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Abstract: Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of
various homeostatic and pathological processes. These activities range from regulating embryonic
development, wound healing and ageing, inflammation, and immunity, including COVID-19. In
this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular
emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of
IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical
cancer research. It is of significant translational potential; numerous studies strongly imply the
remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
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1. Introduction

Interleukin 6 (IL-6) belongs to a broad class of small proteins involved in the regulation
of various homeostatic and pathological processes, including embryonic development,
wound healing and ageing, inflammation, and immunity, including COVID-19 [1].

Specifically, IL-6 is classified to be a part of the IL-6 family group of cytokines whose re-
ceptor complexes associate with either two (IL-6 and IL-11) or one (the rest of the cytokines)
glycoprotein 130 (gp130) subunits [2]. Additional cytokines belonging to the family include
IL-6 itself, IL-11, ciliary neurotrophic factor, cardiotrophin 1, cardiotrophin-like cytokine,
leukaemia inhibitory factor, oncostatin M, and IL-27 [3,4].

IL-6 was initially identified in 1986 by Hirano et al. as a pro-inflammatory cytokine
produced by immune cells and since then has been implicated in a wide variety of patholo-
gies ranging from chronic inflammatory conditions to cancer [5]. Currently, it is understood
from numerous reviews that IL-6 production is not limited exclusively to immune cells but
can also be synthesised by parenchymal cells of the skin, intestinal tract, smooth muscle,
lung tissue, or stroll cells such as mesenchymal cells and fibroblasts [3,6]. Release of IL-6
from these stromal cells, such as fibroblasts, is depicted in Figure 1 based on Novák et al. [7]
and the author’s unpublished data. Pathologically, IL-6 is produced by tumour stromal cells,
immune cells, trafficking to the cancerous lesion, or the cancer cells themselves (Figure 2).
Sources of IL-6 do not have to be limited to the tumour microenvironment (TME) but can
also be produced by hematopoietic stem and progenitor cells (HPSC), epithelial cells, or
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muscle tissue, all contributing to the rigorous inter-cellular cross-talk, vital for the advance-
ment of the disease [8,9]. This aberrant activation of downstream IL-6 signalling pathways
is associated clinically and experimental with poor outcomes in oncological patients or
cancer models [8,10]. Therefore, what is of particular interest in the area of cancer research
are the effects of IL-6 on both stromal and parenchymal cells in promoting the invasiveness
of the tumour and its ensuing metastasis.
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Figure 1. Expression of the IL6 gene in stromal elements of melanoma and head and neck squamous
cell carcinoma (HNSCC). Normal dermal fibroblasts (DF, (left panel)) and normal mucous fibroblasts
(MuF, (right panel)) express lower quantities of IL-6 mRNA than cancer-associated fibroblasts isolated
from melanoma (MelF, (left panel)) or HNSCC (SCCF, (right panel)).
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malignant (several types) and the stromal component of tumours using immunoperoxidase reaction;
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positive staining is visualised by red AEC (3-amino-9-ethylcarbazole) substrate deposition.
HNSCC–head and neck squamous cell carcinoma–cell line FaDu (CVCL_1218), pancreatic duc-
tal carcinoma cell line PaTu n (CVCL_1846), melanoma cell line BLM (CVCL_7035). Macrophages
were obtained by the standard protocol using the THP-1 monocytic cell line (CVCL_0006). Fibroblasts
represented here are primary human isolates of dermal origin. Negative control was performed using
isotype control. Gill’s haematoxylin (blue) was used for counterstaining. The bar represents 100 µm.

Given that, IL-6 is of particular interest in cancer research. In this review, we aimed
to summarise the effects of IL-6 on both stromal and parenchymal cells, particularly on
promoting tumour invasiveness and thus ensuing metastasis.

2. IL-6 Signalling and Downstream Effects

IL-6 signalling can follow either the classical or the trans-signalling pathway. Whereas
the classical pathway is vital in the acute-phase immune response, regeneration, and
haematopoiesis, the trans pathway allows cells not expressing the IL-6 receptor (IL-6R) to
become responsive to this signal and initiate downstream signalling of IL-6 [3,10,11]. This
allows such cells to engage in response to IL-6 stimuli and to become active participants
rather than bystanders.

The classical IL-6 signalling pathway is initiated by IL-6 binding to a membrane-bound
specific receptor, IL-6R. The ligand/receptor complex then associates with membrane-spanning
gp130, resulting in the formation of a trimeric complex. Consequently, by further dimerisa-
tion, a heterohexameric signal-transducing receptor complex arises [5,11–13]. While IL-6R
is limited in its expression to neutrophils, hepatocytes, monocytes/macrophages, and some
lymphocytes, gp130 is ubiquitously expressed in most cell types [4,5,11,12]. However, cells
that express gp130 alone are unable to bind IL-6 and are, therefore, not responsive to its
effects. This highlights the relevance of the alternative trans pathway [2].

The trans-signalling pathway was discovered as a consequence of the detection of
soluble IL-6R (sIL-6R) in human serum and urine samples [13]. The presence of sIL-6R
and other cytokine receptors in body fluids is a general phenomenon that occurs under
physiological conditions [13]. It was later confirmed that sIL-6R was markedly increased in
several inflammatory diseases, such as chronic inflammatory bowel disease (in the serum)
and rheumatoid arthritis (in the serum and synovial fluid). Of note, sIL-6R can promote
tumorigenesis in cancers linked to long-standing inflammation, such as colitis-associated
cancer [4,10,14–18]. sIL-6R is generated by cleavage via metalloproteases ADAM10 and
ADAM17 and is shed from the membrane. It can bind circulating IL-6 and then form the
necessary trimeric complex with gp130. The complex formation is followed by dimerisation
and activation of downstream signalling [10,12,14]. It is of interest that, to a lesser extent,
sIL-6R can also be generated via alternative splicing of pre-mRNA [19].

