
1.  Introduction
Bogotá, with a population of 8 million and the capital of Colombia in NW South America, is one of the global 
megacities with high seismic risk (Acevedo et al., 2020; Riaño et al., 2021). A likely location of M > 7 earth-
quakes that represent a major future threat for the city is known to exist within 100 km (Algeciras Fault System 
[AFS], detailed below). Nevertheless, more than 50 years passed between the last M7 in this region and an Mw 
6 earthquake that occurred there on 24 December 2019. The segmentation of the AFS has been the subject of 
discussion (Chicangana-Montón et al., 2022; Diederix et al., 2021; Velandia et al., 2005). Furthermore, despite 
the seismic activity recorded by the National Seismic Network of Colombia from 1993, the information on poten-
tially tectonically active structures is still unclear. Structural details have not been defined due to lack of infor-
mation and difficulty of access to the area. The studies on the 2019 Mesetas earthquake (Chicangana-Montón 
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et al., 2022; Noriega-Londoño et al., 2021; Vargas et al., 2021) do not address the seismological and morpho-
structural analysis carried out in this work. It is the first instrumentally well-observed event and sequence in the 
region; thus, we integrate seismic and geological data to study the source process to contribute to the interpreta-
tion of the activated segment of the AFS. The 2019 earthquake sequence is appealing mainly because it involves 
two mainshocks (Mw 6 and 5.8) that occurred in a complex region close to each other in space and time (i.e., a 
doublet). Finally, we formulate a plausible tectonic model of the northern segment of the AFS that explains the 
occurrence of main events and their aftershocks.

The tectonic configuration of northwestern South America is characterized by the complex interactions of the 
Caribbean, Nazca, South American plates, and the Panamá-Chocó block (Figure 1a). The contact zone between 
these plates, known as the North Andean Block (NAB), is a tectonic unit that originated from the interaction 
between terranes of different affinities, ages, and stress regimes that accreted to the continental margin of NW 
South America (Cediel et al., 2003; Escalona & Mann, 2011; Montes et al., 2005; Spikings et al., 2015; Taboada 
et al., 2000). At present, the NAB moves to the northeast (Alvarado et al., 2016; Audemard & Audemard, 2002; 
Audemard & Castilla, 2016; Audemard et al., 2021; Diederix et al., 2021; Egbue & Kellogg, 2010; Gutscher 
et al., 2000; Mora-Páez et al., 2019; Nocquet et al., 2014; Trenkamp et al., 2002; Velandia et al., 2005). This 
movement (or escape) occurs along several fault systems that define the NAB boundary in Ecuador, Colombia, 
and Venezuela. Recent Global Positioning System (GPS) measurements have shown that the NAB moves at an 
azimuth of 60° at an average of 8.6 mm/yr relative to the South American plate (Mora-Páez et al., 2019).

The northern section of the NAB border in Colombia (north of 4°N), includes the Guaicáramo Fault System 
(GFS), dominated by compressive stress regimes and thrust faulting (Diederix et al., 2021; Mora & Parra, 2008), 
while the central part of the range is characterized by NE displacement (Mora-Páez et al., 2019) and right-lateral 
strike slip earthquake focal mechanisms (e.g., Dicelis et al., 2016). The southern section (south of 4°N), named 
the AFS, is dominated by a strike-slip and transpressive regime (Arcila, M. & Muñoz–Martín, 2019; Diederix 
et al., 2021; Velandia et al., 2005), see Figure 1. The latter tectonic zone has been classified as a right-lateral 
wrench complex geometry where geomorphology, major historical earthquakes, and recent seismic events indi-
cate neotectonic activity (Chicangana-Montón et al., 2022; Diederix et al., 2021; Noriega-Londoño et al., 2021; 
Velandia et al., 2005). The most recent paleoseismology study (Diederix et al., 2021) reports that at least seven 
M > 7 events have occurred along the AFS since 8,120 ± 145 BCE at the Algeciras pull-apart basin.

The AFS is one of the most seismically active and continuous fault systems in Colombia and has produced the 
largest historical crustal earthquakes in the country, with estimated magnitudes, at these historical times: M6+ 
on February 1616, M7+ on 6 March 1644 and 18 October 1743, Mw 7.1 on 12 July 1785, and Mw 6.7 on 31 
August 1917 (Cifuentes & Sarabia,  2009). The last Mw 7.0 earthquake on 9 February 1967 destroyed some 
populated areas and even affected Bogotá, resulting in hundreds of deaths and extensive damage (Cifuentes & 
Sarabia, 2009; Dimaté et al., 2005). An Mw 5.9 earthquake on 24 May 2008, occurred close to the GFS (Dicelis 
et al., 2016), see Figure 1.

From a regional point of view, the transition between the AFS and the GFS is proposed as connected systems 
(Taboada et al., 2000; Velandia et al., 2005); although other authors also proposed that the GFS is not directly 
connected with the AFS. The right lateral dextral displacement of the NAB only began about 2 Ma (Egbue & 
Kellogg, 2010). This displacement to the NE is transferred from the AFS to a wide zone of dextral faulting in 
the Eastern Cordillera as evidenced by GPS measurements and earthquakes (Dicelis et  al.,  2016; Mora-Páez 
et al., 2019). To characterize the Mesetas earthquake sequence related to AFS, we mapped the fault traces based 
on hillshade images from digital elevation models with 30 and 12.5  m resolution (NASA—Alaska Satellite 
Facility) (https://vertex.daac.asf.alaska.edu). From identifying morphostructural structures related to main and 
secondary faults, we highlighted the northern termination of the AFS before its junction with the GFS since the 
whole system consists of several regional faults with significantly related earthquakes (Figure 1). This informa-
tion was used with seismological observations to identify new related structures and interpret the Mesetas seismic 
sequence.

