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The multi-model ensembles like CMIP5 or CMIP6 provide a tool to analyze

structural uncertainty of climate simulations. Currently developed regional and

local climate change scenarios for the Czech Republic assess the uncertainty

based on state-of-the-art Global Climate Model (GCM) and Regional Climate

Model (RCM) ensembles. Present study focuses on multi-model spread of

projected changes in long-term monthly means and inter-annual variability

of monthly mean minimum, mean and maximum daily air temperature and

monthlymean precipitation. We concentrate inmore detail on the simulation of

CNRM-ESM2-1, the driving GCM for the convection permitting ALADIN-

Climate/CZ simulation contributing to the local scenarios in very high

resolution. For this GCM, we also analyze a mini-ensemble with perturbed

initial conditions to evaluate the range of internal climate variability. The results

for the Czech Republic reveal minor differences in model performance in the

reference period whereas quite substantial inter-generation shift in projected

future change towards higher air temperature and lower summer precipitation

in CMIP6 comparing to CMIP5. One of the prominent features across GCM

generations is the pattern of summer precipitation decrease over central

Europe. Further, projected air temperature increase is higher in summer and

autumn than in winter and spring, implying increase of thermal continentality of

climate. On the other hand, slight increase of winter precipitation and tendency

towards decrease of summer precipitation lead to projected decrease of

ombric continentality. The end of 21st century projections also imply higher

probability of dry summer periods, higher precipitation amounts in the cold half

of the year and extremely high temperature in summer. Regarding the CNRM-

ESM2-1, it is often quite far from themulti-model median. Therefore, we strictly

recommend to accompany any analysis based on the simulation of nested

Aladin-CLIMATE/CZ with proper uncertainty estimate. The range of uncertainty

connected to internal climate variability based on one GCM is often quite large

in comparison to the range of whole CMIP6 ensemble. It implies that when

constructing climate change scenarios for the Central Europe region, attention

should be paid not only to structural uncertainty represented by inter-model

differences and scenario uncertainty, but also to the influence of internal

climate variability.
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Introduction

The climate change is an essential problem of the planet

Earth and associated global changes affect natural ecosystems

as well as human activities. As a basis for the assessment of its

effects across many Earth Science disciplines, global climate

models (GCMs) are commonly used providing the tool for

projections of these changes and impacts. Thus, the outputs of

GCMs have become an indispensable source of information to

many sectors and research fields, most prominently for

studying climate system dynamics (e.g. Dai and Deng, 2022;

Yang et al., 2022), evolution of past climates (e.g. Otto-

Bliesner et al., 2017) and climate change projections (e.g.

Belda et al., 2017; Coppola et al., 2021a; Thomas et al.,

2022). However, model simulations of climate are subject to

many uncertainties. Generally, the uncertainties in model

outputs come from the inaccuracies of initial and boundary

conditions, the parameterization of small-scale processes, and

the structure of the model (Tebaldi and Knutti, 2007;

Abramowitz et al., 2019). Additionally, in the case of future

climate simulations, the unknown development of forcings

that influence the climate system also plays a role (e.g.

Meinshausen et al., 2020). Ensembles of simulations of one

model with perturbed initial conditions are designed to

provide an estimate of uncertainty stemming from internal

climate variability, which is inevitably different in models and

in the real world (e.g. Deser et al., 2012; Deser, 2020). The

relative importance of uncertainty connected to internal

climate variability increases with shorter temporal scale and

smaller spatial scale of studied phenomena (e.g. Bassett et al.,

2020; Poschlod and Ludwig, 2021). The multi-model

ensembles provide a tool to analyze structural uncertainty

(connected to choices of numerical schemes, spatial

resolution, etc.), even though the interpretation of multi-

model spread is not simple. However, the design of

available ensembles in terms of model choice is not

systematic and thus the commonly used model ensembles

such as CMIP (Coupled Model Intercomparison Project) or

CORDEX (Coordinated Regional Climate Downscaling

Experiment) do not represent an independent estimate of

the overall uncertainty (Abramowitz et al., 2019).

Czech Republic has joined the United Nations Framework

Convention on Climate Change (UNFCCC). One of the

obligations connected with the UNFCCC ratification is to

observe the ongoing climate change and its impacts and to

support research in the fields of climate change, its impacts,

adaptation and impact mitigation. In present, this goal is

approached within the project PERUN (https://www.perun-

klima.cz/indexENG.html), connecting the study of local

climate changes and impacts with preparation of adaptation

options in several other disciplines and sectors, like hydrology,

agriculture, etc. Regional and local climate change scenarios

for the Czech Republic that are currently being developed

within this project will try to distill all the available

information, with CMIP6 GCMs (Eyring et al., 2016) being

the straightforward resource. However, for regional and local

applications, RCMs provide better information with added

value coming from the higher resolution (Torma and Giorgi,

2020), eventually more detailed description of some processes,

e.g. convection (Kendon et al., 2017). Regional climate models

(RCMs) have become widely accepted as physically consistent

tool for downscaling spatially coarse GCM simulations

(Giorgi, 2019). RCMs inevitably need inputs from their

driving GCMs and the RCM simulations are substantially

influenced by the driving fields (Takayabu et al., 2016;