The trans pathway is critical in the context of cancer because it influences tumour
and surrounding stromal cells that do not express IL-6R, thus modifying the activity and
recruitment of cells into the TME [5,11]. For example, direct stimulation of tumour cells
via IL-6 can induce increased proliferation and invasiveness. Paracrine or autocrine IL-6
signalling prompts stromal and immune cells to secrete additional signalling molecules
such as VEGF for angiogenesis or pro-inflammatory cytokine IL-1β [10]. Thus, IL-6-initiated
signalling gains higher complexity and involves multifaceted mechanisms of action crucial
for shaping the course of cancer progression.

Regardless of the mechanism of IL-6/IL-6R/gp130 complex formation, it uniformly
leads to the recruitment of Janus kinases (JAKs). JAKs, in turn, provide protein docking sites
for additional pro-proliferative, pro-survival signalling pathways such as JAK/signal trans-
ducer and activator of transcription (STAT), PI3K/AKT, or for the RAS/RAF/MEK/MAPK
pathways [5,10,12]. However, there are notable differences in downstream effects. In
the classical pathway activation, the effects are associated with regenerative and anti-
inflammatory results, as shown in several studies in murine models post partial hepate-
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ctomy [11,20]. On the other hand, it is the pro-inflammatory effect of the trans pathway
activation that is implicated in the TME [10,11].

In order to emphasise the relevance of IL-6 downstream signalling and its role in cancer,
we will primarily focus on the effects of the JAK/STAT3 signal transduction pathway, which
has the ability to module tumour cell proliferation, survival, invasion, and metastasis,
and thus is strongly associated with the progression of malignant disease. Following
heterohexameric signal-transducing receptor complex formation, kinases JAK1, JAK2,
and tyrosine kinase 2 (TYK2) associate with gp130. These kinases undergo activation
via reciprocal transphosphorylation, thus allowing phosphorylation of tyrosine residues
in the cytoplasmic region of gp130. Phosphorylated gp130 will now be able to interact
with STAT3. Due to the proximity of STAT3 to activated JAKs, STAT3 is also activated
via phosphorylation. Activated STAT3 forms a homodimer and acts as a transcription
factor. In the nucleus, activated STAT3 targets regulatory sequences of genes encoding pro-
proliferation factors such as cyclin-D1 and cMYC, pro-survival factors such as Bcl-XL and
Bcl-2, and pro-angiogenic factors such as VEGF [10,11,14,21]. Increased STAT3 signalling
and upregulated levels of cyclin-D1 and cMYC expedite progression through the cell
cycle, while pro-survival factors also suppress apoptosis in cancer cells [22]. Furthermore,
IL-6 downstream effects also modulate the activity of neutrophils, natural killer cells, or
T cells, resulting in a decreased immune response to the neoplasm, despite the apparent
trafficking of these immune cells to the lesion. This mechanism allows for the development
of an immune tolerance [10,23]. IL-6 simultaneously upregulates T regulatory cells and
myeloid-derived suppressor cells. Their activation further contributes to the remarkably
immunosuppressed TME, resulting in a severely impaired anti-tumour immune response.

Thus, it becomes increasingly apparent how versatile IL-6 signalling is. In cancer, via
stimulation of proliferation, survival, angiogenesis, or evasion of immune detection, it
potentiates and propagates pro-cancerogenic signals within the TME. Further discussion
will concentrate on the effects of IL-6 in the invasion-metastasis cascade across a range of
cancer types, showing the applicability of targeting both IL-6 signalling and tumour cell
migration as a therapeutic goal in cancer treatment.

3. IL-6 Signalling in Promoting Tumorigenesis, Invasiveness, and Metastasis in Cancer

IL-6 has been identified as a cytokine abundantly present in the TME of various tumour
types, including head and neck squamous cell carcinoma (HNSCC) [24–27], pancreatic
cancer [28,29], non-small-cell lung cancer [30], breast cancer [14,31], ovarian cancer [19,32],
and melanoma [33,34]. In addition to being relevant in the course of tumorigenesis, IL-6
also facilitates the series of events that must occur as a prerequisite for the formation of a
secondary tumour, a metastasis.

Investigation of the isolated mechanisms contributing to cancer progression in indi-
vidual tissues and cancer types is extremely valuable. However, a unifying hallmark across
nearly all types of solid tumours that also accounts for the highest mortality is the process
of metastatic spread. As such, it merits in-depth investigation [31,35]. Metastasis formation
is understood as a series of events beginning with (i) localised migration and invasion of the
surrounding extracellular matrix (ECM), (ii) intravasation into nearby vessels, (iii) survival
in extreme conditions in the bloodstream or lymphatic vessels, (iv) extravasation into the
parenchyma of the tissue, and finally (v) modification of the activity of tumour cells to allow
them to thrive in a new environment [36–38]. Just as metastasis formation is a common
process occurring in a variety of types of cancer, aberrant IL-6 signalling provides another
unifying motif that supports tumour growth and metastasis. Therefore, it provides IL-6
with a position as a promising therapeutic target. To demonstrate just how consequential
this cytokine is, the metastatic cascade will be discussed in light of IL-6 signalling in selected
cancer types.
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4. IL-6 Contributes to the Formation of the Pre-Metastatic Niche

Early observations in breast cancer led Stephen Paget to coin his “seed” (cancer cells)
and “soil” (host tissue) hypothesis of metastasis. In these pioneer times, Paget scruti-
nised why and how some organs were affected by metastases while others remained
unscathed [39]. Only more recently, sufficient data were gathered to shed light on this
process mediated by tumour-secreted factors, extracellular vesicles (EV), and bone marrow-
derived cells (BMDCs). All these tightly orchestrated mechanisms prepare the preselected
pre-metastatic niche (PMN) for the arrival of cancer cells [9,40–42]. The sequential prepara-
tion of the PMN involves changes such as vascular leakiness, allowing CSC extravasation
and activation of stromal cells and restructuring of the extracellular matrix (ECM), facil-
itating recruitment of cell types such as BMDCs for PMN formation [41,42]. The most
important cellular component of the PMN is BMDCs, especially immune cells, all derived
from haematopoietic progenitor and stem cells (HPSCs) [9,42]. HPSCs can respond to
conditions such as injury and inflammation or to tumour-secreted stimuli, promoting their
differentiation [9,42]. Perhaps the most significant population of differentiated HPSCs are
myeloid-derived suppressor cells (MDSCs). MDSCs maintain a chronic pro-inflammatory
and yet immunosuppressed environment within the PMN [9,43]. It is unclear how and
why the MDSCs migrate to the PMN. However, data show that a number of soluble factors,
including IL-6, may regulate MDSC recruitment, activation, and differentiation within the
PMN [Talmadge history].