On 24 December 2019, an earthquake sequence started with two almost identical major earthquakes (Mw = 6.0 
and Mw = 5.8) near the Mesetas settlement in the Eastern foothills of Colombia, approximately 200 km south-
east of Bogotá (Figures 1 and 2). The two events occurred just a few kilometers and 16 min apart, forming a 
doublet. They were preliminarily located by the National Seismic Network (https://www.sgc.gov.co/sismos) at 
3.453°N and 74.194°W and 9 km in depth and 3.474°N and 74.242°W and 12 km in depth, respectively. Some 
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damage to weak buildings was reported, most of which included cracks in 
cladding, cracks in walls, roof tiles falling, and cracks in structural joints 
between columns and beams. The following seismic sequence of about 412 
aftershocks of M > 2.0 lasted 3 months and showed an L-shaped pattern, 
suggesting complex faulting (Figure 3a). The seismic sequence was situated 
less than 100 km northeast of the 1967 Mw 7.0 earthquake in the junction 
between the GFS and the AFS with a complex fault network. Therefore, the 
2019 Mesetas sequence is essential in terms of magnitude and consequences. 
The present study reveals newly identified structures in the current complex 
boundary of the Northern Andes.

The Mesetas sequence was well recorded by broadband and strong-motion 
seismic networks, providing a unique opportunity to decipher the rupture 
processes and contribute to the knowledge of the fault segments of the AFS. 
We model the largest events in terms of centroid moment tensors, space-time 
development of slip on the faults, local stress field, and Coulomb stress trans-
fer. Seismology and geology results are combined to improve understanding 
of the complex faulting style of the Algeciras Fault. We interpret the main-
shocks and the aftershocks as related to the activity of the northern termina-
tion of the AFS, where two structural styles control the seismic activity, as we 
show later. These results reveal unprecedented details about newly identified 
active faulting in this complex yet poorly known region.

2.  Tectonic Setting
The study area occupies the eastern boundary of the NAB (Figure 1a), which 
is referred to by some authors as the Eastern Front Fault System (EFFS) 
in Colombia and Venezuela (Audemard & Audemard,  2002; Audemard 
et al., 2021; Diederix et al., 2020; Kellogg et al., 1995; Pennington, 1981; 

Taboada et al., 2000). In Colombia the EEFS is outlined by the GFS, while the AFS crosscuts the Eastern Cordil-
lera and the whole Andes since connecting with the Chingual-Cosanga-Pallatanga-Puna fault system up to the 
Gulf of Guayaquil in Ecuador, defining the eastern tectonic boundary of the NAB (Alvarado et al., 2016; Velandia 
et al., 2005).

The Eastern Cordillera border is interpreted as the result of transpression generated by right lateral movement 
of the AFS and the EFFS during the Quaternary (Audemard & Audemard, 2002; Audemard & Castilla, 2016; 
Diederix et al., 2021; Gutscher et al., 2000; Mora-Páez et al., 2019; Nocquet et al., 2014; Trenkamp et al., 2002), 
promoting the “escape” of the Northern Andes to the NE with respect to the South American Plate. The 
motion along the AFS is predominantly dextral strike-slip type with a reverse component (Chicangana-Montón 
et al., 2022; Noriega-Londoño et al., 2021; Velandia et al., 2005). Between 4°N and 7°N, the GPS results show 
primarily dextral strike-slip in the Eastern Cordillera (Mora-Páez et al., 2019). However, other pieces of evidence 
from focal mechanisms (Garcia-Delgado et al., 2022) show local values of SHmax with orientations perpendic-
ular to GFS between 5°N and 6°N. The geomorphic expression of AFS is characterized by several pull-apart, 
rhomboidal shaped, and releasing sidestep basins (Diederix et al., 2021; Velandia et al., 2005). Furthermore, 
synthetic and antithetic faults and folds oriented obliquely to the main trace of the system are observed (Diederix 
et al., 2020, 2021; Velandia et al., 2005). The AFS behaves like a right lateral structure, with a vertical component 
in which sedimentary cover and basement rocks are involved (Velandia et al., 2005).

The continuity of the AFS to the north was interpreted as connecting the GFS along the eastern piedmont of 
the Eastern Cordillera (Velandia et  al.,  2005), but also trending NE along the Río Meta Fault (Audemard & 
Castilla, 2016; ; Mora et al., 2013). Nevertheless, here, we constrain the northern termination of the AFS as a 
regional and independent structure with its own style.