Crhová and Holtanová, 2018; Holtanová et al., 2019; Prein

et al., 2019). For the purpose of the project, EURO-CORDEX

RCM simulations (e.g. Jacob et al., 2020) downscaling the

CMIP5 GCMs (Taylor et al., 2012) that are available up to now

are very useful. In addition, there is strong effort within the

PERUN project to use convection permitting RCM ALADIN-

Climate/CZ (Termonia et al., 2018; Wang et al., 2018) in very

high horizontal resolution of 2.3 km and to analyze its results

within uncertainty estimates derived from available ensembles

of GCM and RCM simulations. Therefore, to provide a basis

for further uncertainty estimate, we first analyze available

GCM outputs from both the CMIP6 project and their

predecessors from CMIP5 project.

In the present study, we focus on multi-model spread of

projected changes in long-term monthly means and inter-

annual variability of selected variables. The analysis is based

on CMIP5 and CMIP6 multi-model ensembles. It is done for

monthly mean minimum, mean and maximum daily air

temperature and monthly mean precipitation as basic

variables characterizing climate of studied area. The annual

cycle of these characteristics has an important impact in

various sectors of human activities as well as natural

ecosystems. Some recent studies (e.g. Coppola et al., 2021a;

Coppola et al., 2021b; Palmer et al., 2021) have already

analyzed the CMIP5 and CMIP6 projections for Europe,

but in the present study we provide a more detailed

information about the expected changes focusing on

Central Europe and climatic characteristics relevant for

various end-users.

Besides the analysis and comparison of the whole GCM

ensembles, we concentrate in more detail on the simulation of

CNRM-ESM2-1 (Séférian et al., 2019) because this model

(specifically the run denoted as r1i1p1f2) is used as the

Frontiers in Earth Science frontiersin.org02

Holtanová et al. 10.3389/feart.2022.1018661

https://www.perun-klima.cz/indexENG.html
https://www.perun-klima.cz/indexENG.html
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018661


driving GCM in above mentioned project PERUN. For this

model, we also analyze a mini-ensemble consisting of

simulations with perturbed initial conditions (see Data and

methods Section).

The paper is structured as follows. The data and methods

used for the analysis are described in Data and methods Section.

The results are described and illustrated in Results Section.

Discussion Section discusses the results and Conclusion Section

provides conclusions with future prospects and possible usage of

our results.

Data and methods

A suite of CMIP5 and CMIP6 GCM simulations is employed

here. List of all model simulations incorporated is presented in

Supplementary Tables S1, S2 (in the Supplementary material).

Further information and references can be found in Tebaldi et al.

(2021) for CMIP6 and at PCMDI website (https://pcmdi.llnl.gov/

mips/cmip5/availability.html) for CMIP5. The data were

approached via Deutsches Klimarechenzentrum (DKRZ); we

used monthly means of daily mean air temperature (further

abbreviated as TAS), daily maximum air temperature (TX), daily

minimum air temperature (TN) and daily precipitation (PR). For

both CMIP5 and CMIP6, the outputs from the experiment

denoted as ‘historical’ were used for the reference period

1961–1990. For the future time period of 2070–2099, we

considered simulations for two alternative socio-economic and

emission scenarios. For CMIP5, the representative concentration

pathways (RCPs, Moss et al., 2010) RCP4.5 and RCP8.5 were

used. For CMIP6, two shared socio-economic pathways

(SSPs, Meinshausen et al., 2020) SSP2-4.5 and SSP5-8.5 were

chosen.

The GCMs were selected based on the availability of data for

selected scenarios in the time of analysis preparation. In total,

there are 47 CMIP5 GCMs and 57 CMIP6 GCMs with varying

number of available simulations for individual variables and time

periods (Supplementary Tables S1, S2).We decided not to choose

only corresponding simulations for each ensemble as we wanted

to include as many model simulations as possible to gain as wide

uncertainty range as possible. Where more ensemble members

were available, we used only r1i1p1 simulations for CMIP5. For

CMIP6 we used preferably r1i1p1f1, but where “f1” is not

available, we used “f2”. The “f" index distinguishes simulations

run under the same CMIP6 experiment protocol, but with

different forcing. For more detailed explanation of the

notation “ripf” please see CMIP protocol and associated

documentation. In case of CNRM-ESM2-1 from

CMIP6 ensemble we also used other available realizations

(technically, ensemble members with different “r" values),

varying from r1 to r10 in case of historical and SSP2-4.5, and

from r1 to r5 in case of SSP5-8.5. These mini-ensembles provide a

rough view of the uncertainty connected to perturbed initial

conditions, e.i. representing internal climate variability, and are

further denoted as “CNRM_INI”. We especially focus on the

simulation of CNRM-ESM2-1 r1i1p1f2, which is the driving

simulation for the Aladin-Climate/CZ as described in the

Introduction Section. This simulation is denoted as

CNRM_r1 in the rest of the text.

