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Abstract An attempt is made to extend the appli-
cability of the weak-attenuation concept (WAC) to
ray-theory computations. WAC allows an approximate
evaluation of effects of attenuation on seismic-wave
propagation in smoothly varying laterally inhomo-
geneous media encountered in most seismological
studies. The goal is to find under which conditions
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WAC could be applicable to layered media. Specif-
ically, if the use of WAC is necessary, under which
conditions it can be used for the approximate eval-
uation of the reflection and transmission coefficients
at interfaces separating attenuating media. It turns
out that outside critical incidence regions, where the
ray theory is not applicable, the effects of attenua-
tion on the reflection and transmission are negligible
in comparison with effects of attenuation on wave
propagation inside layers. Despite it, the approximate
formulae for reflection and transmission coefficients
including effects of attenuation are derived and pre-
sented. For better insight and simplicity, effects of
attenuation on SH plane-wave coefficients at inter-
faces separating homogeneous, attenuating isotropic
half-spaces are studied. The coefficients are expressed
in the form of the sum of coefficients in a reference
elastic medium plus a perturbation due to weak atten-
uation. The study is based on the assumption of the
validity of the correspondence principle despite indi-
cations of its inapplicability in some situations. A
fixed frequency is considered. A basic role in the eval-
uation of coefficients is played by slowness vectors
of incident and transmitted waves. They are required
to satisfy constraints resulting from the correspond-
ing equation of motion, Snell’s law and radiation
condition. The resulting formulae for coefficients are
singular for the angles corresponding to critical inci-
dence in the reference elastic medium. It is shown that
the approximate formulae work well in the subcriti-

/ Published online: 22 November 2021

J Seismol (2022) 26:15–34

http://crossmark.crossref.org/dialog/?doi=10.1007/s10950-021-10052-x&domain=pdf
http://orcid.org/0000-0002-8246-0857
http://orcid.org/0000-0002-9597-6502
mailto:ip@ig.cas.cz
mailto:wcislo@irsm.cas.cz
mailto:wcislo@irsm.cas.cz
mailto:pfdaley@gmail.com


cal region. Problems arise in the overcritical region of
reference elastic media. The problems are related to
the inapplicability of the commonly used correspon-
dence principle. An artificial modification of formulae
is proposed, which resolves the problem. However, it
leads to the violation of the equation of motion and
Snell’s law constraints.

Keywords Attenuation · Weak-attenuation concept ·
Correspondence principle · SH-wave displacement
reflection/transmission coefficients

1 Introduction

Realistic media are generally attenuating. A common
way to study such media is to use the so-called cor-
respondence principle (Bland 1960; Carcione 2014;
Borcherdt 2009, 2020). This allows wave propaga-
tion results to be obtained in attenuating media from
the results in the reference elastic media by replac-
ing real-valued elastic parameters by their complex-
valued anelastic counterparts. Although the conditions
of applicability of the correspondence principle to the
problem of reflection and transmission are in some
cases not satisfied (Bland 1960, p.67; Borcherdt 2009,
pp. 119–120), we use the correspondence principle as
a basis of the approximate approach introduced below.

The motivation for our interest in evaluation of
effects of attenuation on plane-wave displacement
reflection and transmission coefficients is the gener-
alization of program packages (Červený and Pšenčı́k
1984; Gajewski and Pšenčı́k 1990) based on high-
frequency asymptotic methods, specifically the ray
method, to laterally varying, layered attenuating
media. In both packages, effects of attenuation can
be considered inside layers using the so-called weak-
attenuation concept (WAC). Although approximate,
WAC is applicable in most seismological studies deal-
ing with smooth media. Here, we study the effects
of attenuation on reflection and transmission pro-
cesses and necessity to consider them in the mentioned
packages.

Straightforward application of the ray method to
attenuating media leads to complex-valued ray trac-
ing (Thomson 1997). This is a quite complicated and
time-consuming procedure. If, however, attenuation is
not too strong, which is often the case, it is possible to
consider the attenuation as a perturbation of the elastic

state, and use WAC. WAC was proposed by Kravtsov
and Orlov (1990) and applied by Moczo et al. (1987)
and Gajewski and Pšenčı́k (1992) to seismic wave
propagation in smooth, isotropic and anisotropic, lat-
erally varying, weakly attenuating media. Alternative
approaches were proposed by, for example, Vavryčuk
(2008) or Klimeš and Klimeš (2011). They differ in
the way of the construction of the reference Hamil-
tonian used in the reference eikonal equation. All
above-mentioned approaches lead to real-valued ray
tracing in a reference elastic medium. Effects of atten-
uation are calculated by numerical quadratures along
real-valued rays, which simplifies significantly the
computational procedure.

We concentrate on the simplest case represented
by reflection and transmission of an SH wave at an
interface between two isotropic, attenuating media.
This problem has been studied, among many others,
by Buchen (1971), Borcherdt (1977), Krebes (1983),
Richards (1984), Brokešová and Červený (1998),
Ruud (2006), Krebes and Daley (2007), Sidler et al.
(2008), Vavryčuk (2010), Daley and Krebes (2015)
or Ursin et al. (2017). The problem is also discussed
in several textbooks, see, e.g., Carcione (2014) or
Borcherdt (2009, 2020).

Authors of many of the above-mentioned studies
faced a problem of the choice of the sign of the
square root in the expression for the vertical com-
ponent of the slowness vector of a generated (trans-
mitted) wave in case of overcritical incidence. The
problem is described in a great detail by Krebes and
Daley (2007) and investigated further by Daley and
Krebes (2015). Some authors, for example Behura and
Tsvankin (2009) or Sharma and Nain (2021), avoided
this problem by concentrating on only subcritically
reflected and transmitted waves or on waves reflected
from a free surface. We are interested in both, subcrit-
ical and overcritical reflections, and try to avoid the
problem of square roots by the use of the perturbation
approach. Use of the perturbation approach implicitly
includes “continuity” criterion of Krebes and Daley
(2007), which should guarantee a continuous tran-
sition of the reflection or transmission coefficients
from anelastic to elastic media when the attenuation
diminishes.

The approximate approach proposed in this paper
starts from the presentation of expressions for the
plane-wave displacement SH reflection and transmis-
sion coefficients, which are formally the same for
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elastic and anelastic media. The only difference is
that, due to the application of the correspondence
principle, velocities and slowness vectors are real val-
ued in elastic and complex valued in anelastic media
(Krebes 1983; Carcione 2014; Krebes and Daley
2007; Borcherdt 2009). In this study, the complex-
valued SH-wave slowness vectors are assumed to be
confined to the plane of incidence. This guarantees the
factorization of the system of equations for reflection
and transmission coefficients into the 4 ×4 system
for P and SV waves and 2 × 2 system for SH waves
(Brokešová and Červený 1998).