Figure 1.  (a) Simplified tectonic framework of NW South America with 
main tectonic structures (Nazca, Caribbean, South America and North Andean 
Block), Guaicáramo Fault System, and Algeciras Fault System (AFS) from the 
Global Active Database (Styron & Pagani, 2020). The vectors show the Global 
Positioning System-derived motion of the Nazca and Caribbean plates relative 
to the South American plate (Mora-Páez et al., 2019). (b) Historical seismicity 
in SW Colombia, color-coded by earthquake depth, with focal mechanisms 
from the Global Centroid Moment Tensor catalog and Mw 7.0 on 9 February 
1967 from Suárez et al. (1983). Major earthquakes (1785, 1827, 1834, 1967, 
and 1917) are related to the AFS. Other important faults are also shown 
(Styron & Pagani, 2020; Veloza et al., 2012). The blue square represents the 
location of Figure 2, the principal area of this study. (c) The red rectangle 
shows the location of (a).
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3.  Morphostructural Mapping
Since it is necessary to obtain details of the geological faults, we supplement existing regional geology informa-
tion with our analysis to constrain the Mesetas seismicity and its relationship with the structural framework. In 
particular, we developed the morphostructural mapping of the AFS (Figure 2a). Within the geomorphic struc-
tures, we identified pressure and linear ridges proper of restraining bends and contractional oversteps, as well as 
some linear depressions that are located along releasing bends of the main fault system. Other geological features 
can be observed, such as triangular facets, fault scarps, L-shaped spurs, fault saddles, offset and drainage control 
(Figure 2a), all of them as signs of neotectonic activity and located according to dextral strike-slip kinematics. 
Although, the configuration of the structures (e.g., orientation) can be affected by previous fracture patterns of 
the geological massif, dextral kinematics of the whole system is confirmed by the geometry and orientation of 
the splay of secondary faults (Riedel traces): ENE (R or synthetic fault), E (R’ or antithetic fault), and NNE (P 
or post-synthetic fault), while the AFS is trending NE (Figure 2). These synthetic and conjugate faults work on 
drainage organization and the configuration of some ridges and depressions.

The complete set of the main geological faults (Ucrania, Algeciras, La Florida—Figure 2a), subparallel between 
them, as well as the location and orientation of morphostructures and related minor faults, are considered evidence 
to propose a local stress tensor that explains the kinematics, and two structural styles of the fault damage zone. 
Following Woodcock and Schubert (1994), the general fault array and the associated minor faults result in a stress 
tensor orientation with σ1 in azimuth of 100° (Figure 2b), which supports dextral strike-slip of the AFS in the 
area. The morphostructural style shows the thickening of this fault system toward the north, defining its termina-
tion along a regional restraining bend. The fault geometry of this transpressional termination can be explained by 
two domains from the main trace of the Algeciras fault (Figures 1 and 2): duplex and domino styles (in plan view), 

Figure 2.  (a) Map with detailed morphostructural features interpreted along the Algeciras fault system. The blue square represents the zone of (c). (b) Schematic 
showing the relationship between major transpressional shear zone of Algeciras Fault System, the Riedel traces and the orientation of σ1 based on Woodcock and 
Schubert (1994). (c) Location of earthquake doublet that occurred on 24 December 2019, with detailed fault mapping and focal mechanisms obtained in this study. The 
segment in red represents one of the identified structures, which will be discussed later in relation to seismicity.
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detailed in the discussion section. Additionally, as a result of the mapping, a structure is highlighted (Figure 2c, 
in red) related to seismicity, which will be addressed later.

4.  Relocation of the Mesetas Sequence
The Mesetas earthquake sequence comprised 412 events of M > 2 (Figure 3). The first arrivals of P- and S-waves 
were manually picked using 64 stations (Figure 4). The locations were first determined with the NonLinLoc 
code (Lomax et al., 2000) in the velocity model of Pedraza and Pulido (2018); this model agrees with a previ-
ous study of receiver functions and ambient noise tomography (Poveda et al., 2018) developed in the zone. The 
NonLinLoc locations provide quite a diffuse foci distribution (Figure S4 in Supporting Information  S1). We 
then relocated the sequence using the HypoDD code (Waldhauser & Ellsworth, 2000) with the same velocity 
model, and the foci were efficiently clustered (Figure 3) with horizontal errors below 30 m and less than 40 m 
in depth. We used HypoDD for earthquakes above magnitude 2 recorded at least by 9 seismic stations; we do 
not use waveform cross-correlation. The epicenters indicate an L-shaped pattern (Figure 3a). It formed within a 
few hours after the mainshock and remained stable for the whole ∼160-day duration of the sequence (Figures S2 

Figure 3.  (a) The Mesetas doublet (yellow stars) and aftershocks Mw > 2, color-coded by earthquake depth. The event symbols and focal mechanisms are scaled by 
magnitude. Focal mechanisms are depicted for the aftershocks of Mw > 4. (b) Selected vertical sections based on the seismicity L-pattern and strike of M1 and M2, 
along profiles of Panel (a) Shown in the sections are the events situated within a 1.5 km wide band. (c) Ternary diagram obtained from focal mechanisms. (d) Principal 
stress axes derived from the studied sequence based on the StressInverse code (Vavryčuk, 2014). (e) Magnitude-frequency distribution and Gutenberg-Richter law 
for Mesetas sequence. Blue bars represent the number of earthquakes inside each 0.2 magnitude interval. The red straight line represents the Gutenberg-Richter law 
obtained by fitting the cumulative events (squares) using a maximum curvature solution (Wiemer, 2001).
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and S3 in Supporting Information S1 with 24 hr and 160 days, respectively). 
The sequence occurred between depths of 5 and 20 km in a 7 × 7 km area 
(Figure 3). The frequency-magnitude relationship of the sequence was stud-
ied by calculat ing the Gutenberg-Richter relation with the maximum curva-
ture method and ZMAP code (Wiemer, 2001). The obtained b-value = 0.81 is 
relatively low (Figure 3e), in agreement with Frohlich & Davis, 1993 related 
to the multiple-fault Algeciras System in a transpressive environment.

