in-
cident and reflected waves, whose ratio represents the term by which
the displacement and normalized coefficients differ.

DESCRIPTION OF THE EVALUATION
PROCEDURE

We assume that, in each of the half-spaces, elastic parameters
specified in the crystal coordinate system and the density are avail-
able. We also assume knowledge of the orientation of the crystal
coordinate system with respect to the global one. The orientation
can be specified either by three mutually perpendicular unit vectors
used in equation A-1 or by the Euler angles ¢, 0, and v used in
equation A-2. For the determination of crystal WA parameters in
each of the two half-spaces, it is necessary to choose the reference
velocities a and f in each of them.

The four profile WA parameters necessary for the evaluation of
equation 1 for the reflection coefficient can be determined in two
ways. They can be determined either from global WA parameters, if
they are available, using equation 4, or directly from crystal WA
parameters using equation A-3 or A-6 and the procedure (based
on the replacement of ¢ by ¢ — ¢;) described in Appendix A.

If it turns out that the choice of reference velocities a and f is not
satisfactory, it is possible to replace the used values by new ones,
and obtain the new profile WA parameters from equation A-7.

TESTS OF ACCURACY

We test the accuracy of equation 1 on three models of varying
P-wave anisotropy symmetry and strength and velocity contrast
at the interface. The anisotropy strength is defined as
2(Cmax — Cmin)/ (Cmax + Cmin) X 100%, where ¢, and ¢, denote
the maximum and minimum P-wave phase velocities, respectively.
The velocity contrast is defined as 2(c; — ¢;)/(c; + ¢;) X 100%,
where ¢; and c, are the P-wave phase velocities in the upper
and bottom half-space, respectively. Three types of anisotropy sym-
metry are considered: transverse isotropic, orthorhombic, and tri-
clinic symmetries. Additional tests can be found in Farra and
Psencik (2020). The accuracy of approximate reflection coefficients
is estimated by their comparison with exactly calculated coefficients
in the program package ANRAY (Gajewski and PSencik, 1990).

The first model, taken from the study of Ivanov and Stovas
(2017), which we call ISO/TTI, consists of an isotropic upper
half-space and bottom half-space of transverse isotropy with tilted
axis of symmetry (TTI). The density is the same in both half-spaces,
p1 = p, = 2.7 g/cm®. The P- and S-wave velocities in the upper
isotropic half-space are a; = 2.37 km/s and f#; = 1.36 km/s, respec-
tively. The bottom half-space is formed by the TTI anisotropy,
whose matrix of the density-normalized elastic moduli in the Voigt
notation in the crystal coordinate system is shown in equation B-1.
The matrix is reconstructed from the values of the Thomsen (1986)
parameters used by Ivanov and Stovas (2017). The P-wave
anisotropy strength is relatively weak, approximately 5%, and
the P-wave velocity contrast at the interface varies between approx-
imately 0% and 5%.

The second model, which we call TTI/TOR, is a model consisting
of the TTI upper half-space underlain by the half-space of tilted
orthorhombic symmetry (TOR). The densities in the upper and
bottom half-spaces are p; =2.5 g/cm’® and p, = 2.2 g/cm?,
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respectively. The matrices of the density-normalized elastic moduli
in the Voigt notation in the crystal coordinate systems are shown in
equations B-2 and B-3. In the TTI/TOR model, the matrices are
rotated in the following way. Matrix B-2 is rotated with the Euler
angles ¢ = 30°, 0 = 20°, and v = 0°; matrix B-3 is rotated with the
Euler angles ¢ = 0°, @ = 60°, and v = 0°. The P-wave anisotropy
strength in both half-spaces is relatively strong, approximately 24%.
The P-wave velocity contrast also is rather high; for example, for
normal incidence, it is slightly more than 40%.

The third model consists of the upper half-space represented by
transverse isotropy with horizontal axis of symmetry (HTI) under-
lain by the triclinic (TRI) half-space. We call it the HTI/TRI model.
The density is the same in both half-spaces, p; = p, = 2.2 g/cm’.
The matrices of the density-normalized elastic moduli in the Voigt
notation in the crystal coordinate systems are shown in equations B-
4 and B-5. The matrix B-4 is rotated with the Euler angles ¢ = 0°,
=90°, and v = 0°, which makes the VTI symmetry shown in equa-
tion B-4 the HTI symmetry. The matrix B-5 is used as presented.
The P-wave anisotropy strength is in both half-spaces weaker than
in the TTI/TOR model, specifically 8% in the HTI half-space and
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17% in the TRI half-space. The P-wave velocity contrast is, for ex-
ample, slightly less than 14% for normal incidence.