In the following, we often use the terms subcriti-
cal, critical or overcritical incidence. It is important to
emphasize here that they always relate to the reference
elastic case.

The basic role in the expressions for the reflection
and transmission coefficients is played by complex-
valued slowness vectors of incident and transmitted
waves. Real-valued parts of slowness vectors are
called propagation vectors and imaginary parts are
called attenuation vectors. If these two vectors are par-
allel, the corresponding wave is called homogeneous,
if their directions differ, the wave is called inhomo-
geneous. The angle, which the two vectors make, is
called the attenuation (inhomogeneity) angle γ . Slow-
ness vectors of incident and generated homogeneous
or inhomogeneous waves at an interface separating
two weakly attenuating media should satisfy the fol-
lowing conditions:

a) the approximate constraint relation resulting
from the corresponding equation of motion;
b) Snell’s law, which requires equality of tangential
components of complex-valued slowness vectors of
the incident and generated waves;
c) the radiation condition, which requires decay
of amplitudes of generated waves away from the
interface in case of generation of inhomogeneous
waves.

In WAC, attenuation represents a perturbation of
the slowness vector in the reference elastic medium.
The proposed approach does not involve the above-
mentioned selection of signs of square roots deter-
mining vertical components of slowness vectors of
transmitted wave in the anelastic medium. The prob-
lem of the selection of the sign is solved, in a standard
way, in the reference elastic medium. Incident wave,
generating reflected and transmitted waves may be

homogeneous as well as inhomogeneous. The limi-
tation of the presented approach is only its expected
decrease of accuracy with increasing strength of atten-
uation and/or with increasing inhomogeneity of the
incident wave. The resulting coefficients are singular
for critical angles of waves incident at the interface
in the reference elastic medium, and thus inaccurate
in the vicinity of these angles (see Buchen 1971,
discussing a similar problem). As Krebes and Daley
(2007) point out, the singularity of the coefficients in
the critical region is not a serious limitation since the
ray theory does not work properly in the critical region.

The paper has the following structure. In the next
section, we introduce the SH-wave reflection and
transmission coefficients for attenuating media and
describe the quantities specifying them. In Section 3,
we specify slowness vectors of incident and transmit-
ted waves. The behavior of slowness vectors of the
transmitted wave in the transition from subcritical to
overcritical region is analyzed. In Section 4, we dis-
cuss properties of the derived coefficients and present
their simplified, slightly less accurate versions, in the
form of “elastic” coefficients and their “anelastic”
corrections. The accuracy of the derived expressions
is then tested on several models in Section 5. We
compare them with results obtained without the use
of the correspondence principle (Daley and Krebes
2015). The main results are discussed in Section 6
and summarized in Section 7. The Einstein summation
convention over repeated indices is used.

2 Basic equations

Expressions for the SH-wave displacement reflection
and transmission coefficients at an interface separat-
ing two elastic half-spaces can be found in many
forms in various textbooks (Červený, 2001, eq.5.3.2;
Carcione 2014, eq.3.172; Aki and Richards 2002,
eq.5.33; Chapman 2004, eq.6.3.7). Use of the corre-
spondence principle (Carcione 2014; Borcherdt 2009,
2020) leads to the replacement of real-valued veloc-
ities in the formulae for reflection and transmission
coefficients by their complex-valued counterparts. We
consider SH waves whose propagation and attenuation
vectors of incident and generated waves are situated
in one plane, the plane of incidence (Borcherdt 2009,
eqs 5.4.18, 5.4.19). We use the plane SH-wave reflec-
tion and transmission displacement coefficients in the
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form:

R = ρ1β
2
1piNi − ρ2β

2
2p

(t)
k Nk

ρ1β
2
1piNi + ρ2β

2
2p

(t)
k Nk

,

T = 2ρ1β
2
1piNi

ρ1β
2
1piNi + ρ2β

2
2p

(t)
k Nk

. (1)

Symbols ρ1, ρ2 and β1, β2 denote densities and S-
wave velocities in the upper (ρ1, β1) and lower (ρ2, β2)
half-spaces. Incident and reflected waves propagate in
the upper half-space, transmitted wave propagates in
the lower half-space. Symbols p and p(t) denote slow-
ness vectors of incident and transmitted SH waves,
respectively. The symbol N in Eq. 1 denotes the unit
normal to the interface. It is positive upwards, opposite
to the direction of propagation of the incident wave.

In media with high quality factors Q, velocities βm

(m = 1, 2) can be expressed approximately (neglect-
ing higher-order terms) as in, e.g., Aki and Richards
(2002), Krebes and Daley (2007), or Borcherdt (2009,
2020):

βm(ω) = βR
m(ω) + iβI

m(ω) = βR
m(ω)[1 − i

2
Q−1

m (ω)]
(2)

(no summation over m). Symbol Qm denotes the qual-
ity factor in the mth half-space. Throughout the paper,
we work exclusively with the S-wave velocity βR

m of
the reference elastic medium. For the sake of simplic-
ity, we denote it βm in the following, without using
the superscript R. Velocities βm as well as quality fac-
tors Qm are frequency dependent, i.e., βm = βm(ω),
Qm = Qm(ω). We consider ω fixed throughout the
paper. The use of the minus sign in on the right-hand
side of Eq. 2 corresponds to the form of the expo-
nential factor of the time-harmonic plane waves used:
exp[−iω(t − pkxk)]. The components pk and p

(t)
k of

slowness vectors of incident, p, and transmitted, p(t),
waves in attenuating media can be expressed in the
following form:

pi = Pi + iAi , p
(t)
i = P

(t)
i + iA(t)

i . (3)

In Eq. 3, P and P(t) are propagation vectors, and A
and A(t) are attenuation vectors. Note that instead of
the slowness vector p, some authors (e.g., Aki and
Richards 2002) decompose the wave vector k = ωp.
Propagation and attenuation vectors are real valued.
For the incident wave, the propagation vector P is the

slowness vector in the reference elastic medium, and
the attenuation vector A represents its perturbation.

3 Slowness vectors

Under the weak-attenuation approximation, (Q � 1;
higher-order terms containing Q−1 neglected), slow-
ness vectors of incident and transmitted waves should
satisfy important constraint relations resulting from
the equation of motion in the corresponding attenuat-
ing medium:

pipi = β−2(1 + iQ−1) . (4)

Inserting p and p(t) from Eq. 3 to Eq. 4, and neglecting

higher-order terms, we obtain:

PiPi = β−2
1 , PiAi = 1

2
β−2

1 Q−1
1 ,

P
(t)
i P

(t)
i − A

(t)
i A

(t)
i = β−2

2 , P
(t)
i A

(t)
i = 1

2
β−2

2 Q−1
2 . (5)

Let us first specify the slowness vector of the
incident wave.