For the two mainshocks, M1 and M2 (Mw 6.0 and 5.8, respectively), a 
detailed uncertainty analysis of their hypocenter position was performed, as 
shown in Figure S5 in Supporting Information  S1. We used the Oct-Tree 
method implemented in NonLinLoc, which samples the location proba-
bility density function ("scatter cloud"). Due to the network geometry and 
picking errors, the clouds are elongated approximately in the N-S direction. 
Dimensions of the M1 cloud based on its confidence ellipsoid are 7.7 km 
for the major axis and 2.2 km for the intermediate axis. Likewise, for M2, 
we found values of 7.9 and 1.6 km for the major axis and intermediate axis, 
respectively. The RMS location errors for the M1 and M2 events are 0.34 and 
0.31 s, respectively.

Two mainshock locations are shown in Figure 3a. Their hypocenters are situ-
ated at a depth of 18–20 km (Figure 2b). Within the uncertainty, the epicenter 
of M2 is shifted ∼2  km in the southwestward direction relative to M1. 
Although the best-fit hypocenter of M2 is ∼5 km shallower than M1, their 
relative depth shift is less well resolved (see Figure S5 in Supporting Infor-
mation S1 which also shows a trade-off between depth and the NS position).

5.  Moment Tensor Solutions
Centroid moment tensors (CMTs) were determined by full-waveform 
inversion of 29 near-regional records, 14 broadband, and 15 strong-motion 
stations (code ISOLA, Zahradník & Sokos,  2018). Records from broad-
band and strong motion stations were used (see Figure  4), comprising 
epicentral distances between 31 and 335 km and relatively low frequencies 
(0.02–0.05 Hz). The selection of stations and frequency bands was based on 
the data quality, requiring low noise and the absence of instrumental distur-
bances. Moment tensor was obtained by the least-squares method, assuming 

a single-point source model. Centroid depth was grid searched beneath the epicenter of each event. Green's func-
tions were calculated with the same 1D model as used for the locations (Pedraza & Pulido, 2018; Figure S1 in 
Supporting Information S1). The depth variation of the correlation between real and synthetic seismograms for 
the mainshocks is shown in Figure 5, and the respective waveform fit is displayed in Figure 6.

Figure 4.  Seismographs used in this study. Stations of the Servicio Geológico 
Colombiano were supplemented by two stations of neighboring countries (see 
also Table S1 in Supporting Information S1). Broadband (red triangles), short 
period (yellow triangles), and strong-motion (blue inverted triangles) stations 
were used to locate mainshocks M1 and M2 and aftershocks. For kinematic 
slip inversion, we used only the near-source strong motion network, whereas, 
for Centroid moment tensor inversion, we used a combination of broadband 
stations (red triangles with green borders) and the strong motion network.

Figure 5.  Depth variation of the single point-source deviatoric MT model of the (a) M1 and (b) M2 mainshocks.
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Interestingly, the moment tensor solutions of M1 and M2 are almost identical, featuring a strike-slip mechanism 
with a reverse component, characterized by strike/dip/rake (s/d/r) angles 210°/73°/158° and 197°/72°/156° for 
M1 and M2, respectively. The M1 and M2 events were observed by international networks. The Global Centroid 
Moment Tensor (Global CMT) project (Dziewonski et al., 1981; Ekström et al., 2021) estimated a centroid depth 
of 19.2 km with strike/dip/rake (s/d/r) 208°/67°/154° angles for M1, and a centroid depth of 18.2 km with a fault 
plane of 195°/69°/158° for M2, respectively. We did not have a prior preference for rupture of these or conjugated 
nodal planes. The centroids are situated at depths of 10–14 km, and the double-couple percentage of M1 (<80%, 
Figure 5) is lower than that of M2 (>80%). The CMT inversion is stable around the best-fitting depth, and the 

Figure 6.  The fit of the observed (black) and synthetic (red) displacement waveforms (in meters) for the single point-source deviatoric-MT model of the (a) M1 and (b) 
M2 mainshocks. Stations are sorted by epicentral distance from 150 to 334 km. Both data and synthetics are bandpass Butterworth filtered between 0.02 and 0.05 Hz. 
The components with bad fit (gray) were removed from the inversion. (c) Seismic stations of the Servicio Geológico Colombiano used in the inversion. The stations 
BET and SPBC were not used in the M2 inversion due to instrumental disturbances in the records.
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waveform fit between real and synthetic seismograms is very good, with variance reduction VR ∼ 0.87 and ∼0.86 
for M1 and M2, respectively (Figure 6). For details, see Table S2 in Supporting Information S1. CMTs of 14 
aftershocks (Mw > 4) exhibit a mix of strike-slip and reverse faulting, and centroid depths ranging between 5 and 
17 km (Figure 3). We used the 29 focal mechanisms solutions (Figure 3) from moment tensor inversion to apply 
the StressInverse code of Vavryčuk  (2014), characterize the compressive stress orientations, and evaluate the 
possible relations with mapped faults. The results are shown in Figure 3d and addressed in the discussion section.