The plots in Figures 1 and 2 show the P-wave reflection coeffi-
cient in the ISO/TTI model as a function of the polar angle of in-
cidence 6; along the profile with the azimuth ¢; = 0°. Four values of
the azimuth ¢ of the symmetry axis with respect to the global co-
ordinate system, ¢ = 0°, 30°, 60°, and 90°, are considered in the
bottom half-space. Exact reflection coefficients are shown by bold
curves, and approximate coefficients, calculated from equation 1,
are shown by thin curves of the same color. Black color corresponds
to 8 =0° i.e., to the VTI case, red to 6 = 30°, blue to 8 = 60°, and
green to 6 = 90°, i.e., to the HTT case. In Figures 1a, 1c, 2a, and 2c,
the reference velocities of the TTI medium in the bottom half-space
are chosen as the velocities along the axis of symmetry, i.e., as the
square roots of A1} and AT} = ALl from the matrix B-1. In Fig-
ures 1b, 1d, 2b, and 2d, the reference velocities are chosen as square
roots of A3 and Ass, where As; and Ass are elements, in the global
coordinate system, of the matrix B-1 after its above-described ro-
tation. Figures 1a, 1c, 2a, and 2c correspond to Figure 3 of Ivanov
and Stovas (2017). Although equation 1 corresponds to equation 17

of Ivanov and Stovas (2017) and the reference
velocities are chosen the same (the only differ-

50 ence between the two calculations is represented

by the WA parameter 6, which, however, does not
differ much from Thomsen’s § used by Ivanov
and Stovas [2017]), the results based on equa-
tion 1 yield surprisingly better fit, especially
for larger angles of incidence ;. A perfect fit
of approximate and exact results in Figures 1la,
lc, 2a, and 2c can be observed for zero tilt
(VTI case — black curve) and also for tilt of
30° (red curve). Visible differences can be ob-
served for larger tilts (green and blue curves).
They are caused by the more significant differ-
ence between actual vertical velocities and used

reference velocities. These differences disappear
in Figures 1b, 1d, 2b, and 2d. As mentioned pre-

o o
a) 0:(°) b) 0:(°)
0 0 10 20 30
\ 7 A
0.02 - 0.02 -
0.01 4 0.01 4
. .
a a
x x /
0.00 4 | 0.00 _/
-0.01 T T T T -0.01 T T T
o o
c) 0:(°) d) 0:(°)
0 10 20 30 40 50 0 10 20 30
\ A ) ) A 7 A
0.02 - L 0.02 -
0.01 4 - 0.01
a a
a a
< <
0.00 - L 0.00 -/
-0.01 T T T T -0.01 T T T

viously, in these plots, the reference velocities are
chosen close to vertical velocities. Due to this
choice, one can observe better fit of approximate
and exact reflection coefficients in Figures 1b,
1d, 2b, and 2d. Comparison of Figures la, Ic,
2a, and 2c¢ with Figures 1b, 1d, 2b, and 2d illus-
trates the advantage of the use of WA parameters,
which allow variation of reference velocities. In
Thomsen (1986) style parameters, the reference
velocities are implicitly taken as velocities along
the axis of symmetry. It is necessary to empha-
size that the good performance of the approxi-

Figure 1. Comparison of exact (bold) and approximate (thin) P-wave reflection coef-
ficients as functions of the polar incidence angle 0; in the ISO/TTI model. The model
corresponds to the model used by Ivanov and Stovas (2017) in their Figure 3. Isotropic
half-space parameters are ; = 2.37 km/s, f; = 1.36 km/s, and p; = 2.7 g/cm?. The
density is the same in the bottom half-space, p, = p;. Velocities a, and /3, are specified
as velocities along the axis of symmetry in (a) and (c), and as a3 = A3; and ff3 = Ass in
(b) and (d). The terms As; and Ass are the elements of the matrix B-1 after its rotation
into the global coordinate system. The axis of symmetry is specified by the azimuth ¢
and tilt @ in the global coordinate system. Results for ¢ = 0° are shown in (a) and (b) and
results for ¢ = 30° are shown in (c) and (d). Black color corresponds to 8 = 0° (VTI), red

to 6 = 30°, blue to @ = 60°, and green to § = 90° (HTI).
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mate equation 1 is due to the relatively weak
anisotropy of the ISO/TTI model.