We concentrate on mean annual cycle of monthly mean

values of studied variables (TAS, PR, TN, TX) and on annual

cycle of standard deviation of the monthly values for both time

periods 1961–1990 (further denoted as reference) and

2070–2099 (further denoted as future). Standard deviation

was chosen as a basic measure of inter-annual variability of

studied variables. For its calculation we used "(n-1)" in the

denominator, and the data for each 30-year period were

linearly detrended.

Further, we also used several observed datasets. For all

incorporated variables, we used EOBS v.23.1e (Cornes et al.,

2018) in two spatial resolutions (0.25° and 0.11°). For TAS and PR

we also used two versions of Climatic Research Unit (CRU)

datasets: TS 3.22 dataset (Harris et al., 2014) and TS 4.05 dataset

(Harris et al., 2020). For PR we further used the dataset created by

GPCC Global Precipitation Climatology Centre (https://www.

dwd.de/EN/ourservices/gpcc/gpcc.html) version 7 in two spatial

resolutions (1° and 0.5°) (Becker et al., 2013). The spread between

individual observed datasets provides a benchmark for the

evaluation of multi-model spread.

The GCM simulations were interpolated to a common grid

corresponding to the grid used by Climatic research unit with

horizontal resolution of 0.5° × 0.5°. A simple bilinear

interpolation method was used for this purpose (similarly like

in Belda et al., 2015). The purpose of this interpolation is to avoid

the influence of different gridbox sizes which could result in

FIGURE 1
The orography of Europe with red box denoting the area
studied here.
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different size of studied area. The observed datasets were used

with their original grids.

The area used for the analysis covers the region between

11.85° and 19.15° E of longitude and 48.25° and 51.25° N of

latitude (Figure 1). We concentrate on the values averaged

over this region, which covers the area of the Czech Republic.

The effective spatial resolution does not allow GCMs to resolve

details of climate over orographically complex area of the

Czech Republic (effective spatial resolution depends on

numerical methods incorporated in the models but is

generally several times coarser than the nominal spatial

resolution), therefore we focus on areal averages over the

region of interest.

The results are presented in the form of boxplots that show

median, lower and upper quartiles with whiskers extending no

more than 1.5*IQR (inter-quartile range) from the hinges, and

outliers plotted as points.

For the comparison of model performance between

corresponding pairs of CMIP5 and CMIP6 GCMs we use the

root mean square error (RMSE) of monthly values plotted in

Figure 2. As reference data we use the EOBS data in 0.25°. The

RMSE was used for RCM evaluation over the Czech Republic by

Holtanová et al. (2012), on global scale by e.g. Gleckler et al.

(2008).

Results

The results are described separately for the reference period

of 1961–1990 (Mean annual cycle in 1961–1990 Section) and for

future time period of 2070–2099 (Projected changes Section).

Mean annual cycle in 1961–1990

Figure 2 shows the results for monthly mean values of studied

variables, whereas Figure 3 shows the results for annual cycle of

standard deviation of the monthly values.

Results for monthly means of daily mean air temperature

(TAS) are displayed in Figure 2A. Generally, both CMIP6 and

CMIP5 GCMs represent the mean annual cycle quite well. Except

for August, September and October, the CMIP6 multi-model

median gives lower temperatures than CMIP5 median, which

otherwise tend to overestimate observed values. Regarding the

multi-model ensemble spread (both IQR and the minimum-

maximum range) it cannot be concluded that in all months it is

smaller or larger in CMIP6 than CMIP5, even though there is a

different number of simulations in CMIP6 (57 vs 42, see

Supplementary Tables S1, S2), so it could be expected that the

range of CMIP6 was larger. There are a couple of outliers in both

FIGURE 2
Mean annual cycle of monthly means of daily mean air temperature (A), daily precipitation amount (B), daily minimum air temperature (C) and
daily maximum air temperature (D) in the period 1961–1990 averaged over the studied area (see Figure 1). Boxplots show intra-ensemble statistical
distribution (median, lower and upper quartiles, whiskers representing 1.5 * IQR, and outliers as dots) of CMIP5 (green), CMIP6 (orange), perturbed
initial conditions mini-ensemble of CNRM-ESM2-1 model (CNRM_INI, 10 members, blue) and observations (consisting of EOBS v. 23.1 in both
0.1° and 0.25° resolutions, for daily mean air temperature and precipitation also CRU TS 3.22 and CRU TS 4.05 datasets, for precipitation also GPCC
version 7 datasets in two spatial resolutions (1° and 0.5°), green). The CNRM-ESM2-1 r1i1p1f2 simulation is plotted as a pink line.
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ensembles in some months, but these are different models in

different months. Therefore we cannot mark any of the GCMs to

be systematically worse than the others. CNRM_INI ensemble

members have mean annual amplitude of TAS higher than

observed with winter temperatures lower and summer

temperatures higher than observed and simulated by most of

the GCMs. CNRM_r1 lies in the lower part of the multi-model

distribution in January and in higher part in July and August

(Figure 2A).