6.  Inference About Faults and Their Seismic Slip
In this section, we present plausible kinematic models of the two mainshocks (Figure 7). The space-time distri-
bution of the slip and slip rate is calculated by linear full-waveform inversion using the LinSlipInv method (LSI, 
Gallovič et al., 2015), developed and thoroughly tested in recent years (Gallovič, 2015; Mai et al., 2016; Pizzi 
et al., 2017). Model parameters are samples of the slip-rate time function over a gridded fault and over the whole 
duration of the source process. The inversion is regularized by smoothing, by ensuring slip-rate positivity, and 
by seismic moment (estimated in the CMT inversion). Optimal free parameters of the slip inversion were estab-
lished by extensive testing: (a) subfaults are 1 × 1 km, (b) frequency range of 0.05–0.20 Hz for all stations of 
Figure 8, (c) smoothing between 0.01 and 0.05 m, which represents the data error in the method. Some stations 
or components were effectively removed from the inversion by down-weighting by a factor of 0.001; the station 
components remained in the modeling to check how they were predicted by the slip model derived from the 
remaining stations (shown in gray in Figure 8 and Figure S6 in Supporting Information S1 with a bad fit between 
real and simulated seismograms). In this method, the rupture model is inverted without prior constraints on the 
position of the nucleation point. The inversion of each event requires a predefined fault plane. To constrain the 
likely fault planes, we examine and combine several pieces of information, such as the position of hypocenters, 
centroids, aftershocks, as follows.

Beyond the L-shaped aftershock distribution seen in the map view of Figure 3a, in 3D, it is not easy to recognize 
simple geometrical structures, such as possible fault planes, because (as indicated above by the focal mecha-
nisms) the involved faults are not vertical. Another issue is that aftershocks, although relatively well clustered 
by double-difference relocation, are still dispersed, partly due to the possible activation of several different short 
faults. In this study, we construct approximately 100 trial faults of the two mainshocks as planes passing through 
their hypocenters. Both nodal planes of all trial faults are tested as potential fault planes in the slip inversion. To 
select the best fault planes, several model comparison techniques were proposed, such as cross-validation (e.g., 
Wahba & Craven, 1978) and the evidence ratios (e.g., Sambridge et al., 2006; Yañez-Cuadra et al., 2022), for 
instance. In this study, we select the best fault planes based on the principle of Occam's razor (e.g., Constable 
et al., 1987). We seek for good stability and quality of the parameters in the inversion, without overfitting the 
data, as well as looking for fault planes located and oriented in agreement with the seismicity spatial distribution 
and morphostructural observations. We note that we do not account for epistemic errors caused by uncertain 
fault definition (e.g., Ragon et al., 2018). Although the latter technique is available for simplified cases, it is 
unclear of how to implement it within the comparison of our fault definition with seismicity and morphostruc-
tural observations.

Based on the CMT (s/d/r angles) and the aforementioned tests, we suggest two scenarios, A and B (see 
Figure 7). In both scenarios, mainshock M1 has a fault plane striking at 210° and dipping 70°. The conju-
gate nodal plane of M1 was denied for its poor waveform fit in the kinematic slip inversion (Figure S6 in 
Supporting Information S1). Regarding M2 (motivated by the L-shaped aftershock pattern), in scenario A, 
this event is assumed to have ruptured in the second nodal plane characterized by a strike of 298° and dip of 
60°. In scenario B, the M1 and M2 fault planes are almost parallel, with M2 characterized by a strike of 197° 
and dip of 70°.

Slip models are shown in Figure 7a. We note that they are heavily smoothed due to the stabilizing constraint; that 
is why the models resemble rather a smoothed centroid, which could be improved only if (more) local stations 
were available. Stable and unstable features of the slip rate and slip distributions can be identified in Figures 7b 
and 7c, respectively. We set time t = 0 at 3 s before the origin time of M1 and at 2 s before M2. The stable features 
are as follows: (a) M1 consists of the main moment release at t = 4 s, continuing for the next 2 s (t = 5 and 6 s) 
with a still significant slip rate. The estimated slip rate of M1 agrees with the SCARDEC source time function 
database (Vallée & Douet, 2016), whose results has a maximum rate of 4 s and a duration of 6 s (b) M2 is simpler 
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due to its smaller magnitude, primarily rupturing at t = 2 and 3 s. Less stable features include disturbances, or 
”ghosts” (i.e., regions of low slip rate), for example, at t = 2 s in M1 and t = 5 and 6 s in M2. The ghosts are 
artifacts common to all slip inversions due to imperfect modeling, such as an inaccurate position of the fault or 
an inaccurate velocity model (Gallovič & Zahradník, 2011; Gallovič et al., 2015; Zahradník & Gallovič, 2010). 
In our case, M2 with a strike of 197° (scenario B) provides a cleaner slip-rate pattern in the initial phase of the 
process (t = 0 and 1 s), and the waveform fit (VR) is higher than that of scenario A. The waveform fit of scenario 