The display of results in the remaining figures
is different from that in Figures 1 and 2. Coeffi-
cients or their errors are shown as the functions
of incidence angles, azimuth ¢;, and polar angle
0;. By the errors, we understand the differences
between approximate and exact values of the re-
flection coefficient. The azimuth ¢; is running
from 0° to 360° (Figures 3, 4, and 5) or to
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180° (Figures 6 and 7). The reason for the reduced extent of inci-
dence azimuths in the latter case is reciprocity of the reflection co-
efficient. Due to the HTI symmetry of the upper half-space, normal
components of the ray-velocity vectors of incident and reflected
waves are equal and, therefore, the standard displacement reflection
coefficient is equal to the reciprocal normalized coefficient (Cer-
veny, 2001; Chapman, 2004). The polar angle 6; is running from
0° to 30°.

C43

In Figures 3-5, we show results for the model TTI/TOR, which is
characterized by considerably stronger anisotropy than the previous
ISO/TTI model. Figure 3a shows the exact P-wave reflection coef-
ficient. Note that although the upper half-space is formed by tilted
anisotropy, Figure 3a displays features reminiscent of reciprocity
(repetition of the structure of the coefficient between ¢; = 0° and
@ = 180° after ¢ = 180°). Figure 3b shows, as a comparison with
Figure 3a, the approximate P-wave reflection coefficient calculated

Figure 2. Comparison of exact (bold) and
A approximate (thin) P-wave reflection coefficients

as functions of the polar incidence angle 6; in
the ISO/TTI model. The model corresponds to
the model used by Ivanov and Stovas (2017) in
their Figure 3. Isotropic half-space parameters
are a; =237 km/s, f; =136 km/s, and
p1 = 2.7 g/cm®. The density is the same in the
bottom half-space, p, = p;. Velocities a, and S,
are specified as velocities along the axis of sym-
metry in (a) and (c), and as a3 = Az; and 55 = Ass
in (b) and (d). The terms As; and Ass are the el-
ements of the matrix B-1 after its rotation into the
global coordinate system. The axis of symmetry is
specified by the azimuth ¢ and tilt € in the global
coordinate system. Results for ¢ = 60° are shown

T in (a) and (b) and results for ¢ = 90° are shown in
(c) and (d). Black color corresponds to 8 = 0°
(VTID), red to € = 30°, blue to € = 60°, and green

: to 6 = 90° (HTI).

Figure 3. The map of (a) exact P-wave reflection

coefficient and (b) its approximation 1 for the TTI/
TOR model. The upper half-space is specified by
the matrix of the density-normalized elastic
parameters B-2 rotated by Euler angles ¢ = 30°,
6 =20° and v = 0°. The bottom half-space is speci-
fied by the matrix B-3 rotated by Euler angles
@ =0° 6 = 60° and v = 0°. Reference P- and
S-wave velocities in both half-spaces in (b) are
specified as a®> = A3y and > = Ags, where As;
and Ass are the elements of matrices B-2 and
B-3 after their rotation into the global coordinate
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system. The angles ¢; and 0; are the angles of in-
cidence.
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from equation 1, which, as mentioned previously, is reciprocal. The
approximate coefficient in Figure 3b represents the best approxima-
tion of the exact coefficient among those which we obtained for vary-
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Figure 4. The map of absolute errors of the approximate coefficient 1 for the TTI/TOR
model. The upper half-space is specified by the matrix of the density-normalized elastic
parameters B-2 rotated by Euler angles ¢ = 30°, § = 20°, and v = 0°. The bottom half-
space is specified by the matrix B-3 rotated by Euler angles ¢ = 0°, 8 = 60°, and v = 0°.
Reference P- and S-wave velocities in both half-spaces are taken as velocities along the
axis of symmetry or intersection of symmetry planes. In the upper half-space, azbz ATl
and 7 = AT} = AIl. In the bottom half-space, a3 = A} and (a) 3 = AR and
() p = A(sjs . The angles ¢; and 6; are the angles of incidence.
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Figure 5. The map of absolute errors of the approximate coefficient 1 for the TTI/TOR
model. The upper half-space is specified by the matrix of the density-normalized elastic
parameters B-2 rotated by Euler angles ¢ = 30°, 8 = 20°, and v = 0°. The bottom half-
space is specified by the matrix B-3 rotated by Euler angles ¢ = 0°, = 60°, and v = 0°.
Reference P- and S-wave velocities in both half-spaces are specified as a> = As; and
(a) f* = Ay or (b) 7 = Ass, where As3, Ay, and Ass are the elements of the matrices B-
2 and B-3 after their rotation to the global coordinate system. The angles ¢; and 6; are
the angles of incidence.
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ing choices of reference velocities. The coefficient displayed in
Figure 3b has been obtained with the reference velocities chosen
as a> = As; and > = Ass, where Ay; and Ass are the elements