Both CMIP5 and CMIP6 ensembles tend to overestimate

observed values of monthly mean precipitation (pr), especially

in the cold half of the year (Figure 2B). Only in May, June, July

and September the CMIP6 multi-model median is close to

observed monthly mean precipitation. In the rest of months

the differences between CMIP5 and CMIP6 are small, with

CMIP6 giving slightly lower precipitation amounts (and thus

being closer to observations). CNRM-INI mini-ensemble lies

within the lowest quartile of CMIP6 in most months. In

winter, the range of CNRM-INI mini-ensemble is

comparable to the range of different observed values (from

six different datasets), whereas in the rest of the year

the differences between observed precipitation are much

less than the range of CNRM-INI. CNRM_r1 simulation

tends to be in the lower part of the CMIP6 ensemble

distribution, except for May, June and July, being quite

close to the observed precipitation amounts in these

months (Figure 2B).

There are a few GCMs outlying strongly from both multi-

model ensembles severely underestimating EOBS values of daily

minimum air temperature (TN, Figure 2C, note that only EOBS

dataset includes TN and TX). In CMIP5 these are all three IPSL

GCMs, in CMIP6 the most outlying simulation is AWI-CM-1-1-

MR, the other outliers vary between months. If we do not take

these outliers into account the patterns of GCMs distributions of

TN are very similar to TAS.

In case of daily maximum air temperature (TX) mean annual

cycle, contrarily to TAS and TN, CMIP6 GCMs give worse results

than CMIP5 in most of the months (Figure 2D).

CMIP6 underestimate observed TX, whereas

CMIP5 correspond well to EOBS except for August–October,

where it underestimates EOBS similarly to CMIP6. A few outliers

from both muti-model ensembles overestimate TX. In most of

the months, these outliers correspond to the simulations that

underestimate TN (see above), i.e., “IPSL” models from

CMIP5 and AWI-CM-1-1-MR from CMIP6. However, it is

not possible to conclude that these models would be the worst

in general, because according to simulated annual cycle of TAS

and PR they give better results.

Both CMIP5 and CMIP6 ensembles capture the shape of

annual cycle of standard deviation of TAS quite well with respect

to the observed values, with slight overestimation especially in

spring and autumn (Figure 3A). Again, the outlying simulations

differ between months. CNRM_INI tend to overestimate

observed standard deviation of TAS, lying mostly in higher

FIGURE 3
Same as Figure 2, but for standard deviation of monthly mean values.
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part of the CMIP6 distribution, except for January, March, April

and June.

In case of standard deviation of PR one of the prominent

features in Figure 3B is that the differences between observed

datasets are comparable to multi-model spread in winter (DJF),

the simulated annual amplitude is lower than observed and the

shape of the annual cycle is not captured very well by neither of

the multi-model ensembles. CNRM_INI tend to overestimate

observed values with CNRM_r1 lying mostly on the edges of the

multi-model spread (Figure 3B).

Mean annual cycle of standard deviation of TN is relatively

well reproduced with CMIP6 having tendency to rather higher

values and more overestimation than CMIP5 (Figure 3C).

Similarly to mean annual cycle of TN (Figure 2C), there are a

few distinct outliers, with the “IPSL” CMIP5 GCMs being within

them in most of the months. CNRM_r1 overestimates observed

standard deviation of TN throughout the year, sometimes being

close to the CMIP6 multi-model median, sometimes in the upper

part of the distribution (Figure 3C).

CMIP6 GCMs tend to simulate higher standard deviation of

TX with multi-model median being thus further from

observations than CMIP5 GCMs (Figure 3D). This feature is

quite similar to mean values of TX in the sense that CMIP6 give

slightly worse results than CMIP5 (Figure 2D). CNRM_r1 also

tends to overestimate observed standard deviation of TX, except

for July (Figure 3D).

For standard deviation of all studied variables, the spread of

CNRM_INI is comparable to multi-model spread of CMIP6, at

least in some months (Figure 3). Similar conclusion can be

inferred for mean annual cycle of PR (Figure 2B). For

monthly mean TAS, TN and TX the contrary is true (Figures

2A,C,D). Thus, the magnitude of uncertainty resulting from

internal climate variability is large in case of variability of

studied variables and also for mean values of precipitation.

For TAS and PR, observational uncertainty can be evaluated.