3.1 Incident wave

If the incident wave propagates in an elastic medium,
its attenuation vector is zero, A = 0. In this case,
components of the slowness vector read:

pi = Pi . (6)

In an attenuating medium, the attenuation vector A is
non-zero. We consider it to be situated in the plane of
incidence formed by vectors P and N, and to be small
in order to represent a perturbation of P. The slowness
vector p satisfying the first and second of Eq. 5 has
components:

pi = Pi + iAi = Pi + i

2
aiβ

−1
1 Q−1

1 cos−1 γ

= Pi + i
(1

2
Q−1

1 Pi + Dmi

)
. (7)

In Eq. 7, a is a unit vector in the direction of the atten-
uation vector A, γ is the attenuation angle (the angle
between P and A). The vector m is a unit vector per-
pendicular to P, situated in the plane of incidence. It
is obtained by the clockwise rotation from the vec-
tor P in the plane of incidence. The slowness vector p
is thus confined to the plane of incidence. The sym-
bol D denotes the inhomogeneity factor (Červený and
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Pšenčı́k 2008). For D = 0, the wave is homoge-
neous, for D �= 0, the wave is inhomogeneous. The
inhomogeneity factor D represents a more convenient
characterization of the inhomogeneity of a wave than
the attenuation angle γ . For the relation between the
factor D and the attenuation angle γ for SH waves
in an isotropic viscoelastic medium, see equations (7)
and (12) of Červený and Pšenčı́k (2005).

In WAC, the slowness vector p whose components
are given in Eq. 7 can be considered as the slowness
vector in the reference elastic medium plus a pertur-
bation due to the attenuation and/or inhomogeneity
of the wave. The perturbation term is the attenuation
vector A. This means that β−1

1 Q−1
1 and D must be

small.

3.2 Transmitted wave

The complex-valued slowness vector of a transmit-
ted wave, p(t), should, in addition to the approximate
satisfaction of the constraint relation (4) in the lower
half-space, satisfy generalized Snell’s law:

p
(t)
i − (p

(t)
k Nk)Ni = pi − (pkNk)Ni . (8)

Equation 8 implies that horizontal components of
slowness vectors of the generated and incident waves
are the same. The real part of the horizontal com-
ponent of the slowness vector is the real-valued ray
parameter p,

p = Pi − Ni(PkNk) = sin i/β1 . (9)

The symbol i in Eq. 9 denotes the incidence angle. For
p

(t)
i , we get from Eq. 8:

p
(t)
i = pi − (pkNk)Ni + (p

(t)
k Nk)Ni , (10)

see also equation (19) of Červený (2007). Our goal is
the evaluation of the projection p

(t)
k Nk of the slowness

vector p(t) of the transmitted wave to the normal N to
the reflector.

Let us introduce the following notation:

X1 = −β1PiNi , X2 = −β2P
(t)
i Ni ,

ξ = −β1AiNi , ξ (t) = −β2A
(t)
i Ni . (11)

Using Eq. 3 and the notation in Eq. 11, we can rewrite
Eq. 10 as

P
(t)
i + iA(t)

i = Pi + β−1
1 X1Ni + i(Ai + β−1

1 ξNi)

− β−1
2 X2Ni − iβ−1

2 ξ (t)Ni . (12)

The quantities X1 and X2 in Eq. 12 are the square
roots, well known from studies of reflection and trans-
mission in elastic media. They can be expressed in
terms of the ray parameter p and the corresponding
velocity βm:

X1 = (1−β2
1p2)1/2 , X2 = (1−β2

2p2)1/2 , (13)

see Červený (2001; eq. 5.3.5, where X1 and X2 are
denoted P2 and P4). If β2 > β1, the term X2 may
become imaginary, specifically for p > β−1

2 (overcrit-
ical incidence in the reference elastic medium). The
term X2 then reads:

X2 = iX̄2 = i(β2
2p2 − 1)1/2 . (14)

Here, X̄2 is a real-valued term. The positive sign on
the right-hand side of Eq. 14 results from the radia-
tion condition applied in the reference elastic medium
(decay of amplitudes of the transmitted wave with
increasing distance from the interface). It corresponds
to the above-mentioned use of the exponential factor
exp[−iω(t − pkxk)].

The term ξ in Eq. 12 can be determined from
the specification of the incident, generally inhomoge-
neous, wave, see Eq. 7:

ξ = 1

2
Q−1

1 X1 − β1DmiNi . (15)

The term ξ may be positive or negative. It is zero for
the attenuation vector A perpendicular to the normal
N to the interface, see the third of Eq. 11.

The term ξ (t) can be determined by inserting the
expressions for the vectors P

(t)
i and A

(t)
i given in

Eq. 12 into the last of Eq. 5. From an inspection
of Eq. 12, it is obvious that its separation into the
propagation and attenuation vector is different for sub-
critical and overcritical incidence because the term
X2 behaves differently in subcritical and overcritical
regions, see Eqs. 13 and 14. The same holds for ξ (t).
Substitution of vectors P

(t)
i and A

(t)
i given in Eq. 12

with the real-valued ξ (t) into the last of Eq. 5 for
overcritical incidence leads to unacceptable results.
Thus the term ξ (t), which has the character of a direc-
tional cosine (similarly to X2), must be considered
imaginary:

ξ (t) = iξ̄ (t) . (16)

In Eq. 16, ξ̄ (t) is a real-valued term.
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Let us specify (12) for subcritical and overcritical
incidence separately.

For subcritical incidence, Eq. 12 yields

P
(t)
i = Pi + β−1

1 X1Ni − β−1
2 X2Ni ,

A
(t)
i = Ai + β−1

1 ξNi − β−1
2 ξ (t)Ni . (17)

The first two terms on the right-hand sides of expres-
sions for P(t) and A(t) represent components of these
vectors tangent to the interface, the last terms repre-
sent components perpendicular to it. The term X2 in
the first of Eq. 17 is given in Eq. 13. The term ξ (t)

in the second of Eq. 17 can be determined from the
substitution of the propagation and attenuation vectors
from Eq. 17 into the last of Eq. 5. For ξ (t), we get

ξ (t) = 1

2
ZX−1

2 , (18)

where

Z = Q−1
2 − Q−1

1 β2
2p2 − 2X1β

−1
1 β2

2DmiNi . (19)

From Eq. 18, we can immediately see that ξ (t) is
singular for critical incidence, for which X2 = 0.
Thus, we must expect that in the vicinity of the criti-
cal point of the reference elastic medium, ξ (t) will be
determined inaccurately.