of matrices B-2 and B-3 after their rotation, as de-
scribed previously. Specific values of the above-
listed parameters can be found in the text follow-
ing equations B-2 and B-3.

Figures 4 and 5 show errors of the approxi-
mate coefficient 1 for several choices of refer-
ence velocities a and p. In Figure 4, reference
velocities are chosen as velocities along the axes
of symmetry (in the upper half-space) or intersec-
tions of planes of symmetry (in the bottom
half-space). Specifically, they are chosen as
al =AY and 2 =A% =A% in the upper
half-space. In the bottom half-space, they are
chosen as a3 = AR and 3 = AR in Figure 4a
or f3 =A% in Figure 4b. The values of the
chosen parameters can be found in matrices
B-2 and B-3. In Figure 5, reference velocities
are chosen as nearly vertical velocities. In both
half-spaces, they are chosen as a®> = Ay; with
? = Ay, in Figure 5a or > = Ass in Figure 5b.

Figures 4 and 5 are self-explanatory. Despite
relatively strong anisotropy, the errors of the
approximate formula 1 are quite small. By com-
paring Figures 4 and 5, we can see that, espe-
cially for smaller polar angles of incidence 0;,
formula 1 yields more accurate results for the
choice of reference velocities as vertical veloc-
ities (Figure 5). For the choice of reference veloc-
ities as velocities along the axes of symmetry or
intersections of symmetry planes, formula 1 yields
more accurate results in only a narrow region of
greater polar angles of incidence, 6; ~25°.
Although the choice of one of the two S-wave
velocities as a reference velocity does not seem
to play a significant role in Figure 4, the choice
of the reference velocity as the square root of
Ass in Figure 5b leads to slightly more accurate
results than in Figure 5a. For this reason, we
use the choice of Ass in the calculation of the
approximate reflection coefficient in Figure 3b.
Let us note that results of similar quality as shown
in Figure 5 could be obtained for reference veloc-
ities chosen as nearly vertical velocities in the pro-
file coordinate system. A disadvantage of such a
choice is that S-wave reference velocities vary
from profile to profile. The choice of Aj; and
Ay or Ass in the global coordinate system as
the squares of the reference velocities is the same
for any profile.

In Figures 6 and 7, results for the HTI/TRI
model are shown. In this case, anisotropy, at least
in the upper half-space, is weaker, but in the
bottom half-space we are dealing with the most
general anisotropy: triclinic symmetry. Figure 6a
shows the exact P-wave reflection coefficient and
Figure 6b shows the approximate P-wave reflec-
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tion coefficient calculated from equation 1. As mentioned previously,
due to the HTI symmetry of the upper half-space, the exact reflection
coefficient in Figure 6a is reciprocal. The approximate coefficient in
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Figure 6. The map of (a) exact P-wave reflection coefficient and (b) its approximation 1
for the HTI/TRI model. The upper half-space is specified by the matrix of the density-
normalized elastic parameters B-4 rotated by Euler angles ¢ = 0°, 8 = 90°, and v = 0°.
The bottom half-space is specified by the matrix B-5. Reference P- and S-wave veloc-
ities in both half-spaces in (b) are specified as a®> = A3; and *> = Ass, where A3; and
Ass are the elements of matrix B-4 after its rotation into the global coordinate system,
and of matrix B-5. The angles ¢; and 6, are the angles of incidence.
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Figure 6b is obtained with the reference velocities @ = As; and 7 =
Ass in the upper half-space. Here, A3; and Ass are the elements of the
matrix B-4 after its rotation to the global coordinate system. In the

bottom half-space @ = ATY' and f5 = ATH,
where ATR and ATR! are the elements of the ma-
trix B-5. In the bottom half-space, global and crys-
tal coordinate systems coincide, ATX = A3; and
Ag? I = A55.