Regarding monthly mean air temperature, there are visible

differences between CRU and EOBS up to 0.9°C. However,

the values of standard deviation of TAS differ much less, the

differences in individual months are up to 0.2°C. For mean

precipitation the uncertainty connected to observations is up

to 0.1 mm/day, i.e., 3 mm per month. Generally, in comparison

to multi-model spread the observational uncertainty of TAS and

PR is small, except for standard deviation of precipitation in

winter, where the differences between observed datasets are

comparable to multi-model spread. For TN and TX only

EOBS in 0.25° and 0.11° datasets are available and they give

practically identical values, therefore the observational

uncertainty cannot be evaluated in the present study.

To investigate more the difference in model performance

between CMIP5 and CMIP6 ensembles, we compare a simple

performance metric RMSE of the mean annual cycle of four

studied variables for ten pairs of GCMs from both ensembles for

which the CMIP5 GCM can be considered as predecessor of

corresponding CMIP6 GCM (Table 1). For most of these ten

pairs, the CMIP6 RMSE is lower than RMSE of corresponding

CMIP5 GCM. In some cases the progress is not very high, there

are also pairs with higher CMIP6 RMSE (worse performance

than CMIP5). Generally, for annual cycle of PR the differences in

RMSE are lower. The better CMIP6 performance is most visible

for TN and TX (Table 1).

Projected changes

Figure 4 shows the results for projected changes in monthly

mean values of studied variables, whereas Figure 5 shows results

for standard deviation of the monthly values. Changes in annual

mean of monthly mean values of studied variables are also shown

in Figure 4.

Projected changes in TAS, TN and TX are positive indicating

expected increase of air temperature in studied area in all months

(Figures 4A,C,D). The increase is naturally larger for stronger

forcing scenarios (RCP8.5, SSP5-8.5) in all months, and in most

cases the changes in summer and autumn months are higher

than in winter and spring. CMIP6 project generally higher air

temperature changes than CMIP5. The difference between

CMIP5 and CMIP6 is higher in summer and autumn,

especially for TAS. Regarding changes of TAS, TN and TX

simulated by CNRM_r1, the annual mean values are very

close to the CMIP6 median (Figure 4). In winter, this

simulation tends to be in the upper part of

CMIP6 distribution and in summer in the lower part.

Projected mean annual change of PR shows slight increase of

precipitation amount with 75% of GCMs giving positive annual

mean change and multi-model medians projecting change of

approximately 5% for both CMIP5 and CMIP6 under both

forcing scenarios (Figure 4B). CNRM_INI mini-ensemble

gives higher changes around 10% (Figure 4B). However, the

change is not distributed uniformly throughout the year. From

November to May all GCM simulations agree on precipitation

increase. During summer season, the results differ for both GCM

ensembles and forcing scenarios. For CMIP5 under RCP4.5 the

multi-model median change is close to zero (corresponding to

value of 100% in Figure 4B, with the term “zero change”meaning

no increase nor decrease of PR) and the spread between lower

and upper quartiles includes zero change from June to October.

Similar conclusion applies for CMIP5 under RCP8.5, with lower

(more negative) multi-model median change and larger spread in

July and August (Figure 4B). Under SSP2-4.5 CMIP6 projected

median precipitation change is near zero in June, and from July

to September slightly negative with multi-model inter-quartile

spread including zero change. Under SSP5-8.5 CMIP6 GCMs

project precipitation decrease from June to September with

maximum median decrease of 25% in August. In October

CMIP6 projected precipitation changes do not practically

differ between scenarios with median changes indicating
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increase of approximately 5% but MME spread between quartiles

involving zero change (Figure 4B). CNRM_INI gives more

positive precipitation changes than most of other GCMs in all

months, with practically zero median change in July and rather

positive changes in other months. CNRM_r1 projects

precipitation decrease of 10–25% from June to September, and

precipitation increase of similar magnitude range in other

months, with only minor differences between forcing scenarios.

TABLE 1 Comprasion of root mean square error (RMSE) of themean annual cycle of studied variables between selected CMIP6 and CMIP5 GCM pairs.
The differences are shown relatively, values lower than 100 implying better performance of CMIP6 GCM than its CMIP5 counterpart.