Magidey-Klein et al. used paired breast cancer or melanoma cell lines, one with a
high frequency of metastasis (met-high) and one with a low frequency of metastasis (met-
low), to study the role of IL-6 in HPSC differentiation, metastasis, and its involvement in
the generation of the PMN. Cells were transplanted into mouse models with comparable
success and presented similar tumour growth between the met-high and met-low groups.
However, lung metastases were significantly more frequent in the high-met group [9].
When analysing the cellular composition of the bone marrow, mice with tumours were
also observed to have a higher percentage of LSK cells (considered as HPSCs) than control
mice. Specifically, the monocyte dendritic progenitor (MDP) population was elevated
in both cancer types when compared to other progenitor cell types. Overall, the results
showed that met-high tumours induce myeloid-biased differentiation of HPSCs, which
correlates with tumour aggressiveness and metastatic potential. IL-6 was identified as
a mediator for the cross-talk between bone marrow and cancer cells, and the levels of
IL-6 correlated with MDP growth and increased incidence of metastasis. In met-low
melanoma cells, overexpression of IL-6 was a sufficient signal to educate MDPs to induce
metastasis and metastatic switch. MDPs further differentiated into M2 pro-inflammatory
and immunosuppressive macrophages, localised at the metastatic sites. Magidey-Klein and
co-workers put forward a new role of tumour-derived IL-6 in driving the differentiation of
HPSCs toward pro-metastatic MDPs. This shows the importance of IL-6 not only in the
context of TME but also in its potential to orchestrate the bone marrow niche, which is vital
for the eventual formation of the PMN.

The influence of mRNA expression of the IL-6 signalling components on patient
survival is, however, not direct. While in HNSCC, low expression of IL6 mRNA improves
survival of the patients with marginal statistical significance (Figure 3, XENA [44]), in
ovarian and breast cancers, there is no difference in survival of the patients with high IL6
expression. In metastatic melanoma, low expression of IL6 shortens the patient survival,
paradoxically. High expression of IL6ST, the gene coding for gp130, significantly improves
the survival of patients suffering from breast cancer and metastatic melanoma (Figure 3).
No such correlation was observed for IL6R mRNA expression.
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Figure 3. Correlation of patient survival with mRNA expression of IL-6 pathway components.
Overall survival of patients suffering from HNSCC, ovarian cancer, breast cancer, or metastatic
melanoma is evaluated for patients with different levels of IL6 mRNA expression (top) and IL6ST
mRNA expression (bottom). Survival of the patients with the highest gene expression (4th quartile,
Ntop patients) was compared with the survival of the patients with the lowest expression (1st quartile,
Nbottom) using Kaplan–Meier curves and the log-rank test. The analysis was performed within the
Xena platform [44].

5. Metastasis Repression by Targeting IL-6 Signalling

As a result of the ubiquitousness of IL-6 pro-cancerogenic signalling, the molecule
presents itself as a therapeutic target that will “pack a punch”. IL-6 signalling is associated
with increased invasiveness, aggressiveness, and incidence of metastasis across many
tumours (Figure 4) [3,8,45,46].

Recent data also implicate this protein in preparation for the PMN, which is another es-
sential step prior to cancer cell dissemination. Therefore, since IL-6 plays a central role in the
invasion-metastasis cascade, which is the leading cause of cancer-related deaths worldwide,
it is an absolutely obligatory avenue for novel pharmacological interventions [3,8,45,46].
Inhibition of IL-6 and its signalling pathways is an intensively studied therapeutic ap-
proach in cancer treatment. Strategies explore general inhibition of the IL-6 signalling axis
(IL-6/6IL-6R/gp130), including downstream signalling proteins such as STAT3, NF-κB, and
HIF-1α. The most frequently used/studied strategies for the inhibition of IL-6 signalling
are shown in Figure 5, and examples of possible therapeutic agents for targeting IL-6 and
its pathway are summarised in Table 1.
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Table 1. Examples studied agents for the inhibition of IL-6 signalling with an emphasis on their
clinical applicability.

Name (Trade Name) Target: Function Status Ref.

Human monoclonal antibody
Tocilizumab (RoActemra) IL-6R: receptor inhibition Clinically used for rheumatoid arthritis [47]

Case report: Reducing IL-6-mediated cachexia [48]
Sarilumab (Kevzara) IL-6R: receptor inhibition Clinically used for rheumatoid arthritis [49]

Under clinical trial (EMPOWER NCT04333706):
triple-negative breast cancer (stage I-III, high-risk residual

diseases) combination with Capecitabine
Siltuximab IL-6: neutralization approved for CAR-T [50]

Low molecular inhibitor
Bazedoxifene (Conbriza) Estrogen receptor modulator Clinically used in the treatment of osteoporosis [51]

gp130: inhibitor In vivo [52]
CD40 receptor: inhibitor In vitro [53]

Tofacitinib (Xeljanz) JAK1/3 inhibitor Clinically used in the treatment of moderate-severe
ulcerative colitis [54]

JAK pathway

Clinical trial: developed malignancies lung, breast, gastric
cancer, and lymphoma; rate of malignancies by 6-month
intervals of tofacitinib exposure indicates rates remained

stable over time

[55]

Ruxolitinib (Jakafi) JAK1/2 inhibitor Clinically used in the treatment of steroid refractory
graft-versus-host disease [56]

JAK pathway Clinical trials: inadequately controlled polycythaemia;
decrease in thromboembolic events [57]

Momelotinib ACVR1/ALK2, JAK1 and
JAK2, inhibitor

FDA accepts for the treatment of the myelofibrosis

Momelotinib Clinical trials: myelofibrosis; higher overall and
leukaemia-free survival. [58]

Madindoline A and B gp130: inhibitor In vitro [59,60]

ERBF IL-6R: blocking interaction IL-6R
with IL-6, or gp130 In vivo [61–63]

Stattic STAT3: inhibition of activation In vivo [64]

http://smart.servier.com/
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Table 1. Cont.