Since X2 is always positive in the subcritical
region, see Eq. 13, the propagation vector of the
transmitted wave in Eq. 17 always points into the half-
space where the transmitted wave propagates. Because
the term ξ (t) controlling the vertical component of the
attenuation vector may attain both positive or negative
values, the attenuation vector of the transmitted wave
may point into any of the two half-spaces. Its orien-
tation into the upper half-space represents growth of
the amplitude of the transmitted plane wave with dis-
tance from the interface, the phenomenon studied and
explained by Richards (1984).

For overcritical incidence, taking into account
Eqs. (14), (16) and (12) yields:

P
(t)
i = Pi + β−1

1 X1Ni + β−1
2 ξ̄ (t)Ni,

A
(t)
i = Ai + β−1

1 ξNi − β−1
2 X̄2Ni . (20)

As in the case of subcritical incidence, the first two
terms on the right-hand sides of expressions for P(t)

and A(t) represent components of these vectors tan-
gent to the interface, the last terms represent com-
ponents perpendicular to it. The term X̄2 is given in

Eq. 14. The term ξ̄ (t) can be again determined by
inserting P(t) and A(t) from Eq. 20 into the last of
Eq. 5. This leads to the expression for ξ̄ (t):

ξ̄ (t) = −1

2
ZX̄−1

2 , (21)

where Z is given in Eq. 19. Equations 21, like 18,
is inaccurate in the vicinity of critical incidence since
X̄2 → 0 when critical incidence is approached.

From Eq. 20, we can see that for overcritical
incidence, the attenuation vector always points into
the half-space, in which transmitted wave propagates
since X̄2 is always positive, see Eq. 14. The verti-
cal component of the propagation vector is, in this
case, controlled by the perturbation term ξ̄ (t), which
may be both positive or negative. This means that the
propagation vector may point into any of the two half-
spaces. The propagation vector pointing into the upper
half-space, however, contradicts results obtained by
Borcherdt (2009), according to which, the propaga-
tion vector of the transmitted wave should always
point into the lower half-space. We return to this
phenomenon later in the text.

We can see the important role of the term Z ,
appearing in Eqs. 18 and 21, which it plays in the
determination of vertical components of the slow-
ness vector of the transmitted wave in an attenuating
medium.

Let us first check behavior of the attenuation vec-
tor. In the subcritical region, the term Z controls the
orientation of the attenuation vector of the transmit-
ted wave, see Eq. 17. For Z positive, the attenuation
vector points to the lower half-space, for Z negative,
it points to the upper half-space. As mentioned above,
Richards (1984) showed that the orientation of the
attenuation vector to the upper half-space represent-
ing growth of the amplitude of the transmitted wave
with the distance from the interface is an acceptable
phenomenon. In the overcritical region, the attenua-
tion vector always points into the lower half-space, see
Eq. 20.

Let us now check the propagation vector. In
the subcritical region, the propagation vector points
always to the lower half-space, see Eq. 17, no matter
the sign of the term Z . The situation is different in
the overcritical region. For Z positive, the propagation
vector points to the lower half-space, for Z negative,
it points to the upper half-space. In the latter case,
we are in conflict with the observation of Borcherdt
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(2009), according to which, the propagation vector of
the transmitted wave must always point into the lower
half-space. This result clearly indicates that there is a
problem with the applicability of the correspondence
principle.

Let us check under what conditions and where Z
becomes negative. For a homogeneous wave incident
from the upper half-space, the term Z in equation (19),
reduces to Z = Q−1

2 −Q−1
1 β2

2p2. The term Z is posi-
tive for normal incidence (p = 0) and it becomes zero
when p2 = β−2

1 sin2 i = β−2
2 Q1Q

−1
2 , i.e., when

sin2 i = Q1Q
−1
2 β2

1β−2
2 = Q1Q

−1
2 sin2 i∗ . (22)

Here, i∗ denotes the critical angle. From Eq. 22 we can
see that for Q1 = Q2, i.e., when the attenuation is the
same in both half-spaces, Z becomes zero exactly for
i = i∗, i.e. for critical incidence. For Q2 > Q1 (real-
istic situation), changing Z from positive to negative
occurs in the subcritical region, for Q2 < Q1 (rare
case) in the overcritical region.

If the incident wave is inhomogeneous, the last term
in Eq. 19 causes a shift of the change of the sign of Z .
If the last term in Eq. 19 is negative, the change of the
sign of Z shifts towards larger values of the incidence
angle i, i.e., towards the overcritical region. If the last
term in Eq. 19 is positive, the change of the sign of Z
shifts towards the subcritical region. Except for nor-
mal incidence, the scalar product m · N in Eq. 19 is
negative. Therefore, if D (or γ ) is positive, the change
of the sign of Z shifts towards the overcritical region.
If D (or γ ) is negative, the change shifts towards the
subcritical region.

It follows from the above analysis that when Q2 <

Q1, the propagation vector of the transmitted wave
generated by an incident homogeneous wave starts
to point to the upper half-space for an overcritical
incidence. When Q2 > Q1, the propagation vector
behaves like this since critical incidence. As men-
tioned above, this contradicts results of Borcherdt
(2009), and indicates inapplicability of the corre-
spondence principle. In Section 5, we show that the
described behavior of the propagation vector of the
transmitted wave leads to distortions in the reflection
and transmission coefficients, which may be artifi-
cially corrected.

4 Reflection and transmission coefficients

Using the results of previous sections, coefficients in
Eq. 1 can be rewritten in the following form:

R = A − B

A + B
, T = 2A

A + B
, (23)

where

A = ρ1β
2
1 (1 − iQ−1

1 )(Pi + iAi)Ni ,

B = ρ2β
2
2 (1 − iQ−1

2 )(P
(t)
i + iA(t)

i )Ni . (24)

The propagation and attenuation vectors, P and A,
related to the incident wave, are given in Eq. 7. The
propagation and attenuation vectors, P(t) and A(t),
related to the transmitted wave, are given in Eq. 17 for
the subcritical and in Eq. 20 for overcritical incidence.

If attenuation is the same on both sides of the
interface (Q1 = Q2 = Q) and the incident wave
is homogeneous, i.e., ξ = 1

2Q−1X1, then ξ (t) =
1
2Q−1X2 and ξ̄ (t) = 1

2Q−1X̄2. As a consequence,
Eqs. 23 and 24 reduce to Eq. 1, in which the slowness
vectors p and p(t) are replaced by the propagation vec-
tors P and P(t), respectively. This confirms Buchen’s
(1971) statement that “when Q is the same for both
media, the waves display properties similar to the case
of perfect elasticity”. See also Krebes (1983).