Figure 7 shows errors of the approximate co-
efficient 1 for the choice of reference velocities
and f, which turned out to be the best. Squares of
reference velocities in both half-spaces are
chosen as As; and Ay or Ass. As in Figure 5,
the choice > = Ass yields slightly better results.
Because other tests, not shown here, lead to
similar results, we recommend this choice of
reference velocities for approximate calculations
of P-wave reflection coefficients for polar
angles of incidence 0; between 0° and 30°.
We do not present error maps for the reference
velocities chosen in the same way as in Figure 4.
Reference velocities in the upper half-space
would be chosen as horizontal velocities; the bot-
tom half-space does not offer any special direc-
tion for the specification of reference velocities.
However, it is interesting to mention that, for the
reference velocities in the upper half-space
chosen as velocities along the axis of symmetry
and in the bottom half-space as vertical veloc-
ities, the approximate formula 1 yields only
slightly worse results than shown in Figure 7.

CONCLUSION

An approximate formula for the reflection co-
efficient of unconverted P-wave applicable to
anisotropic media of arbitrary symmetry and ori-
entation is presented and tested. The formula is
based on the weak-contrast and weak-anisotropy
approximations. It consists of the well-known
formula for the approximate isotropic P-wave re-
flection coefficient and the correction “aniso-
tropic” term. Both terms play an important
role in the formula. Numerical tests show that
the proper choice of P- and S-wave-velocity con-
trasts in the isotropic term significantly affects
the accuracy of the whole approximation. The
correction term is expressed in terms of WA
parameters, which can be used for specification
of any type of anisotropy including tilted higher
symmetry anisotropy. There is no need for a dif-
ferent parameterization if another anisotropy
symmetry is considered. Easy transformation
of WA parameters (Bond transformation) from
one coordinate system to another allows simple
handling of arbitrarily tilted anisotropies.

The formula allows approximate evaluation of
the reflection coefficient along an arbitrary sur-
face profile. The formula provides clear insight
into parameter dependence. It depends on the
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contrast of four profile WA parameters. The reflection coefficient
depends linearly on the contrast of the WA parameter ! at the zero
offset, on the contrasts of the profile WA parameters &7, y¥, and e?
at short offsets, and on the contrast of the profile WA parémeter ef
at far offsets. It is shown that through the contrasts of these profile
WA parameters, the reflection coefficient is controlled by the con-
trast of the single global WA parameter ¢, at the zero offset, by the
contrasts of seven global WA parameters at short offsets, and by the
contrasts of five global WA parameters at far offsets. All together,
the reflection formula depends linearly on contrasts of nine P-wave
and three S-wave global WA parameters. Thus, 6 of 15 P-wave
global WA parameters describing P-wave propagation in the WA
approximation are not involved when general anisotropy is consid-
ered. However, in the case of higher symmetry anisotropies, such as
TTI or TOR, the complete sets of crystal WA parameters specifying
given anisotropy symmetry are involved. Another advantage of the
use of WA parameters is the freedom of choice of the reference
velocity of WA parameters, which allows the choice of the reference
velocity as close as possible to the actual velocity and, in this way,
makes the evaluation of the coefficient more accurate. For incidence
close to vertical (0°-30°), the use of the reference velocities deter-
mined as square roots of the elements A3; and Ass in the global
coordinate system is recommended. Because there are available
approximate formulas for reflection moveout and relative geometric
spreading also expressed in terms of WA parameters, it is possible to
specify the reflection coefficient, reflection moveout, and geometric
spreading with the same set of WA parameters applicable to arbi-
trary anisotropy.

Due to the use of the weak-anisotropy and weak-contrast approx-
imations, the accuracy of approximate P-wave reflection coefficient
decreases with increasing anisotropy strength and velocity contrast
at the interface. Nevertheless, highly accurate results can be ob-
tained even for P-wave velocity anisotropy stronger than 20%
and velocity contrast stronger than 40%. The presented procedure
could be used equally well for the specification of the P-wave trans-
mission coefficient. Generalization for S-waves and converted
waves would be more complicated but also feasible.
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APPENDIX A

TRANSFORMATION EQUATIONS FOR WA
PARAMETERS

Transformation equations relating WA parameters in two mutually
rotated Cartesian coordinate systems can be found in PSencik (2017).
The transformation matrix R used there transforms WA parameters
specified in an arbitrary local (crystal, profile) coordinate system to

the global WA parameters. The matrix R can be specified either in
terms of three-unit, mutually perpendicular vectors, or by three Euler
angles specifying coordinate axes of the local coordinate system with
respect to the global one.