Name (Trade Name) Target: Function Status Ref.

OPB-31121 STAT3: inhibition of activation
Clinical trials: advanced colon and rectal tumours; tumour

shrinkage, bad pharmacokinetic (very low
blood concentration)

[65,66]

Galiellalactone STAT3: inhibition of
DNA binding

prostatectomy samples: reduction IL-6 induced
AR signalling [67]

In vivo [68]

GPB730 STAT3: inhibition of
DNA binding In vivo [69]

OPB-51602 STAT3: activation of aggregation Clinical trials: refractory haematological malignancies; no
clear therapeutic response was observed [70]

Ixazomib
NF-κB: inhibition of

ubiquitin-proteasome pathway
leading to loss of NF-κB activity

Clinical trials: Relapsed or Refractory Cutaneous or
Peripheral T-cell Lymphomas; reduction in NF-κB

activation and subsequently GATA-3 expression in the
biopsy specimens

[71]

Theofyline (Elixophyllin,
Elixophylline, Pulmophylline,
Quibron-T, Theo-24, Theolair,

Uniphyl)

phosphodiesterase inhibitor,
adenosine receptor blocker, and

histone deacetylase activator

Clinically used in chronic obstructive pulmonary disease
and asthma [72,73]

NF-κB: inhibition of activation In vitro [74]
Rapamycin (Sirolimus, Rapamur) mTOR: inhibitor Clinically used immunosuppressive therapy [75]

Clinical trials: acute myelogenous leukaemia; no effects on
the composite complete remission rate [76]

IL-6, TNF-α and IL-1β: decrease
cytokine level In vivo [77]

Zotarolimus
IL-1β, TNF-α, IL-6 and NF-κB:

decrease cytokine level and
NF-KB activity

In vivo [78]

NSAIDs
(e.g., celecoxib, aspirin, ibuprofen,

naproxen, meloxicam)
cyclooxygenase inhibitors in a broad spectrum of conditions; Analgetic, antipyretics,

in rheumatic diseases [79]

Celecoxib IL-6: decrease expression by
COX-2 inhibition

Clinical trials: former-smokers; bronchoscopy samples
(reduction IL-6 and Ki-67 expression) [80]

Food supplements

Curcumin IL-6: decrease expression
Clinical trials: patients with solid tumour; decrease in

plasma level of IL-6, TNF-a, TGF-b, substance P, hs-CRP,
CGRP and MCP-1, increase patient quality life

[81]

STAT3: decrease activity In vivo [82]

NF-κB: activity and expression

Clinical trials: advanced pancreatic cancer; peripheral
blood mononuclear cells (decrease in expression of NF-κB,
STAT-3 and COX-2) decrease in serum cytokine levels (IL-6,

IL-8, IL-10, and IL-1 receptor antagonists)

[83]

HIF-1α: decrease expression
and activity In vitro and In vivo [84,85]

Epigallocatechin-3-gallate NF-κB: decrease expression Clinical trial: subjects with a high risk of colorectal cancer;
lover expression of the NF-κB and DNMT1 [86]

STAT3: inhibition of activation Molecular assay and In vitro [87]

Currently, the clinical and/or research applications of IL-6R targeting antibodies
are utilised in a variety of fields. Tocilizumab, an IL-6R antibody, is clinically used in
the treatment of various autoimmune diseases, such as rheumatoid arthritis, which is
associated with pathologically hyper-activated IL-6 signalling [47]. Despite the practical
applications in the field of rheumatology, the therapeutic use of such biological treatments in
oncology still requires optimisation. However, there are some encouraging data supporting
this concept.

In the case of recurrent ovarian carcinoma, tocilizumab decreased STAT3 activa-
tion/phosphorylation in patient immune cells (e.g., myeloid cells, CD4+ T and CD8+
T only at a high dose), most probably due to the suppression of IL-6R signalling [88]. It
suggests that tocilizumab could suppress IL-6-induced immunosuppression (e.g., induction
of macrophage M2 phenotype and Treg attraction) [89,90]. However, patients with acute
leukaemia or myelodysplasia did not show any improvements in long-term survival on
tocilizumab treatment [91]. A combination of Sarilumab (antibody targeting soluble and
membrane IL-6R; FDA-approved for rheumatoid arthritis) and Capecitabine is currently
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tested in a clinical trial (EMPOWER; NCT04333706) in triple-negative breast cancer patients
(stage I-III, high-risk residual disease). Moreover, Nguyen et al. reported that siltuximab
(IL-6R antibody) could repress the Wnt/β-catenin pathway [92].
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An alternative strategy employs small molecular inhibitors of IL-6/gp130 signalling
rather than IL-6R inhibitors [3]. This approach also shows potential for a beneficial anti-
metastatic effect. Bazedoxifene (repurposed selective oestrogen receptor modulator) dis-
plays a strong inhibitory effect on gp130 (receptor kinase of IL-6R). In the case of cervical
cancer cells (SiHa, HeLa, CaSki), bazedoxifene treatment leads to a decrease in cell migra-
tion and invasion and additionally decreases Siha tumour burden in mouse models [52]. Its
effect is associated with a reduction of IL-6-induced GP130, STAT3 and ERK1/2 phosphory-
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lation. Possible agents for inhibition of IL-6 signalling could also be based on the structural
motif of madindolines (gp130 inhibition) [93] and bufadienolide (blocking interaction of
IL-6R with IL-6 or gp130) [61,62].