If velocities and densities are the same in both half-
spaces, β2 = β1, ρ2 = ρ1, but Q2 �= Q1, the
reflection coefficient is non-zero. This case has been
studied by Lines et al. (2008).

If media on both sides of the interface are elastic
and the incident wave is homogeneous, Eq. 23 reduces
to Eq. 1 for elastic media. In this case, Q−1

1 and Q−1
2

are zero and due to the homogeneity of the incident
wave, ξ , ξ (t) and ξ̄ (t) are also zero.

Coefficients in Eq. 23 can be rewritten into the
form of sums of coefficients for reference elastic
media plus corrections related to the weak attenuation,
see Buchen (1971, eq.8.1). This process is, however,
connected with a certain loss of accuracy caused by
neglecting higher-order terms. The simplified reflec-
tion and transmission coefficients can be expressed as:

R = Rel + �C , T = Tel + �C . (25)

In Eq. 25, Rel and Tel represent the reflection
and transmission coefficients in the reference elas-
tic medium, and �C is the correction due to weak
attenuation. It is the same for both the reflection and
transmission coefficients.
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The reflection and transmission coefficients Rel

and Tel are equivalent to Eq. 1, and are:

Rel = ρ1β1X1 − ρ2β2X2

ρ1β1X1 + ρ2β2X2
, Tel = 2ρ1β1X1

ρ1β1X1 + ρ2β2X2
.

(26)

The correction term �C reads:

�C = 2iρ1β1ρ2β2
[X2ξ − X1ξ

(t) + X1X2(Q
−1
2 − Q−1

1 )]
(ρ1β1X1 + ρ2β2X2)2

.

(27)

The terms X1 and ξ are given in Eqs. 13 and 15,
respectively. For subcritical incidence, X2 and ξ (t) are
given in Eqs. 13 and 18, respectively, for overcritical
incidence, X2 = iX̄2 and ξ (t) = iξ̄ (t), see Eqs. 14 and
16 with 21, respectively.

If the attenuation is the same on both sides of the
interface (Q1 = Q2 = Q) and the incident wave
is homogeneous, the numerator in Eq. 27 vanishes
resulting in �C = 0. The coefficients R and T in
Eq. 25 reduce to coefficients corresponding to the
elastic reference medium.

The term �C also vanishes when both half-spaces
are elastic and the incident wave is homogeneous, i.e.,
when Q−1

1 = Q−1
2 = ξ = ξ (t) = 0.

5 Numerical tests

In this section, we present examples of the use of
formulae (23) with (24). We concentrate on models
with higher S-wave velocities in the lower half-space,
because in the elastic case, they display the criti-
cal incidence phenomenon. Treatment of models with
opposite ratios of S-wave velocities presents no prob-
lem. For testing purposes, we use models M1, M2, and
M3 proposed by Brokešová and Červený (1998).

We first concentrate on models M2 and M3 because
they are characterized by attenuation, which might be
considered moderate. Both models have the same S-
wave velocities and densities, β1 = 3.698, β2 =
4.618 km/s and ρ1 = 2.98, ρ2 = 3.3 kg/m3,
respectively. The models M2 and M3 differ by the

Fig. 1 The term Z , see
Eq. 19, as a function of the
incidence angle for incident
homogeneous wave
(middle) and
inhomogeneous waves with
γ = −30◦ (top) and
γ = 30◦ (bottom) for model
M3 of Brokešová and
Červený (1998) (Q1 > Q2):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 75, Q2 = 50.
Vertical lines B and C
indicate positions of the
Brewster and critical angles
in the reference elastic
medium, respectively
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values of the quality factors Q. In the more realis-
tic (Q1 < Q2) model M2, Q1 = 50 and Q2 =
75, in the model M3, the quality factors are inter-
changed, Q1 = 75 and Q2 = 50. Greater velocities
in the lower half-space than in the upper half-space
result in the existence of the critical angle in the ref-
erence elastic medium, at approximately 52◦. Another
important phenomenon is the existence of the Brew-
ster angle at approximately 43◦, at which the modulus
of the reflection coefficient in the reference elastic
medium vanishes (the term Brewster angle is taken
from electromagnetics, see, e.g., Born and Wolf 1959).
The Brewster angle is caused by the negative value
of the reflection coefficient (26) at the normal inci-
dence and its positive value (equal to 1) at the critical
point.

The attenuation in the model close to the model
M1 of Brokešová and Červený (1998) cannot be con-
sidered weak. The quality factors are Q1 = 15,
Q2 = 22, and velocities and densities are β1 = 1.44
and β2 = 2.08 km/s, ρ1 = 2.0 and ρ2 = 2.0
kg/m3. We use the model M1 to illustrate how WAC

performs in media with stronger attenuation. The crit-
ical angle in the reference elastic model for the model
M1 is at approximately 44◦, and the Brewster angle is
at approximately 35◦.

Figures 1 and 2 illustrate the behavior of the term
Z , see Eq. 19, in models M3 and M2, respectively.
Both figures show the variation of the term Z with the
angle of incidence i of the incident inhomogeneous
waves with attenuation angles γ = −30◦ (top) and
γ = 30◦ (bottom), and of the incident homogeneous
wave (γ = 0◦) in the middle. In Fig. 1, the term Z in
the model M3 (Q1 > Q2) is positive for all considered
attenuation angles in the subcritical region and around
critical incidence (for γ = −30◦ only slightly). This
means that the propagation vector of the transmitted
wave points into the lower half-space in subcritical
region and even around critical incidence. The term
Z becomes slightly negative in the overcritical region,
which results in the unacceptable orientation of the
propagation vector of the transmitted wave into the
upper half-space. In Fig. 2, the behavior is shown of
the term Z in the model M2, the situation is different.

Fig. 2 The term Z , see
Eq. 19, as a function of the
incidence angle for incident
homogeneous wave
(middle) and
inhomogeneous waves with
γ = −30◦ (top) and
γ = 30◦ (bottom) for model
M2 of Brokešová and
Červený (1998) (Q1 < Q2):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 50, Q2 = 75.
Vertical lines B and C
indicate positions of the
Brewster and critical angles
in the reference elastic
medium, respectively
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In this case, the term Z becomes negative even before
critical incidence of the homogeneous wave and for
the inhomogeneous incident wave with γ = −30◦.
This leads to a discontinuous change of the orientation
of the propagation vector in the critical region. As a
result, the propagation vector of the transmitted wave
points to the upper half-space in the whole subcritical
region. The only exception is the case of the incidence
of the inhomogeneous wave with γ = 30◦, for which
the term Z is positive within the whole subcritical
region as in Fig. 1.