RMSE(CMIP6)/RSME(CMIP5)*100

CMIP5 CMIP6 tas Tasmin Tasmax pr

CanESM2 CanESM5 36 60 85 152

CNRM-CM5 CNRM-CM6-1-HR 62 69 94 139

EC-EARTH EC-Earth3 177 227 91 53

FGOALS-g2 FGOALS-g3 51 32 165 96

GFDL-CM3 GFDL-CM4 188 117 87 98

GFDL-ESM2M GFDL-ESM4 187 89 97 70

IPSL-CM5A-LR IPSL-CM6A-LR 74 19 58 90

MIROC5 MIROC6 88 95 101 206

MPI-ESM-LR MPI-ESM1-2-LR 94 30 85 103

NorESM1-M NorESM2-LM 108 — — 173

FIGURE 4
Projected changes of monthly means of daily mean air temperature (A), daily precipitation amount (B), daily minimum air temperature (C) and
daily maximum air temperature (D) for the period of 2070–2099 in comparison to 1961–1990 averaged over the area of the Czech Republic, “year”
denotes annual mean change. Boxplots show intra-ensemble statistical distribution (median, lower and upper quartiles, whiskers representing 1.5 *
IQR, and outliers as dots) of CMIP5 under RCP4.5 (dark green), CMIP6 under SSP2-4.5 (orange), perturbed initial conditions mini-ensemble of
CNRM-ESM2-1 GCM under SSP2-4.5 (10 members, blue), CMIP5 under RCP8.5 (light green), CMIP6 under SSP5-8.5 (yellow), perturbed initial
conditions mini-ensemble of CNRM-ESM2-1 GCM under SSP5-8.5 (5 members, brown). The CNRM-ESM2-1 r1i1p1f2 simulation is plotted as a pink
line for SSP2-4.5 and as grey line for SSP5-8.5.
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Regarding the projected changes in inter-annual variability of

TAS, TN, TX and PR, which were evaluated based on relative

changes in standard deviation (Figure 5), the differences between

CMIP5 and CMIP6 and individual emission scenarios are

smaller than in case of changes in mean values of studied

variables (compare to Figure 4). Further, the spread of

CNRM_INI mini-ensemble is comparable to the spread of the

whole CMIP5 and CMIP6 ensembles. This implies that the

internal variability seems to play an important role in changes

of inter-annual variability of studied variables. Standard

deviation of TAS, TN and TX is expected to increase in

summer and decrease in winter. Standard deviation of PR is

projected to increase, but the multi-model spread includes zero in

some months. CNRM_r1 tend to be rather far from the multi-

model median of CMIP6, especially for changes in standard

deviation of PR.

Furthermore, regarding the changes in standard deviation of

studied variables, there are some severely outlying points visible

in Figure 5, with changes up to 150–200% in several extreme

cases. The outlying models vary. It is not possible to depict

several particular models. However, we have to note that the

CNRM_r1 is also in some cases among these outlying

simulations, especially for standard deviation of PR, as already

noted above.

Similarly like in Mean annual cycle in 1961–1990 Section,

to investigate more the difference between air temperature

changes projected by CMIP5 and CMIP6 ensembles, we

compare changes in daily mean air temperature for ten

pairs of GCMs from both ensembles for which the

CMIP5 GCM can be considered as predecessor of

corresponding CMIP6 GCM (Table 2). For the sake of

easier interpretation, we only show the differences for

summer and annual means of projected TAS changes. We

choose summer season because the results in Figure 4 show

that for this season the differences in TAS changes between the

two multi-model ensembles are largest. For six out of these ten

pairs, the CMIP6 signal is higher for both forcing scenarios.

For “MIROC”, “FGOALS” and “GFDL-CM” pairs the

difference between generations is zero or CMIP5 version

gives higher TAS change than CMIP6. Also for “NorESM”

pair under the lower radiative forcing the CMIP5 projected

annual mean TAS change is slightly higher than CMIP6

(Table 2). Therefore, we cannot conclude that all

CMIP6 GCMs give higher TAS changes than their

CMIP5 predecessors do.

Discussion

Most of the results are presented in the form of boxplots for

individual ensembles. When comparing the boxplots we have to

keep in mind that each ensemble has different number of

members. So for example in some cases higher number of

simulations included can cause larger spread. On the other

FIGURE 5
Same as Figure 4, but for relative changes in standard deviation of studied variables.
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hand, we can conclude that higher number of models in

CMIP6 comparing to CMIP5 does not automatically lead to

larger spread, which implies higher convergence in CMIP6.

Differences in model performance and changes projected by

CMIP6 simulations in comparison to previous CMIP5 GCMs are

hard to attribute to one particular feature or difference between

the multi-model ensembles, because the ensembles differ in

various aspects. These include different number of

contributing models, differences in model complexity, e.g.,

inclusion of wider scale of bio-geo-chemical processes in some

CMIP6 earth-system models, differences in forcing scenarios etc.

Regarding the forcing scenarios, according to Gidden et al. (2019)

there are slight differences in emission and concentration

pathways between corresponding SSP-RCP pairs in the course

of the 21st century. As discussed in Tebaldi et al. (2021) there are

only minor differences in the radiative forcing according to more

traditional definition established by IPCC AR5 (Myhre et al.,

2013). However, when considering effective radiative forcing

(Smith et al., 2020), some differences arise, due to above

mentioned differences in emission pathways (for detailed

discussion see Tebaldi et al., 2021, Section 3.1.3).

Another important issue potentially contributing to

revealed differences in projected climate changes is higher

effective climate sensitivity in some of the CMIP6 GCMs (e.g.,

Zelinka et al., 2020) leading to higher projected temperature

changes especially in summer (e.g., Palmer et al., 2021).