In the former case, let us consider three-unit, mutually
perpendicular vectors t, n, and e. The transformation matrix R then
has the form

Rii Ry Ry n e h
R=| Ry Ry Ry |=|m e 6| (Al
Ry Rz R ny ez Iy

In the other case, let us consider three Euler angles ¢, 0, and v.
The Euler angles ¢ and 0 represent azimuth and polar angles speci-
fying the orientation of the third coordinate axis of the local coor-
dinate system with respect to the global one. The angle v represents
a rotation around this axis. The transformation matrix R in this case
reads

singcosfcosv+cos@siny —singcos@sinv+cosg@cosy singsind

—sinfcosv sinfsiny cosd

(A-2)

cos@cosfcosv—singsiny —cos@cosfsiny—singcosy cosgsing
R=

Let us assume that we have available global WA parameters,
specified in the global coordinate system, and we wish to express
the four profile WA parameters ¥, e£, 67, and y¥ from equation 1
associated with the profile with azimuth ¢; in terms of the global
WA parameters. It means that we wish to find WA parameters in the
coordinate system rotated around the axis x5 by the angle ¢,. Use of
the inverse of the transformation matrix R from equation A-2 leads
to equation 4.

Equation 4 was used for the evaluation of profile WA parameters
in the triclinic half-space of the HTI/TRI model. We also could use
it in all the other models if we first transformed crystal WA param-
eters to global ones and then used equation 4. However, we used a
different procedure, in which we saved one of the above-described
steps. We used equations transforming crystal WA parameters to the
global WA parameters. From them, equations transforming crystal
WA parameters to the profile ones, related to the profile with the
azimuth ¢;, can be obtained by just replacing the Euler angle ¢
by ¢ — ¢;. For this reason, equations for only four global WA
parameters ¢,, €, J,, and y, expressed in terms of crystal WA
parameters are shown in the following. To distinguish WA param-
eters in the crystal coordinate system from those in the global co-
ordinate system, we use superscripts indicating anisotropy
symmetry, OR for orthorhombic and TI for transverse isotropy.
The global WA parameters are without superscripts.

Let us start with the determination of global WA parameters ¢,,
€., Oy, and y, from WA parameters specifying the orthorhombic
symmetry in the crystal coordinate system, whose coordinate planes
coincide with the symmetry planes. In the crystal coordinate sys-
tem, an orthorhombic medium is specified by nine independent
nonzero WA parameters e2X, eDR, eOR, 5OR, §OR§OR HOR HOR,
and yOR. Global WA parameters e, €., oy, and y,, can be expressed
in terms of them in the following way:
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€, =eRn +€OR 1+ eORe} +5MRe2s? —i—b‘?Rn%t% +6MRn3ed,
e, =e®nd + eRed + R 1§ + 60Re313 + 69Rn3 i3 + 6% n3e3,
8, =6eRnin} + 6eReted 4+ 6¢R 313

+ 88 [(ert3 +e3ty)? +2e e3ty 13

+ 8R[(tyn3 + t3n1)* 4 2111311 13

+69R([(ne3+nse;)? +2n nze;e3),

2
a
Yy = 7 [€2Rnind +eRetes +eR it +6Reest 13
+5y tt3n n3 +5?Rnln3ele3]+y9Rn%+yOR 2+yORt2.

(A-3)

If the medium specified in the crystal coordinate system is a TI
medium, 9 of 21 WA parameters are again nonzero, but only five of
them are independent: e}, eI', 5%, 71, and yI'. The relations be-
tween global WA parameters €,, €, ﬁy, and y, and the preceding TI
WA parameters can be obtained from equations A-3. If the vector t
in equation A-1 is parallel to the axis of symmetry, then the vectors
n and e can be specified as

HED_I(III3,I2I3,—D2), CED_I(—tz,ll,O), (A-4)

where

D=B+123)? A+id+8E=1. (A-5)

Equations A-3 then yield

e = NG + B + €Nt 4 S35 + ).
_ TI/2 2\2 TI 4 TI 2 (2 2
€, =€ (] +15)" +e 13+ 6, 15(1] + 13),
5, =260 (36383 4+ 1) + 6} 4 601 (13 + 13 — 61113),
2
yy 7t2t2<€TI + ETI

2 1) 47711 -

[2) + yz t2 (A'6)

As mentioned previously, the transformation equations A-3 and
A-6 yield profile WA parameters €7, e, 57, and y? related to the
profile with the azimuth ¢; if the Euler angle ¢ in equation A-2 is
replaced by ¢ — ;.