Effects of the above described behavior of the term
Z can be observed in Figs. 3 and 4. These figures
show the orientation and relative sizes of the propa-
gation and attenuation vectors of the transmitted wave
generated by the incidence of a homogeneous and two
inhomogeneous waves, again in models M3 and M2.
Red is used to indicate the propagation vector, green

the attenuation vector. The vectors are determined
from Eqs. 17 and 20. The three attenuation angles of
incident waves are again γ = −30◦ (top), γ = 0◦
(middle) and γ = 30◦ (bottom). The incidence angles
i vary from 0◦ to 80◦, with the step of 10◦. The atten-
uation vector is very small in the subcritical region.
Therefore, it is amplified in the subcritical region by a
factor of 100 in Figs. 3 and 4.

In Fig. 3, we can see the results for the model M3.
This is a model, which Krebes and Daley (2007) char-
acterize as a model without phase discrepancy. This
model, with Q1 > Q2 is, however, not very realistic
because usually higher impedance implies higher Q.
We can see that the orientation of the propagation and
attenuation vectors vary continuously within the criti-
cal region. The attenuation vector points into the lower
half-space. In the overcritical region, it slightly devi-
ates from the vertical due to either the attenuation in

Fig. 3 Propagation (red) and attenuation (green; amplified in
the subcritical region) vectors of the transmitted wave gener-
ated by the incident homogeneous (middle) and inhomogeneous
(top γ = −30◦ and bottom γ = 30◦) waves in the model M3

of Brokešová and Červený (1998) (Q1 > Q2): β1 = 3.698,
β2 = 4.618 km/s, ρ1 = 2.98, ρ2 = 3.3 kg/m3, Q1 = 75,
Q2 = 50
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the upper half-space and/or inhomogeneity of the inci-
dent wave. The propagation vector also points mostly
into the lower half-space although only slightly in the
overcritical region. The exception is the propagation
vector of the transmitted wave corresponding to the
incident inhomogeneous wave with γ = −30◦. The
propagation vector points slightly into the upper half-
space for angles of incidence i ≥ 60◦, as indicated
in the top frame of Fig. 1. Its vertical component rep-
resents, however, only a small perturbation, and thus
it is invisible in Fig. 3. Although small, the deviation
of the propagation vector into the upper half-space is
unacceptable. It contradicts the results of Borcherdt
(2009), according to which, it should always point into
the lower half-space. The middle frame of Fig. 3 con-
firms the well-known fact (see, e.g., Červený 2007;
Borcherdt 2009) that a homogeneous wave incident
at an interface separating two attenuating half-spaces

generates, generally, inhomogeneous waves. In the top
frame, we can see that, on the contrary, the incident
inhomogeneous wave may generate a homogeneous
wave.

In Fig. 4, results for the more realistic model M2
with Q1 < Q2 are presented in the same way as
in Fig. 3. For the negative attenuation angle (the top
frame) of the incident wave and even for some angles
of incidence of a homogeneous wave, we can see
that the attenuation vector of the transmitted wave in
the subcritical region points into the upper half-space,
which is acceptable as explained by Richards (1984).
In the critical region, the orientation of the attenuation
vector changes abruptly. The propagation vector of the
transmitted wave points into the lower half-space in
the subcritical region. However, for γ = −30◦ and 0◦,
immediately behind critical incidence, the propaga-
tion vector attains an unacceptable orientation into the

Fig. 4 Propagation (red) and attenuation (green; amplified in
the subcritical region) vectors of the transmitted wave gener-
ated by the incident homogeneous (middle) and inhomogeneous
(top γ = −30◦ and bottom γ = 30◦) waves in the model M2

of Brokešová and Červený (1998) (Q1 < Q2): β1 = 3.698,
β2 = 4.618 km/s, ρ1 = 2.98, ρ2 = 3.3 kg/m3, Q1 = 50,
Q2 = 75)
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upper half-space (Borcherdt 2009). Its deviation from
the interface is, however, small and thus effectively
invisible.

In the following figures, we concentrate on SH
reflection and transmission coefficients in models M3,
M2, and M1 for incident homogeneous and inhomoge-
neous waves. To estimate the accuracy of WAC coef-
ficients for incident homogeneous waves, in Figs. 5,
6, 7, 8, 9, and 12, we compare them with coefficients
calculated from the formulae of Daley and Krebes
(2015), obtained without the use of the correspon-
dence principle. We also show coefficients calculated
for the homogeneous wave incident at the interface
between reference elastic half-spaces. This allows us
to estimate the effects of the attenuation.

Modulus (top frame) and phase (bottom frame) of
the SH reflection coefficient corresponding to the inci-
dent homogeneous wave in the model M3 is shown in
Fig. 5. Curves obtained by the first formula of Eqs. 23

with 24 are red dotted. Green dashed curves corre-
spond to the modulus and phase calculated from for-
mulae of Daley and Krebes (2015). As a reference, we
also show the modulus and phase corresponding to the
reference elastic medium (black solid curve). We can
see a nearly perfect coincidence of WAC and Daley
and Krebes (2015) curves for all angles of incidence.
The only slight difference can be observed in the phase
frame in the vicinity of the Brewster angle and of
the critical angle, where the WAC approximation is
inapplicable. As observed previously (Brokešová and
Červený 1998), attenuation smoothes the curves corre-
sponding to the elastic case. This smoothing, although
hardly visible in the modulus frame, also includes the
vicinity of the Brewster angle. Due to this smoothing,
the modulus of the reflection coefficient in the anelas-
tic medium is non-zero at the Brewster angle, although
only negligibly. By comparing red and green curves
with the black curve corresponding to the reference

Fig. 5 Comparison of
moduli (top) and phases
(bottom) of the SH
plane-wave reflection
coefficient in the model M3
(Q1 > Q2) of Brokešová
and Červený (1998):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 75, Q2 = 50.
Elastic reference (solid
black), Daley and Krebes
(2015) (dashed green),
formulae (23) and (24) of
this paper (dotted red).
Incident homogeneous wave
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elastic case, we can see that except in the vicin-
ity of the Brewster and critical angles, the effect of
attenuation on the reflection coefficient is very small.