STAT3 plays a key role in IL-6 signalling and carcinogenesis. STAT3 (respective
STAT3α isoform) [94,95] is involved in the EMT and self-renewal of cancer stem cells,
promoting metastasis and invasion. Its downstream effects are crucial for the formation
of an immunosuppressive TME [10]. Specifically, in the context of TME, active STAT3
signalling induces repression of neutrophils, natural killer (NK) cells, effector T cells, and
dendritic cells (DCs) and activates regulatory T (Treg) cells and MDSC populations. This
immunosuppressed landscape is thought to contribute to the weakened ability of the
immune system to respond to developing cancer. Despite STAT3′s critical contribution
to forming a cancer-supportive TME, no drug targeting STAT3 itself has been clinically
approved for this purpose until now. Nevertheless, several promising compounds are
being intensively studied [96,97]. For example, Stattic (low molecular direct inhibitor
of Src homology 2 domain) significantly represses STAT3 activation and expression in a
murine orthotopic xenograft model of HNSCC. This effect is associated with a reduction of
STAT3-mediated HIF-1α expression and tumour progression [64]. Similarly, the application
of OPB-31121 (oral STAT3 inhibitor) repressed constitutive and IL-6-induced JAK/STAT3
signalling in gastric cancer lines [98]. In this cohort of patients with advanced colon
and rectal tumours, OPB-31121 treatment was associated with tumour shrinkage. The
application was safe and relatively well tolerated [66]. Nevertheless, its pharmacokinetics
displays significant variability, and the mean blood Cmax (1.19–12.9 ng/mL) was much
lower than in this case of the mouse tumour xenograft model [65,66].

In the past, when targeting particular signalling cascades, it has proven to be both
important and effective to target the pathway at all levels, e.g., receptor, second messenger,
and subsequent signalling proteins. Therefore, another therapeutic opportunity is emerging
at the level of gene expression since IL-6 cascade-activated STAT3 acts as a transcription
factor. By inhibiting STAT3′s DNA binding ability, its capacity to act as a transcription
factor would be eliminated. While galiellalactone inhibits STAT3 signalling by binding to
its DNA-binding region, STAT3 phosphorylation/activation is not repressed [67,99]. In
prostate cancer cell lines (LNCap DuCaP and VCaP), galiellalactone strongly repressed
IL-6-induced activity of the androgen receptor (AR; e.g., PSA expression) [67]. In these
primary tissue slice cultures from radical prostatectomy samples, reduced expression of
AR-controlled genes (e.g., PSA, TMPRSS2 and FKBP5) was also observed. AR plays one
of the key roles in the development of prostate cancer, and inhibition of its signalling has
been a main therapeutic option to manage locally advanced and metastatic prostate cancer
in clinics [100].

While cytosolic STAT3 is an obvious choice as a therapeutic target, it was shown that
the dysfunction of mitochondrial STAT3 can create sufficient stress for the cancer cells to
induce apoptosis. Therefore, a combination of mitochondria-targeting drugs (e.g., arsenic
trioxide, tamoxifen, hydrocortisone and others) [101] with IL-6 signalling inhibitors could
be a base for another attractive alternative. Mitochondrial STAT3 plays an important role in
the control of cellular respiration in the mitochondria (e.g., complexes I and II of the electron
transport chain) [102,103] and can strongly support the oncogenic process [104,105]. Over
the last years, it was reported that the phenotype of metastatic cancer is associated with
active mitochondrial oxidative phosphorylation. This plays a central role in the generation
of ROS, cell death, survival, and metastasis [106,107]. In detail, metastatic cells’ survival
in the blood and their homing to the metastatic site may depend on the mitochondrial
oxidative phosphorylation [108,109]. The redox balance is regulated by very high glucose
uptake, and the stimulated citrate cycle enhances mitochondrial membrane potential.
Cancer cells can also capture glycolytic lactate produced by fibroblast, tumour, and stromal
cells [110,111]. The obtained lactate is converted to pyruvate, and in the mitochondria,
it provides electrons for the mitochondrial electron transport chains and energy for ATP
production. This process is called the “reverse Warburg” effect.
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Targeting STAT3 could be an effective way to repress the mitochondrial function
in cancer cells. OPB-51602 (an SH2 domain-targeting STAT3 inhibitor) stimulates the
formation of proteotoxic STAT3 aggregates and resulting mitochondrial dysfunction [112].
OPB-51602-related cytotoxicity was induced by glucose starvation and increased reliance
of prostate cancer cells DU 145 on mitochondrial function. Similarly, a decrease in IL-6-
induced STAT3 mitochondrial localisation leads to mitochondrial oxidative stress, loss of
mitochondrial membrane potential, and subsequent apoptosis of cancer cells [113].

Repression of NF-κB activity could also be a promising approach to the inhibition
of IL-6 signalling. NF-κB proteins are a group of oncogenic factors that, in turn, control
the expression of pro-inflammatory signalling proteins, such as IL-6. There is increasing
evidence suggesting that NF-κB targeting could also increase tumour sensitivity to the ther-
apy (e.g., chemo- and radiotherapy) and delay/repress the loss of therapeutic effectiveness.
Chemotherapeutics (e.g., paclitaxel, 5-fluorouracil or doxorubicin) can stimulate strongly
increased production of cytokines such as IL-1β, IL-6, IL-8, CSF2, and CCL2 [106,114]. IL-6
activates NF-κB (via STAT3/AKT pathway) [115,116], which subsequently promotes the
production and secretion of more cytokines [114].

In TME, IL-6 signalling can significantly enhance the hypoxic phenotype [117]. Chronic
inflammation stimulates cycling hypoxia as a result of limited oxygen diffusion and
increases consumption of oxygen by filtrating immune and hyperproliferating cancer
cells, leading to the lack of oxygen in TME [118–120]. A hypoxic phenotype is associated
with EMT transition and resistance to therapy, especially immunotherapy. For example,
macrophage-derived IL-6 promotes EMT in primary hepatocellular carcinoma cells under
hypoxic versus oxygenated conditions [117]. Notably, this EMT can be strongly repressed
by tocilizumab. The increased levels of intracellular ROS produced during hypoxia lead
to the stabilisation of HIF-1α and NF-κB. HIF-1α induces an immunosuppressive tumour
microenvironment by recruiting Tregs, MDSCs and macrophages. The NF-κB signalling
pathway can also support the production of inflammatory factors and the recruitment of
inflammatory immune cells [119]. Finally, higher levels/activity of infiltrated inflamma-
tory cells result in a repeated hypoxia cycle. It suggests that targeting the intratumoral
inflammatory mechanism by targeting IL-6 signalling could repress the hypoxic phenotype.
Nevertheless, hypoxia can stimulate the activity of IL-6 signalling and thereby potentially
decrease the effectiveness of this therapeutic strategy.