Figure 7.  (a) Proposed scenarios A and B of the two mainshocks. The M1 fault plane is fixed, while two trial positions of the M2 plane are considered. The top edge 
of the fault is marked by the thick line. Superimposed on M1 are the optimally oriented faults of the region (dashed lines). (b) Space-time evolution of the slip rate. Left 
column—M1, middle and right columns—M2 in scenarios A and B, respectively. The snapshots are marked with time, 0–9 s; t = 0 is 3 and 2 s before the respective 
origin time of M1 and M2, respectively. Variance reduction marks variance reduction of the waveform inversion. (c) Final slip distribution, arranged similarly to Panel 
(b) Note the different scales of the subpanels. The blue stars are hypocenters from the NonLinLoc location (not used as a constraint for the rupture nucleation position) 
at depths of 12 and 15 km for M1 and M2, respectively. In each subfault the source time function is displayed.
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A is worse, especially for near stations (Figure S6 in Supporting Information S1). Scenario B fits seismic data in 
the 0.02–0.5 Hz range with variance reduction (VRs) of 0.61 for M1 and 0.72 for M2 (see Figure 8). For these 
reasons, we prefer scenario B, that is, M1 (strike 210°) together with M2 (strike 197°). Furthermore, we discuss 
which of the scenarios should be preferred in the Discussion section, considering additional arguments.

Figure 8.  Comparison between observed (black) and simulated (red) waveforms for (a) mainshocks M1 and (b) M2 in scenario (b) The gray traces represent the 
components with poor fitting, unused in the inversion. The station codes are on the right. Peak observed displacements are shown to the left. (c) Strong motion stations 
of the Servicio Geológico Colombiano used in the slip inversion.
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We do not broadly discuss the absolute size of the slip patches (10 × 10 km) and the maximum slip (∼30–40 cm) 
for two reasons: they are not critical from the tectonic viewpoint, and they depend on the adopted smoothing. 
We tested suitable spatial smoothing following Gallovič et al. (2015). The smoothing parameter of 0.01–0.05 m 
was chosen as a compromise between the simplicity of the slip pattern (minimum ”ghost” features) and the 
waveform data fit. Nevertheless, our slip model agrees with empirical relations (Somerville et al., 1999; Wells 
& Coppersmith., 1994) that predict 30 and 16 cm of maximum slip for M1 and M2, respectively. Regarding the 
space-time development of M1 and M2, we find in Figures 7b–7c that rupture propagated basically upward. In 
M1 and M2 (scenario B), we also detected an anti-strike component of rupture propagation in the north-north-
eastward direction (i.e., at a 20° azimuth).

7.  Discussion
The geomorphological features of AFS are consistent with a transpressional system with secondary faults and 
local restraining bends of the oblique structures. This setting is similar to some global examples (Mann, 2007) 
and is defined as a positive flower structure. We propose that the whole fault set, well expressed by the geological 
and geomorphological evidence, defines two structural styles (Figure 10), characteristic of strike-slip kinemat-
ics: (a) a dextral transpressive duplex, with the Ucrania fault as the northwestern border, where the inner faults 
are oblique and subparallel to the shear faults and resolve with the same dextral strike-slip kinematics, and (b) a 
recent domino-style system, where La Florida fault constitutes the southeastern frontal trace of a positive flower 
structure, as a shortcut from the Algeciras main fault; and among these main structures, a set of inner secondary 
faults show opposite kinematics (sinistral). These minor domino faults cross by a longitudinal back-thrust fault 
verging northwest, implying the internal rotation of the minor blocks (Figure 10b). As examples, several mixed 
tip damage zones at the terminations of strike-slip faults are explained by Kim et al. (2004), including a compa-
rable case between the San Andreas and San Jacinto faults in California.

As inferred from the previous analysis, the fault interpretation of M1 mainshock is well constrained, while M2 
is unclear. Therefore, we discuss the two scenarios from the viewpoint of aftershock locations, Coulomb stress 
transfer, and tectonic interpretation.

Regarding the aftershock distribution relative to the fault planes, there is no significant preference for scenarios 
A or B. This can be seen in Figure S8 in Supporting Information S1 and even better if using our 3D plotting tool 
(GUI_Mesetas), included in Supporting Information S1 of this paper. Indeed, the aftershock cloud seen in the 
map view as the SE trending arm of the L-shaped pattern (Figure 3a) can be explained by M2 with a strike of 197° 
(scenario B), not strongly requiring a strike of ∼298°, orthogonal to M1. If M2 ruptured the plane striking at 298° 
according to scenario A, many aftershocks project onto the main slip region of that event, unlike M1 (Figure 7a). 
In scenario B, both M1 and M2 events have their major slip regions associated with the paucity of aftershocks, 
similar to many other earthquakes (e.g., Das & Henry, 2003; van der Elst & Shaw, 2015; Wetzler et al., 2018). 
Thus, we consider the aftershocks to support scenario B. The interpretation of the seismological data presented 
above is well constrained and related to the transpressive structure of the AFS, whether to the duplex of the NW 
domain or the transverse faults of the SE domino (in plane view). As indicated in Figure 7a, the subparallel faults 
of M1 and M2 (scenario B), both characterized by right-lateral strike-slip motion with a reverse component, fit 
well into the general framework of the left-stepping restraining bend.