In Fig. 6, the same results as in Fig. 5 are shown,
but for the model M2 (Q1 < Q2). We can see
a perfect coincidence of the WAC (red dotted) and
Daley and Krebes (2015) (green dashed) curves in the
subcritical region. In the overcritical region, we can,
however, observe significant differences in the mod-
ulus (WAC modulus larger than 1), which decrease
with the increasing angle of incidence. It is obviously
the consequence of the abrupt change of the orienta-
tion of the propagation and also attenuation vector for
angles of incidence varying from the subcritical to the
overcritical incidence, see Fig. 4, and also of the unac-
ceptable orientation of the propagation vector of the
transmitted wave into the upper half-space. As it was
shown, it is due to the negative values of the term Z ,
see Eq. 19, starting in the subcritical region, see Fig. 2.
One can speculate what would happen if the sign of

the term Z is changed artificially once it turns nega-
tive. This would cause the propagation and attenuation
vectors to vary smoothly through the critical region,
keeping the propagation vector to point into the lower
half-space. The result of such a manipulation is shown
in Fig. 7. We can see a nearly perfect fit of red dotted
and green dashed curves for all angles of incidence.
We thus have a tool for making the approximation
introduced in this paper applicable even in the prob-
lematic, but frequent, situation of negative Z in the
subcritical region. We should, however, keep in mind
what is the price of this achievement. The artificial
change of the sign of Z represents the violation of the
constraint relation (4) and of the generalized Snell’s
law (8), from which Eqs. 17 and 20 were derived. It
is again an indication that the correspondence princi-
ple is not applicable in the overcritical region. Let us
add that the artificial change of the sign of the term
Z , which became negative in the overcritical region
(for example, for the incident homogeneous wave in

Fig. 6 Comparison of
moduli (top) and phases
(bottom) of the SH
plane-wave reflection
coefficient in the model M2
(Q1 < Q2) of Brokešová
and Červený (1998):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 50, Q2 = 75.
Elastic reference (solid
black), Daley and Krebes
(2015) (dashed green),
formulae (23) and (24) of
this paper (dotted red).
Incident homogeneous wave
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model M3, see Fig. 1) would lead to the distortions in
the modulus. Only the artificial change of the sign of
the term Z when it becomes negative in the subcritical
region leads to acceptable results.

In Fig. 8, we show, also for the more realistic model
M2, the modulus (top) and phase (bottom) of the trans-
mission coefficient. Except for the critical region, the
fit of results obtained from Eq. 23 and green dashed
curves generated by the code of Daley and Krebes
(2015) is very good. The trick with the change of
the sign of Z in the subcritical region leads, how-
ever, to an even better fit, see Fig. 9. As in the case
of reflection, we can see that the difference of the
transmission coefficients calculated in the attenuative
model (red and green curves) and of the coefficient
calculated in the reference elastic model (black) is,
except within the narrow vicinity of critical incidence,
negligible.

The effect of inhomogeneity of the incident wave
on the reflection coefficient is presented in Figs. 10
and 11 for the model M2. Moduli (top) and phases
(bottom) of SH reflection coefficients for positive
attenuation angles γ (the attenuation vector rotated
clockwise from the propagation vector) of incident
waves are shown in Fig. 10, and for negative angles
γ in Fig. 11. WAC results (red), in which the sign of
Z is changed if it becomes negative in the subcritical
region, are compared with the results for the reference
elastic case (black). In Fig. 10, attenuation angles of
incident waves 15◦ (dots), 30◦ (short dashes), and 45◦
(long dashes) are considered. Reflection coefficients
corresponding to incident inhomogeneous waves with
negative attenuation angles −15◦ (dots), −30◦ (short
dashes), and −45◦ (long dashes) are shown in Fig. 11.
Coefficient for the reference elastic case is shown
again in black. With varying values of the attenuation

Fig. 7 Comparison of
moduli (top) and phases
(bottom) of the SH
plane-wave reflection
coefficient in the model M2
(Q1 < Q2) of Brokešová
and Červený (1998):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 50, Q2 = 75.
Elastic reference (solid
black), Daley and Krebes
(2015) (dashed green),
formulae (23) and (24) of
this paper with change of
sign of Z when it becomes
negative (dotted red).
Incident homogeneous wave
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angle of the incident wave, the form of reflection coef-
ficients varies, most significantly close to the Brewster
and critical angles. It is of interest to point out that
closest to the form of the reflection coefficient for
the elastic case is not the coefficient corresponding
to the incident homogeneous wave, but the coeffi-
cient corresponding to the inhomogeneous wave with
γ ∼ 26◦. We can see that weak inhomogeneity
of the incident wave leads to observable differences
from the reflection coefficient for the reference elastic
case only in the vicinity of the Brewster and critical
angles.

In Fig. 12, we use a slightly modified model M1
of Brokešová and Červený (1998) whose attenua-
tion cannot be considered weak (Q1=15, Q2=22).
We compare again the WAC results (red dotted) with
results obtained from Daley and Krebes (2015) for-
mula (green dashed). Moduli in the subcritical region

and phases in the overcritical region fit perfectly.
Comparison of moduli in the overcritical and of phases
in the subcritical regions show some differences. They,
however, only slightly exceed the differences observ-
able in Fig. 7, generated for a considerably weaker
attenuation. The difference of the coefficient calcu-
lated for the medium with stronger attenuation and
of the reference coefficient calculated for the elastic
case (black solid) extends farther into the overcritical
region.

6 Discussion

We used the weak-attenuation concept (WAC), within
which attenuation is considered to be a small perturba-
tion of the reference elastic state, and we applied it to
the approximate evaluation of SH-wave reflection and

Fig. 8 Comparison of
moduli (top) and phases
(bottom) of the SH
plane-wave transmission
coefficient in the model M2
(Q1 < Q2) of Brokešová
and Červený (1998):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 50, Q2 = 75.
Elastic reference (solid
black), Daley and Krebes
(2015) (dashed green),
formulae (23) and (24) of
this paper (dotted red).
Incident homogeneous wave
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transmission coefficients at an interface separating two
homogeneous isotropic attenuating half-spaces. In the
derivations of formulae for reflection and transmission
coefficients, we used the correspondence principle
(wave propagation results in attenuating media can
be obtained as the results in elastic media by replac-
ing real-valued elastic parameters by their complex-
valued anelastic counterparts; Bland 1960). In the
past, the correspondence principle was used success-
fully for an approximate evaluation of effects of atten-
uation on wave propagation inside layers (Moczo
et al. 1987; Gajewski and Pšenčı́k 1992) and it was
applied it in ray-based program packages (Červený
and Pšenčı́k 1984; Gajewski and Pšenčı́k 1990). It was
of interest to study effects of weak attenuation on the
reflection and transmission process. Use of the corre-
spondence principle for the derivation of approximate
reflection and transmission coefficients in attenuating

media was the natural choice. We used it despite the
fact that Borcherdt (2009, 2020) pointed out that the
conditions of applicability of the correspondence prin-
ciple are not satisfied in the overcritical region. Indeed,
we found that its use leads to violations of some of
the constraint relations, which the waves propagat-
ing in attenuative media must satisfy. Nevertheless,
we arrived at two useful observations. First, we found
that if attenuation is weak and incident waves are
homogeneous or weakly inhomogeneous, effects of
attenuation on reflection and transmission coefficients
outside vicinities of critical incidence or the Brew-
ster angle are negligible. Therefore, by ignoring the
effects of attenuation on the reflection and trans-
mission process, Gajewski and Pšenčı́k (1992) did
not greatly affect the accuracy of their computations.
Second, if we wish to consider the effects of attenua-
tion on the reflection and transmission, we found that