6. Inhibition of IL-6 Signalling in Combination Therapy

It is well known that oncological diseases display significant heterogeneity and in-
terindividual variability. Therefore, general oncogenic signalling pathways may be at least
partially substitutable targets, and their simultaneous modulation can synergically abrogate
tumorigenesis. For example, both IL-6 and IL-8 can activate STAT3 signalling via JAK 2 and
significantly increase cell migration when the signalling occurs concurrently, as opposed to
stimulation by IL-6 or IL-8 alone [121]. A possible approach to this corroborative effect could
be their simultaneous dual targeting. Simultaneous inhibition of IL-6 and IL-8 receptors via
Tocilizumab and Reparixin (inhibitor of C-X-C motif chemokine receptor 1) significantly
decreased the expression of matrix metalloprotease in mouse MDA-MB-231 breast cancer
model models and decreased the incidence of liver and lung metastasis [122]. Similarly,
a combination of bazedoxifene and SCH527123 (inhibitor of C-X-C motif chemokine re-
ceptors; Il-8 receptors) synergically repressed STAT3 and Akt phosphorylation in ovarian
cancer cells (OVCAR3, SKOV3, and CAOV3) and in mice bearing CAOV3 tumours when
compared to agents inhibiting just IL-6 or IL-8 [123]. According to the proposed model,
in this case, the effect of combination therapy on tumour growth was sometimes smaller
compared to the application of single agents. In this connection, it is interesting to note that
bazedoxifene could repress TNF-α activation of CD40 receptors and subsequent activation
of the NF-κB, STAT3, and PI3K/AKT/mTOR signalling [53]. Moreover, in the tumour
microenvironment, TNF-α is one of the activators of IL-8 expression [44].
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Similarly, simultaneous activation of NF-κB and HIF-1α can synergically enhance
tumour development and metastasis formation [119]. Nevertheless, their effects could be
strongly suppressed by the co-application of low-toxic, multi-targeting natural compounds
such as curcuminoids and flavonoids with potent anti-metastatic effects [124]. For example,
curcumin is a direct inhibitor of NF-κB signalling, and its application can also repress
the hypoxic phenotype by targeting HSP90 and mTOR (HIF-1α stabilisation and expres-
sion) [84,125,126]. Furthermore, flavonoids inhibit various signalling pathways associated
with cell migration and metastatic activity, such as MAPK, AKT, mTOR, STAT3, and/or
NF-κB pathways [127]. Moreover, both types of agents display low toxicity, and their
application is favourable for patients.

A promising strategy could also be based on a dual inhibitor for simultaneous targeting
of mitochondrial metabolism and IL-6 signalling pathway. In a recent study, it was reported
that bis-pentamethinium salts could inhibit the gp130 protein and disturb mitochondrial
respiration [128]. Nevertheless, their mitochondrial uptake is too fast, and thereby their
effect on IL-6 may be limited. However, their structural motif can be used as an appropriate
starting point in the design of these novel dual inhibitors. It is interesting to note that
suitably designed pentamethimium salts display very strong inhibition activity against
dihydroorotate dehydrogenase [129], which catalyses the mitochondrial step of de novo
pyrimidine synthesis (conversion of dihydroorotate to orotate) [130]. Because the enzyme
prosthetic group flavin mononucleotide serves as an acceptor of a dihydroorotate electron,
its inhibition can cause disturbance of mitochondrial respiration [131]. In prostate cancer
cells, pentamethinium application led to the imbalance of the mitochondrial metabolism,
which is strongly associated with the repression of cell migration and invasiveness [129].

Clinically used inhibitors of IL-6 signalling, such as IL-6R antibody, could be promis-
ing tools to assist classical anticancer treatment (e.g., chemotherapy and radiotherapy).
For example, in the mouse model of mucoepidermoid carcinoma, tocilizumab repres-
sion of STAT3 and AKT phosphorylation caused a significant decrease in tumour growth,
drug resistance, and increased overall survival [132]. Although in vitro, the tocilizumab
application did not display any cytotoxicity in mucoepidermoid carcinoma cells. It de-
creased the subpopulation of cancer stem cells (ALDHhighCD44high) and in vivo repressed
paclitaxel-related induction of this cancer stem cell phenotype. Tocilizumab could also be a
prospective agent in combination therapy for treating radiotherapy patients. Matsuoka et al.
reported that higher IL-6 levels could be observed in squamous cell carcinoma cells and
tissue samples from squamous cell carcinoma patients [133]. In squamous cell carcinoma
cells, IL-6 supports cell survival via STAT3 and nuclear factor erythroid 2-related factor
2 signalling. Based on that, it was hypothesised that tocilizumab application could strongly
enhance the radiosensitivity of the tested cells. Moreover, in order to increase the efficacy
of treatment, therapeutic strategies can also simultaneously target various levels of IL-6
signalling. Dual application of tocilizumab and stattic significantly repressed IL-6-induced
expression of vimentin and VEGF and downregulation of E-cadherin in DU-145 prostate
cancer [134]. This phenomenon was associated with a substantial decrease in cell viability,
colony formation, and migratory and invasive capacity against single-target inhibition.

The above-mentioned facts strongly suggest that targeting IL-6 signalling could greatly
enhance the commonly used anticancer modalities. Nevertheless, numerous clinical tri-
als are requested for the validation of this hypothesis and the optimisation of possible
therapeutic strategies.