The estimation of the stress field using the StressInverse code by Vavryčuk  (2014) is shown in Figure 3d. It 
is characterized by the principal stress axes σ1 azimuth/plunge  =  88°/4°, σ2  =  350°/61°, σ3  =  180°/29°, and 
a stress-shape ratio of 0.56. This stress field has two optimally oriented faults (OOFs), characterized by s/d/r 
(°) = 232/63/168 and 305/69/21 (see Figure 7a). In this context, we can speculate that each mainshock ruptured 
one of these two OOFs. Such examples have been documented in the literature (e.g., Fojtíková & Vavryčuk, 2018; 
Noisagool et al., 2016; Singh et al., 2017; Vavryčuk, 2011) and would favor scenario A. Nevertheless, scenario B 
also remains plausible, that is, stress-favored, with both M1 and M2 rupturing close to one of the OOFs (within 
30° in terms of Kagan angle) with the reactivation of a minor transversal fault of the domino domain, according 
to the SE side of the L-shaped aftershock pattern.

Note that the transpressive regime (with parallel faults such as in scenario B) is supported by the focal mechanisms 
of aftershocks (see the ternary diagram in Figure 3c) as noted also by Noriega-Londoño et al. (2021). Further-
more, the tectonic escape of the NAB northeastward that takes place along the AFS and GFS, was suggested by 
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several authors (Alvarado et al., 2016; Audemard & Audemard, 2002; Diederix et al., 2021; Gutscher et al., 2000; 
Kellogg et  al.,  2019; Nocquet et  al.,  2014; Trenkamp et  al.,  2002; Velandia et  al.,  2005) and confirmed by 
Mora-Páez et al. (2019) who estimated a velocity of 8.6 mm/yr. This movement direction also favors scenario 
B (according to the main fault system). This escape rate in the Eastern Cordillera is greater than the rate of 
range-normal shortening (4.3 mm/yr; Kellogg et al., 2019).

Owing to the spatial and temporal proximity of the mainshock, it is possible to assume that M2 was triggered 
by static Coulomb stress transfer from M1. The Coulomb 3.3 software (Toda et al., 2011) was used. We applied 
the slip distribution of M1 (Figure 7c) and calculated Coulomb stress transfer to receiver faults everywhere in 
space with focal mechanisms of M2 in scenarios A and B. The effective coefficient of friction was 0.4; this is 
a moderate value typically used for strike-slip or unknown faults (Parsons et al., 1999; Toda et al., 2011). We 
investigated whether a positive change correlates with the hypocenter position of the M2 mainshock, including 
its uncertainty documented in Figure S5 in Supporting Information S1. Figure 9 and Figure S7 in Supporting 
Information S1 show the Coulomb stresses for the two receiver focal mechanisms. Positive stress zones were 
compared with the hypocenter of M2, considering its NonLinLoc uncertainty (Figure S5 in Supporting Informa-
tion S1). We found that, in general, stress transfer supports M2 situated near the lower and southwestern edges 
of the M1 rupture region, but neither scenario A or scenario B could be strongly preferred due to uncertainty in 
the M2 depth (Figure 9 and Figure S7 in Supporting Information S1). However, if considering the best-fitting 
NonLinLoc location of M2, scenario B is preferred, since the M2 depth would correlate with significant positive 
stress concentration (right panel of Figure 9).

The AFS (before its junction with the GFS) shows dextral transpressional kinematics, through a positive flower 
structure, which shows combined structural styles: duplex and domino (Figure 10). The Mesetas doublet and its 
aftershocks occurred in this zone, where these styles are separated by AFS. The aftershocks locations from NLL, 
HypoDD, and the CMT inversion suggest that M1 and M2 (scenario B), ruptured within AFS close to duplex 
style, consistent with dextral and transpressive kinematic. The formed L-shaped seismicity is located between 
both styles, the northern section of L is located on duplex style, and the southern part in the domino style, which 
matches with an inner secondary fault with opposite kinematics (Figures 2c and 10c, in red). Our results suggest 
the activity of this identified fault, which has an approximate length of 3.5 km according to geological mapping 
(Figure 2). Considering the rupture of M2 (scenario A) within this fault, it would not be possible to produce an 

Figure 9.  (a) Coulomb stress transfer for scenario B with the M1 generating fault (213°/73°/158°) and M2 receiving fault (197°/70°/150°). The stress is plotted for a 
depth of 12 km, the segmented lines on the map show the strike of the receiver faults, and the red grid represents M1. The gray points represent the uncertainty of the 
absolute location of M2 from NonLinLoc, the star is the best-fit location of M2, lines A and B represent profiles, and the green line represents the projection of the fault 
top edge of M1 on the surface. (b) Profile A with a vertical dip (90°) and (c) Profile B with a 70° dip as M2. The red line represents a segment of the rupture area of 
M1, and the dashed blue line is the assumed M1 fault-center depth. Note the stress concentration on B-B’ close to the star at a depth of 12 km, supporting scenario (b).
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earthquake of magnitude 5.8, as is the case of M2, in which our kinematic inversion results suggest a fault with 
an approximate rupture area of 11 × 9 km, being more plausible scenario B. Likewise, this fault is oblique to 
AFS and probably produces the southern pattern in L. Based on their dimensions, this fault is unlikely to generate 
earthquakes greater than 4.9, according to the relations of Wells and Coppersmith (1994) for a transcurrent fault.