Moreover, a number of recent studies have shown that

there is a certain relationship between model performance

in recent decades and the magnitude of projected future

changes (e.g., Tokarska et al., 2020; Hegerl et al., 2021).

When some kind of constraint is applied based on the

historical simulations then the constrained

CMIP6 projected changes get more in line with

CMIP5 constrained projections (e.g., Tokarska et al., 2020;

Tebaldi et al., 2021). However, most of relevant studies

concentrate on global mean surface air temperature (e.g.,

Brunner et al., 2020; Tokarska et al., 2020), so the effect of

such constraints over Central Europe needs to be assessed.

Analysis of possible constraints is out of scope of the present

study, the authors are working on a follow-up study focusing

on this issue. Preliminary results for the reference period

analyzed here do not show any difference in simulated air

temperature trends between CMIP5 and CMIP6. Nevertheless,

we can make a note, that both GCM generations tend to

overestimate observed air temperature trends, with

observed trends of monthly mean air temperature being

mostly statistically insignificant and simulated trends

statistically significant in approximately half of studied

cases (not shown).

Regarding model performance, some previous studies

compared the GCMs contributing to both CMIP5 and

CMIP6 in order to evaluate explicitly the progress between

the generations. For example, Cannon (2020) evaluated

15 such pairs of GCMs according to their skill in simulating

observed patterns of atmospheric circulation over six selected

continental regions based on daily values of sea-level pressure.

They concluded that the simulated atmospheric circulation is

substantially improved in the new generation of models.

Similarly, Fernandez-Granja et al. (2021) also report a

progress to better results in CMIP6 when evaluating

atmospheric circulation based on Lamb classification over

Europe for nine pairs of GCMs. Evaluation of model

performance is not the main goal of this study, as we evaluate

mainly multi-model characteristics rather than individual model

performance. Anyway, our results for the reference period are

quite inconclusive; there are not large differences in the

resemblance with observed values between CMIP5 and

CMIP6 (Figures 2, 3). On the other, the simple comparison of

TABLE 2Differences in TAS projected changes (°C) between selected CMIP6 a CMIP5GCMpairs for two forcing scenarios. Positive values imply higher
projected changes in CMIP6 than in CMIP5. JJA denotes mean over June-July-August season, Y denotes annual mean.

RCP45/SSP2-4.5 RCP85/SSP5-8.5

CMIP5 CMIP6 JJA Y JJA Y

CanESM2 CanESM5 0,9 1,2 0,8 1,7

CNRM-CM5 CNRM-CM6-1-HR 1,2 0,5 2,4 1,2

EC-EARTH EC-Earth3 2,3 2,4 3,9 3,9

FGOALS-g2 FGOALS-g3 −0,7 −0,4 −1,1 −1,3

GFDL-CM3 GFDL-CM4 −1,4 0,1 −2,6 −0,7

GFDL-ESM2M GFDL-ESM4 0,8 0,6 1,1 0,5

IPSL-CM5A-LR IPSL-CM6A-LR 1,0 0,5 2,4 0,9

MIROC5 MIROC6 0,0 −0,7 0,0 −1,0

MPI-ESM-LR MPI-ESM1-2-LR 0,7 0,9 1,0 0,6

NorESM1-M NorESM2-LM 0,4 −0,2 1,3 0,4
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RMSE of mean annual cycle of studied variables for selected

CMIP5-CMIP6 pairs show general tendency towards better

performance in the new GCM generation.

One of the prominent features visible in our results across GCM

generations is the pattern of summer precipitation decrease over

central Europe. It has already been described based on both GCM

and RCM projections (e.g., Coppola et al., 2021a) and has been

reported to get evenmore prominent inCMIP6 (Palmer et al., 2021).

Another noticeable feature is that projected air temperature increase

is higher in summer and autumn than in winter and spring

(Figure 4A). This implies a possible change in the annual air

temperature amplitude and hence thermal continentality of

climate. Continentality of climate generally characterizes the

influence of the distance of ocean on the climate of a place

(Driscoll and Yee Fong, 1992). Previous studies based on

Köppen-Trewartha climatic classification showed projected

transition from continental temperate climate to oceanic

temperate climate over Central Europe (Feng et al., 2012; Belda

et al., 2017). This is seemingly in contrast to our results. However,

Köppen-Trewartha climatic classification distinguishes the

continental and oceanic temperate climates based solely on a

numerical threshold for air temperature of the coldest month

(Belda et al., 2014). However, thermal continentality indices are

generally based on annual air temperature amplitude (e.g.,

Gorczynski, 1922). Hence, as our results for both CMIP5 and

CMIP6 show increasing annual temperature amplitude, it implies

increase of continentality of climate over Central Europe. On the

other hand, a different view on continentality can be based on the

annual course of precipitation (e.g., Brázdil et al., 2009). More

uniform annual course implies ombric oceanity, whereas

increasing differences between seasonal precipitation amounts

imply increasing ombric continentality. Our results show slight

increase of winter precipitation and tendency towards decrease of

summer precipitation (Figure 4B). Combining these projections

with observed annual course of precipitation (Figure 2B), we can

conclude that our results indicate projected decrease of ombric

continentality over Central Europe, contrasting with expected

increase of thermal continentality of climate.