7. IL-6 Signalling in Selected Cancer Types
7.1. Head and Neck Squamous Cell Carcinoma

HNSCC is the most common cancer type of the head and neck region. Epidemiologi-
cally, HNSCC is one of the top ten most common cancer types worldwide. It affects the
epithelium of the oral cavity, pharynx, and larynx [135]. It is most commonly associated
with the use of tobacco products, alcohol consumption, poor oral hygiene or infection,
namely by human papillomaviruses (HPV) [135,136]. Population-based screening for
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HNSCC has proven ineffective, as most patients do not present with pre-malignant symp-
toms [135]. While 5-year survival rates for patients with early-stage HNSCC are good,
around 80%, this figure rapidly drops with cancer spread to lymph nodes down to 40%.
Further, the survival with metastatic spread falls to 20% only [137]. IL-6 has been shown
to be one of the molecules whose levels correlate with HNSCC progression and patient
survival [24].

In HNSCC, a specialised subpopulation of cells, cancer stem cells (CSC), localise to
a perivascular niche, and this convenient proximity to an organ’s vasculature most likely
allows subsequent migration and intravasation into blood vessels [25,138]. CSC have
unlimited potential for proliferation and self-renewal, thus being able to perpetuate the
growth of HNSCC [25,136]. The tumorigenic potential of CSC correlated with IL-6 levels,
as confirmed in both mice transplanted with HNSCC and in tissue sections from HNSCC
patients [25]. Kim and colleagues generated CRISPR/Cas9 IL-6 knockout endothelial cells,
which were co-implanted with UM-SCC-22B cells to form xenograft tumours and then
implanted into mouse models. Slowed tumour growth was observed with IL-6 knockout
endothelial cells when compared to the control, suggesting that secreted endothelial IL-6
advanced the migratory phenotype of the cancer cells. Furthermore, cancer stem cell
migration in vitro was also reduced when treated with antiIL-6 antibodies or tocilizumab,
and cultures had a smaller fraction of cancer stem cells, a key piece of data helping to further
describe the contribution of cancer stem cells and IL-6 in tumorigenesis and metastatic
spread [138,139]. Additionally, Wang et al. found increased expression of mRNA of IL-6
and IL-6R in human tumour samples when compared to the physiological oral mucosa,
with higher expression also being associated with larger tumours and more advanced
histological grade [140]. Overall, data have shown that IL-6 prepares cancer stem cells,
likely via a chemotactic mechanism, for the epithelial-to-mesenchymal transition (EMT),
essential for the next step of the invasion-metastasis cascade [25,138].

Novotný et al. (2020) [141] suggested compensatory deregulation of the genes coding
for cyclins D1 and D2 in HNSCC. Moreover, analysis of their publicly available data
(ArrayExpress accession E-MTAB-8588) using the DESeq2 Bioconductor package [142]
showed deregulation of IL-6 pathway components, including some of its downstream
targets (Figure 6).

7.2. Ovarian Cancer

Ovarian cancer is the most lethal of female genital cancers because of a lack of early
clinical symptoms in the patient and a lack of effective screening methods. As a result,
the malignancy is usually discovered at an advanced stage, worsening the survival rate of
patients. IL-6 is prevalent in the TME of ovarian cancer and, via complex signalling and
response by both cancer and stromal cells, is able to promote proliferation, angiogenesis,
and migration while inhibiting apoptosis [19,32,143]. The overactivation of IL-6 pathways,
particularly activation of STAT3, has been implicated in the aggressiveness of ovarian
cancer [144]. Activation of STAT3 by IL-6 allows expression of cell cycle-promoting proteins
such as cyclin D1, D2, and c-MYC and downregulation of cyclin-dependent kinase inhibitor
p21, facilitating entry into the cell cycle, thus enhancing the growth of the tumour [32,145].
Saini and co-workers observed that activated STAT3 is highly expressed in ascites-derived
ovarian cancer cells (ADOCC). When transplanted into the ovarian bursa in mice, ADOCC
proceeded rapidly to generate large tumours as well as extensive metastases to the liver
and peritoneum. STAT3-knocked-down ADOCC failed to form metastases and resulted
in slower tumour growth [144]. Using the SKOV-3 cell line and treatment with ascites
fluid from three patients with advanced serous ovarian carcinoma, Kim et al. showed an
increase in cellular migration and invasion in response to treatment. The effect was only
seen in SKOV-3 ovarian cancer cells and not in immortalised ovarian surface epithelial
cells [26]. Additionally, the ascites-treated SKOV-3 cells showed a mesenchymal phenotype
with decreased levels of E-cadherin (epithelial marker) and increased levels of Snail and
vimentin (mesenchymal markers) [26]. Subsequent analysis showed increased levels of
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IL-6 in ovarian cancer patient ascites, and treatment using anti-IL-6 antibodies showed
decreased invasion and migration, decreased mesenchymal phenotype, and decreased
activation of the JAK/STAT3 downstream signalling [26]. Increased invasiveness of IL-6-
expressing ovarian cancer cells was also demonstrated by Wang et al. Invasiveness was
evaluated based on cell proliferation, ability to invade Matrigel-coated Transwell chambers,
and expression of matrix metalloproteinases 2 and 9. In A2780 (cells not expressing IL-6),
highly invasive behaviour was observed after overexpression of IL-6. Compared to A2780
untransfected controls, the authors observed better anchorage-independent growth and
enhanced cell migration. The effect was abrogated when IL-6-expressing SKOV-3 cells
transfected with an antisense IL-6 plasmid showed decreased invasive abilities [146].
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7.3. Breast Cancer