The transformation equations 4, A-3, and A-6 represent the Bond
transformation (Bond, 1943; Chapman, 2004) expressed in terms of
WA parameters.

We also present useful equations for the determination of WA
parameters with respect to a new set of reference P- and S-wave
velocities. If we replace the original reference velocities a and f
by new reference velocities a’ and ', WA parameters transform
in the following obvious way:

er=1/2(k2 = 1) + Ke,, €l =1/2(k3 = 1) + ke,
& =ki(1+6,) =1, yy=1/2(kz—1)+ky,. (A7)

The factors k, and kj used in equation A-7 are the ratios of original
and new reference velocities, k, = a/a’ and k; = /p’.
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APPENDIX B

MATRICES OF THE DENSITY-NORMALIZED
ELASTIC MODULI IN TESTED MODELS

Matrices of the density-normalized elastic moduli in the Voigt
notation are presented in the crystal coordinate system. In the tested
models, the matrices have been rotated as described in the main text
and the following.

Model ISO/TTI

This model, from Ivanov and Stovas (2017), consists of the
isotropic upper half-space specified by P- and S-wave velocities
a; =2.37 km/s and f; = 1.36 km/s. The density is p; = 2.7
g/cm3. The matrix of the density-normalized elastic moduli in
(km/s)? specifying transverse isotropy of the bottom half-space
in the crystal coordinate system is

6.18 1.74 203 O 0 0
6.18 203 O 0 0
562 0 0 0
I _ -
AT = 1.85 0 0o | (B-1)
1.85 0
222

The density is the same as in the upper half-space, p, = 2.7 g/cm’.
Model TTI/TOR

The matrix of the density-normalized elastic moduli in (km/s)?
specifying transverse isotropy of the upper half-space in the crystal
coordinate system has the form

694 3.64 270 O 0 0
694 270 O 0 0
428 0 0 0
I _ -
A 123 0 0 | (B-2)
123 0
1.65

Rotation of the matrix B-2 by ¢ = 30°, € = 20°, and v = 0° yields in
the global coordinate system: As; =4.50, Ay =129, and
Ass = 1.31 (km/s)?. These values are used as the squares of the
reference velocities in the tests.

The matrix of the density-normalized elastic moduli in (km/s)?
specifying orthorhombic anisotropy of the bottom half-space in the
crystal coordinate system has the form

12.27 487 3.05 O 0 0
13.44 331 O 0 0
810 O 0 0
OR _ -
AT = 270 0 0 (B-3)
218 0
297

Rotation of the matrix B-3 by ¢ = 0°, 8 = 60°, and v = 0° yields in
the global coordinate system: Az; = 10.19, Ay =2.90, and
Ass = 3.22 (km/s)?. The densities in the upper and bottom half-
spaces are p; = 2.5 g/cm’ and p, = 2.2 g/cm’, respectively.
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Model HTI/TRI

The matrix of the density-normalized elastic moduli in (km/s)?
specifying transverse isotropy of the upper half-space in the crystal
coordinate system has the form

1571 505 446 O 0 0
1571 446 0 0 0
1339 0 0 0
TI _ -
AT= 498 0 0 (B-4)
498 0
5.33

Rotation of the matrix B-4 by ¢ =0°, § =90°, and v = 0° yields in the
global coordinate system: Asz = 15.71, Ay =5.33, and
Ass = 4.98 (km/s)?. These values are used as the squares of the
reference velocities in the tests.

The matrix of the density-normalized elastic moduli in (km/s)?
specifying triclinic anisotropy of the bottom half-space in the crystal
coordinate system has the form

19.81 8.62 9.00 —2.37 —1.44 0.95
25.79 9.09 0.57 —0.99 —0.89
20.68 —2.10 0.43 0.49

TRI _ -
AT = 7.17 -0.15 -0.08 |’ (B-5)
8.14 —0.33
6.49

In this case, the global coordinate system is identical to the
crystal one. The density is the same in both half-spaces,

p1=py =22 g/en’.
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