Fig. 9 Comparison of
moduli (top) and phases
(bottom) of the SH
plane-wave transmission
coefficient in the model M2
(Q1 < Q2) of Brokešová
and Červený (1998):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 50, Q2 = 75.
Elastic reference (solid
black), Daley and Krebes
(2015) (dashed green),
formulae (23) and (24) of
this paper with change of
sign of Z when it becomes
negative (dotted red).
Incident homogeneous wave
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an artificial modification of the slowness vector of the
transmitted wave leads to useful results of acceptable
accuracy, which can be used in the above-mentioned
codes.

The basic role in the study is played by slowness
vectors of incident and transmitted waves. Complex-
valued slowness vectors of the incident and trans-
mitted waves satisfy (i) corresponding approximate
constraint relations resulting from the equation of
motion, (ii) Snell’s law, and (iii) the radiation condi-
tion. With the above conditions satisfied, the formulae
for the reflection and transmission coefficients have
the following properties.

The reflection and transmission coefficients satisfy
naturally the “continuity” criterion, which means that
with decreasing attenuation the formulae converge to
the reflection and transmission coefficients of waves

reflected and transmitted at an interface separating two
elastic media.

The accuracy of the approximate formulae for the
reflection and transmission coefficients is high in the
subcritical region. Acceptable accuracy in this region
is obtained even for Q’s ∼ 20. The formulae are
singular for critical incidence in the reference elastic
medium. Therefore, their accuracy is low in this vicin-
ity. The extent of this vicinity increases with decreas-
ing values of Q, increasing contrast of Q−1 across the
interface, and varies more significantly, with varying
inhomogeneity of the incident wave. Another region
of decreased accuracy for lower values of Q is in the
vicinity of the Brewster angle, see Fig. 12.

The presented results show that the effects of atten-
uation on the reflection and transmission coefficients
are rather weak (weaker than the effect of attenuation

Fig. 10 Comparison of
moduli (top) and phases
(bottom) of the SH plane-
wave reflection coefficient
in the model M2 (Q1 < Q2)
of Brokešová and Červený
(1998): β1 = 3.698,
β2 = 4.618 km/s,
ρ1 = 2.98, ρ2 = 3.3 kg/m3,
Q1 = 50, Q2 = 75 for
varying inhomogeneity of
the incident wave: γ = 15◦,
γ = 30◦ and γ = 45◦.
Formulae (23) and (24) red,
elastic reference solid black
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inside layers), particularly for subcritical incidence.
Thus, it seems that ignoring the effects of attenuation
on reflection and transmission in the computations
of the whole wavefield does not affect the results
much. If the consideration of effects of attenuation
on reflection and transmission coefficients is required,
the WAC formulae for the coefficients can be used
without problems for subcritical incidence. Their use
can be extended to the overcritical region by chang-
ing the sign of the term Z introduced in the text
when it becomes negative in the subcritical region.
This step corresponds to the enforced change of the
incorrect orientation of the propagation vector of the
transmitted wave in the overcritical region. With the
correct orientation of the propagation vector, reflec-
tion and transmission coefficients fit the coefficients
calculated without the use of the correspondence prin-
ciple (Daley and Krebes 2015). As described in the
text, the enforced change of the orientation of the
propagation vector leads, however, to the violation of

some of the constraint relations. This is a price we
pay for the use of the correspondence principle in the
reflection and transmission problem in the overcritical
region.

A similar procedure applied to SH waves in this
paper could be extended to other types of waves prop-
agating in isotropic and also anisotropic, attenuating
media. An important step before the application to
anisotropic media is to use the WAC formulae in the
calculation of SH-wave ray synthetic seismograms in
layered, isotropic, attenuating media, and their com-
parison with other independent wave-modeling meth-
ods. A promising candidate is the method used by
Ursin et al. (2017). Later, the study can be extended
to the calculation of P- and S-wave ray synthetic seis-
mograms, in which slowness vectors of the studied
incident waves are not confined to the plane of inci-
dence. Again, a comparison of WAC seismograms
with seismograms generated by other independent
wave-modeling methods is desirable.

Fig. 11 Comparison of
moduli (top) and phases
(bottom) of the SH
plane-wave reflection
coefficient in the model M2
(Q1 < Q2) of Brokešová
and Červený (1998):
β1 = 3.698, β2 = 4.618
km/s, ρ1 = 2.98, ρ2 = 3.3
kg/m3, Q1 = 50, Q2 = 75
for varying inhomogeneity
of the incident wave:
γ = −15◦, γ = −30◦ and
γ = −45◦. Formulae (23)
and (24) red, elastic
reference solid black
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Fig. 12 Comparison of
moduli (top) and phases
(bottom) of the SH plane-
wave reflection coefficient
in the model close M1
(Q1 < Q2) of Brokešová
and Červený (1998):
β1 = 1.44, β2 = 2.08 km/s,
ρ1 = 2.0, ρ2 = 2.0 kg/m3,
Q1 = 15, Q2 = 22. Elastic
reference (solid black),
Daley and Krebes (2015)
(dashed green), formulae
(23) and (24) of this paper
with change of sign of Z
when it becomes negative
(dotted red). Incident
homogeneous wave

7 Conclusions

We derived approximate expressions for the SH-wave
reflection and transmission coefficients at interfaces
separating two homogeneous isotropic, attenuating
half-spaces. They can be used in ray-based codes
to extend their applicability to layered media. The
expressions for coefficients are inaccurate in the vicin-
ity of critical incidence in a reference elastic medium.
Outside critical region their accuracy seems to be
satisfactory. The presented tests indicate that atten-
uation affects waves propagating inside layers more
significantly than their reflection or transmission pro-
cesses. Thus, ignoring effects of attenuation on the
reflection and transmission process may not lead to
significant loss of accuracy. Corresponding tests of
complete seismic wavefields in layered attenuating
media are under preparation.
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