The Ucrania and La Florida faults (Chicangana-Montón et al., 2022) are the northwestern and southeastern borders 
of a regional restraining bend with a positive flower structure where the Mesetas sequence is located (Figure 10c). 
The orientation of the principal stresses (σ1 azimuth/plunge = 88°/4°, σ2 = 350°/61°, σ3 = 180°/29°) and OOFs 
characterized by s/d/r = 232°/63°/168° and 305°/69°/21° of Mesetas seismicity coincide with this transpressive 
environment (Figure 10b). The Mesetas doublet is schematized by the interaction of two structural styles: duplex 
and domino, generated by transpressive regional tectonics where AFS is the main system. We also remark that the 
differences between the theoretical (Figure 10b) and mapped (Figure 10c) models are due to ancient fractures of 
the massif, reactivated during the latest Andean episode, under the present-day stress field (e.g., García-Delgado 
et al., 2022). Furthermore, the optimal orientation of faults (OOFs) is probably related to the orientation of the 
minor Riedels related to duplex and domino styles (Figure 10b).

This interpretation is supported by the resulting L-shaped relocation of aftershocks recorded by the regional 
seismic network (Figures 4 and 10c), where the cluster observed connects the AFS (northern part of L-arm) with 
an orthogonal fault in the domino-style (southern part of the L-arm). The kinematic inversion results, with M1 
rupturing on the plane of at 210° and dipping 70° (from CMT results) and M2 on the plane of 197° and dipping 
70° (scenario B) supported by the results of Coulomb stress modeling (Figure 9) suggest that M1 and M2 are 
located within the Algeciras fault. Therefore, it is likely that the southern part of the L-pattern was triggered on 
the orthogonal fault system in the domino style, where minor faults with sinistral kinematics are located. The 
moment tensor and tectonic stress solutions show principal stress σ1 of azimuth/plunge = 88°/4° (Figures 3d 
and 10c), this result is roughly in agreement with local transpressive stress regime in this area (Arcila & Muñoz–
Martín, 2019; García-Delgado et al., 2022). The occurrence of the Mesetas mainshocks on two closely spaced 
faults is explained in terms of the duplex style along a restraining bend zone and fit into the regional frame of 
transpressive tectonics (Figure 10a).

Figure 10.  (a) General view of northern termination of the Algeciras Fault System (AFS) with the major central fault and the Ucrania and La Florida as the borders 
of the transpressive system (positive flower structure). (b) Schematic illustration to explain the mixed style of the termination of the AFS, and the optimally oriented 
faults from stress analysis. (c) Sketch of the northern termination of the AFS as a restraining bend zone, including the duplex and domino styles, and the W-E maximum 
horizontal stress (σ1) causing dextral strike-slip of the longitudinal faults with reverse dip component (transpression). The dashed lines on M1 and M2 planes indicate 
the top of the fault.
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8.  Conclusions
The 2019 Mesetas doublet (Mw 6.0 and 5.8, separated by a few kilometers and 16  min) and the associated 
aftershock sequence occurred at shallow depths (5–20 km) on two nearly parallel right-lateral strike-slip faults 
with a reverse component (strike ∼ 200°, dip ∼ 70°, rake ∼ 150°). Both were close to one of the OOFs existing 
in the local stress field that is characterized by the following azimuths/plunges of principal axes: σ1 = 88°/4°, 
σ2 = 350°/61°, σ3 = 180°/29°, and stress shape ratio of 0.56. Both mainshocks ruptured basically upward and in 
the northeast direction relative to their hypocenters, with peak slips of approximately 0.4 and 0.25 m, respectively. 
The activated rupture planes, oblique to the dominant strike of the major AFS, can be explained in terms of the 
duplex style along a restraining bend zone and fit into the regional frame of transpressive tectonics. The proposed 
source characteristics imply that deterministic models for hazard assessment in the megacity of Bogotá should 
consider active structures possibly deviating from the known major faults and involving complexities (multiple 
faults). In this work, it was possible to observe some minor faults that coincide with geomorphic and seismo-
logical observations. In particular, a minor fault in the domino style agrees with the southern arm of the seismic 
sequence. This fault is oblique to the AFS (southern part of the L-arm) in the domino style (Figure 10).

Data Availability Statement
Waveform data in miniSEED format (https://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/) can be downloaded 
by querying the FDSN web service of Servicio Geológico Colombiano (SGC) at http://sismo.sgc.gov.co:8080/
fdsnws/dataselect/1/builder. An example of the request can be made as follows: http://sismo.sgc.gov.co:8080/
fdsnws/dataselect/1/query?starttime=2019-12-24T14:21:59%26endtime=2019-12-24T14:28:59%26net-
work=CM%26sta=BRJC%26cha=*%26loc=*%26format=miniseed%26nodata=404. Furthermore, It is possi-
ble to download the waveforms by using ObsPy (Beyreuther et al., 2010), for more information see https://docs.
obspy.org/packages/obspy.clients.fdsn.html. The LinSlipInv code (Gallovič et al., 2015) to perform kinematic 
inversion is available on GitHub https://github.com/fgallovic and licensed under GNU GPLv3. The moment 
tensor solutions were calculated using ISOLA code (Zahradník & Sokos, 2018) available at http://geo.mff.cuni.
cz/∼jz/for_ISOLAnews. The b-value and magnitude of completeness were calculated using the ZMAP code 
available on GitHub https://github.com/swiss-seismological-service/zmap7. To characterize the compressive 
stress orientations, we used the StressInverse code (Vavryčuk,  2014), available at https://www.ig.cas.cz/en/
stress-inverse/. Figures were created using GMT 5.4.5 (https://github.com/GenericMappingTools/gmt/releases/
tag/5.4.5).
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