Regarding projected changes in inter-annual variability of

studied parameters, our results indicate increase of variability of

precipitation, except for summer months, where the results are

inconclusive with multi-model ranges including zero changes

(Figure 5B). Together with projected decrease of summer

precipitation (Figure 4B), this might lead to higher probability

of dry summer periods. Increased inter-annual variability

together with increased mean precipitation in winter, spring

and autumn leads to higher probability of extreme

precipitation that might point toward higher probability of

floods. Inter-annual variability of studied temperature

characteristics in summer is expected to increase (Figures

5A,C,D) which together with projected increase of monthly

mean values (Figures 4A,C,D) leads to even higher probability

of extremely high temperatures with possible more frequent heat

waves in summer. Higher probability of high temperature

extremes in future has also been concluded in previous

studies, most recently e.g., in Coppola et al. (2021b).

Conclusion

We have evaluated differences between CMIP5 and

CMIP6 GCM multi-model ensembles with regard to mean

annual cycle of four basic climatic variables and their inter-

annual variability in the 1961–1990 reference period and

projected changes in 2070–2099 under two forcing scenarios.

The reference period of 1961–1990 was selected to represent

relatively stable recent climate over the Czech Republic. More

recent reference period would be more influenced by

contemporary anthropogenic climate changes (e.g., Brázdil et al.,

2022). A special attention has been paid to the simulation of CNRM-

ESM2-1, one of the CMIP6 GCMs, and its perturbed-initial

conditions mini-ensemble. The results for the area centered on

the Czech Republic reveal minor differences in model performance

in the reference period whereas quite substantial inter-generation

shift in projected future change towards higher air temperature and

lower summer precipitation in the new GCM generation. Based on

our simple comparison of selected predecessor-successor pairs it

cannot be concluded that all CMIP6 GCMs project systematically

higher air temperature changes (Table 2). However, themulti-model

characteristics imply generally higher changes for CMIP6 GCMs,

especially in summer.

Regarding the consistency of GCM simulations with

observed values in the reference period, we can conclude that

based on the multi-model characteristics the GCMs are capable

of capturing the main features of annual cycles of studied climatic

elements. Even though the model performance does not

automatically imply reliability of future climate change

projections (e.g., Abramowitz et al., 2019), it is a necessary

condition for the process of climate change scenario creation.

Regarding the CNRM-ESM2-1, the driving GCM simulation

of Aladin-CLIMATE/CZ, which is the core simulation for the

PERUN climate change scenarios, its results are often quite far

from the multi-model median. Therefore, we strictly recommend

accompanying any analysis based on the simulation of Aladin-

CLIMATE/CZ with proper uncertainty estimate using available

GCMs and RCMs. On the other hand, the nested RCM does not

automatically inherit the manner of behavior from the driving

GCM, even the climate change signal is often substantially

modified (e.g., Sørland et al., 2018; Crhová and Holtanová,

2019). We concentrated here on the CNRM-ESM2-

1 simulation for the area of the Czech Republic, which lies in

the center of the Aladin-CLIMATE/CZ integration domain.

However, for the resulting RCM simulation, the input from

GCM in the form of boundary conditions is very important

(e.g., Christensen and Kjellström, 2020; Ahrens and Leps, 2021).

Therefore, in an upcoming study, we will concentrate on
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evaluation of CNRM-ESM2-1 with regard to the boundary

conditions provided to Aladin-CLIMATE/CZ, i.e., the upper-

air parameters over the boundaries of the integration domain.

The range of CNRM_INI mini-ensemble represents a rough

estimate of uncertainty related with internal climate variability. It is

relatively larger in case of inter-annual variability of studied air

temperature variables than for themean values, in both the reference

period and with regard to projected changes. For precipitation, the

role of internal variability is more pronounced than for air

temperature, in both reference and future time periods. The

CNRM_INI mini-ensemble includes only ten or five simulations

for only one model, and therefore provided uncertainty estimate

must be considered as a lower bound. With regard to this fact, we

can conclude that the CNRM_INI range is often quite large in

comparison to the range of whole CMIP6 ensemble. It implies that

when constructing climate change scenarios for Central Europe,

attentionmust be paid not only to structural uncertainty represented

by inter-model differences and scenario uncertainty, but also to the

influence of internal climate variability.

Our results and above discussion lead us to the conclusion

that it is necessary to explore possible constraints on simulated

changes before the CMIP6 GCM outputs are used for any kind of

further analysis, including uncertainty estimates for impact and

adaptation studies on regional and local scales. Therefore, within

the project PERUN, a further analysis of possible links between

simulated changes, model performance and model climate

sensitivity will be performed to tackle this issue appropriately.
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