Breast cancer is the second leading cause of cancer-related deaths in women [147]. It
was estimated that every one in eight women would develop breast cancer in their lifetime.
In breast cancer, several studies have shown that patients with breast cancer have increased
serum levels of IL-6. Moreover, there is evidence that IL-6 levels correlate with worse
survival rates in patients, especially in those with metastatic breast cancer [14,148]. Early
research in vitro demonstrated IL-6-dependent motility of human ductal carcinoma cells.
Morphologically, the carcinoma cells initially had an epithelioid morphology, but upon
exposure to IL-6, promptly adopted a stellate or fusiform shape. This was associated with
increased motility of the cells and loss of their cell-cell junctions [149]. Recently, it was
shown that IL-6-dependent repression of E-cadherin expression and weakening of adherens
junctions correlates with invasiveness and metastatic potential by promoting an EMT phe-
notype both in in vitro experiments and mouse models [150]. Chang et al. demonstrated in
mouse models that both IL-6 and downstream activated transcription factor STAT3 were
present at the leading edge of breast tumours, suggesting a link between the presence
of IL-6 and the invasive behaviour of the tumour itself. Indeed, Chang and colleagues
proposed a feed-forward mechanism. In the suggested model, paracrine IL-6 signalling
from tumour cells also activated p-STAT3 and IL-6 expression in stromal components–
namely endothelial cells, CAFs (cancer-associated fibroblasts), and myeloid cells. This
further functionally enhanced the IL-6/JAK/STAT3 signalling axis within the TME. This
feed-forward mechanism dictated the ability of the tumour to proliferate, establish vascular
supply, regulate the degree of inflammation, and determine the metastatic potential of
the tumour [31]. Additional studies further proved the pivotal role that IL-6 plays in the
aggressiveness of breast cancer by stimulating a stem-like phenotype in MCF-7 mammo-
spheres, characteristic of basal-like breast carcinoma, and IL-1β-dependent expression of
IL-6, which increased stemness, invasiveness, and survival in MCF-7 cells [151,152].

7.4. Melanoma and Cutaneous Squamous Cell Carcinoma

The incidence of melanoma has been rising around the world, despite the incidence of
other cancers decreasing [153]. Melanoma is an aggressive malignant disease of multifacto-
rial aetiology. Melanoma is often primarily resistant to various oncological therapeutical
modalities, making treatment difficult. Until recently, melanoma was nearly incurable in
the case of metastatic disease [154].

In a spheroid-based model using A2058 human melanoma cells, Jobe et al. showed
that in cultures with conditioned media (CM) from A2058 + CAF, CAF, or normal pri-
mary fibroblasts, invasiveness increased the most in spheroids cultured in CM from the
A2508 + CAF condition [34]. Upon analysing levels of IL-6, it was found that the levels in
CM were increased especially in cultures of CAF or fibroblasts, suggesting that these cells
are the dominant producers of IL-6 within the TME. However, the most marked increase
in IL-6 was from the co-culture of A2508 or BLM cells together with CAF [34]. When
anti-IL-6 antibodies were added to the cell culture, the invasive effects were significantly
diminished [34]. Fibroblasts co-cultured with invasive human melanoma cell lines showed
increased expression of chemokines and cytokines such as IL-1β, IL-8, and IL-6. IL-1β
is thought to promote invasiveness by inducing the expression of pro-inflammatory sig-
nalling molecules such as IL-6, and subsequent siRNA silencing of IL-1β attenuated the
invasiveness of the cells [33].

Weber and co-workers recently observed in a murine melanoma model that IL-6 in-
duced CCR5 expression and thus induced potent immunosuppressive activity of MDSC in
the TME [155,156]. Increasingly in the last decade, immune checkpoint blockade therapy re-
defined the therapeutic options to treat advanced melanoma. However, it is a great success
in clinical oncology; acquired resistance and treatment-related toxicities are widespread.
Hailemichael et al. suggested recently that the combination of IL-6 blockade and dual
inhibition of CTLA-4 and PD-1 can overcome these issues [157]. This identifies another
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critical mechanism in melanoma immune response avoidance and makes IL-6 a promising
target for melanoma immunotherapy.

Depner and colleagues were able to identify a possible mechanism by which IL-6
activation of stromal fibroblasts contributes to the metastatic potential of human squamous
cell carcinoma (SCC) [158]. In in vitro organotypic co-cultures with human fibroblasts and a
human skin carcinogenesis model (HaCaT-ras A-5RT1 cell line), IL-6 was found to activate
fibroblasts and encourage progression to the tumour-associated fibroblast phenotype,
activating expression of metalloproteinase-2, thus promoting the invasive capabilities [158].
In addition to paracrine signalling, exosomes produced by melanoma cells stimulated
the production of IL-6 by CAFs, which improved in vitro migration of melanoma cells
from the heterogeneous spheroids containing melanoma cells and CAFs in 3D collagen
gels [159,160].

Taken together, these experiments demonstrate the significance of the cross-talk be-
tween stromal and tumour cells in cancers of the skin and elucidate the mechanisms by
which IL-6 is able to promote invasiveness in cancers of the skin.

8. Conclusions

The IL-6 signalling pathway plays a significant role in cancer biology, particularly in
its involvement in metastasis formation. Targeting its principal components (e.g., IL-6Rs,
gp130, STAT3, NF-κB) is an intensively studied approach that is of translation potential in
patients, as it can affect the course of treatment. Should targeting IL-6 be insufficient, it can
be used as a complementary treatment along with chemo- and radiotherapy. Nevertheless,
IL-6 signalling is not an isolated phenomenon. It must be observed as an important part of a
complex system, and unlocking its full potential will very likely require either targeting IL-6
signalling at several levels or in combination with inhibition of other signalling pathways.
However, numerous well-conducted studies strongly imply the remarkable potential of
IL-6 signalling inhibitors, especially in metastasis suppression.

Author Contributions: Writing—original draft preparation, M.R., L.L. and. A.V.; Writing—review
and editing, Z.K., M.S., M.K. and D.R.; Conceptualization and supervision, M.J., K.S.J. and J.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Operational Programme Research, Development and Education,
within the projects: Centre for Tumour Ecology—Research of the Cancer Microenvironment Sup-
porting Cancer Growth and Spread (reg. No. CZ.02.1.01/0.0/0.0/16_019/0000785), project National
Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102)—funded by the
European Union—Next Generation EU. This work was also supported by the Ministry of Education,
Youth and Sports, grant No. LM2018133 (EATRIS-CZ), and by the Ministry of Health of the Czech
Republic (grants Nos. NU21-08-00407 and NU22-D-136).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge bioinformatics support by Jiří Novotný and ELIXIR CZ (MEYS
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