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ABSTRACT
Ceramics are one of the commonest sources of archaeological information, yet their abundance often
confounds documentation and analysis. This article presents a new method of documenting and
analyzing ceramics that includes laser-aided profile measurement to capture ceramic shape and
other information quickly and accurately, resulting in digital outputs suitable for both publication
and morphometric analysis. Linked software and database solutions enable unsupervised machine
learning to cluster shapes based on similarity, eventually assisting typological analysis. Following
an overview of current practices in ceramic recording and both standard and computational shape
classification analyses, the new approach is discussed in full as a documentary and analytical tool.
A case study from the Middle and Late Bronze Age site of Kaymakçı in western Anatolia
demonstrates the benefits of the recording method and helps show that a combination of
automated and manual shape clustering techniques currently remains the best practice in ceramic
shape classification.
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Introduction

Pottery is the single-most abundant category of archaeologi-
cal finds recovered from most ancient sites that postdate its
invention. The shape of the profile of an individual pot or
ceramic vessel or a fragment of one—defined as a cross-sec-
tion perpendicular to the plane of the rim—is the primary
diagnostic attribute used in ceramic shape classification.
Classification of ceramic shapes, along with their fabrics, sur-
face treatments, and other characteristics, as well as the stra-
tigraphic relations and radiocarbon dates acquired from
their associated deposits, continues to be the most frequently
consulted source of information for the relative chronologies
and periodizations of pottery-using cultures across the
world. With increasingly thorough excavation and careful
recording techniques, however, the abundance of pottery
presents a challenge, because the number of ceramic frag-
ments from even a single site can reach tens or even hun-
dreds of thousands. Not only are such large assemblages
practically impossible to document using traditional hand-
drawing techniques, but it is also becoming increasingly
difficult to establish accurate and useful shape classifications,
especially if ceramic shapes cannot be assigned to pre-exist-
ing classification schemes. Several previous studies have
addressed these challenges by proposing new methods of
digital and 3D documentation and automated classification,
but because of bottlenecks resulting from the time required
by 3D scanning, they were either applied only to relatively
small assemblages or relied on data produced by digitizing
hand-drawn profiles from existing publications (e.g., Gilboa
et al. 2012; Grosman et al. 2014; Selden, Perttula, and O’Brien
2014).

The first step in any ceramic recording process is usually
the assessment of wares, fabrics, surface treatment,

decoration, and morphology for any given fragment. Focus-
ing on the latter characteristic, this paper opens up new pos-
sibilities for the processing of large ceramic assemblages
when it comes to recording and classifying shapes. While
the other aspects of recording mentioned above naturally
remain very relevant, even in the digital age (cf. Roosevelt
et al. 2015), we present here a new technique of rapidly doc-
umenting the profiles, diameters, and simple decorations of
ceramic fragments, along with photographs, that almost
instantly produces digital illustrations. All data recorded in
this newly proposed manner is curated in an integrated data-
base that enables easy management, quick access, and display
of individual ceramics, as well as groups of ceramics selected
according to desired attributes. Furthermore, the approach
enables a new automated method of matching ceramics
stored in the database according to shape, which potentially
enables us to establish computer-assisted shape classifi-
cations of large assemblages of ceramics by subdividing
them into human-manageable clusters using unsupervised
machine-learning techniques. This approach and the
associated methods were developed owing to the practical
need to process two large ceramic assemblages: one from
the Neolithic settlement site at Svodín (southwestern
Slovakia, central Europe), excavated in the 1970s and ‘80s
(Němejcová-Pavúková 1995; Demján 2012), and one from
the Middle–Late Bronze Age hilltop site at Kaymakçı
(Manisa province, western Turkey), undergoing excavation
since 2014 (Roosevelt et al. 2018).

Description of this new approach aims to demonstrate the
following primary points. First, the shape of a ceramic vessel
fragment can be captured precisely using laser-aided profile
measurement. Second, the variability of shapes within an
assemblage thus measured can be documented and
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computationally analyzed for matching with examples from
within or outside the same assemblage based on their
profiles. And, finally, the results of these measurement and
shape-matching analytical approaches can be combined
with the help of database integration to order large assem-
blages into shape classes. An important element in all of
this is the goal of “total” recording of all diagnostic fragments
to avoid biases inherent in sampling or other selection pro-
cedures. A subsequent brief case study on ceramics from
Kaymakçı allows for assessment of the successes and chal-
lenges of the new approach, as well as discussion of further
possibilities of how this data can be integrated with the
remaining dataset from Kaymakçı and beyond.

We describe our methods in three sections. The first deals
with the acquisition of pottery profiles and production of
digital drawings; the second briefly describes our approach
to data storage; and, the third presents how data collected
in this way can be used for computer-aided classification of
ceramic shapes. Due to the high complexity and specific
nature of the collected data and subsequent analytical tech-
niques, it was decided early on that an integrated software
solution was necessary and that an open-source solution
would ensure replicability, reusability, and scientific scrutiny
of results. Our own case study demonstrates the promise of
the integrated system just as it points the way forward for
next steps.

Laser-Aided Profile Measurement

Standard ceramic shape recording

The standard method of documenting ceramic shapes is still
drawing profiles by hand. This is typically achieved either
with pencil drawing and/or inking before scanning and
further processing in vector- or image-editing software, or
with a digitizing tablet, which omits the need for scanning
and vectorizing steps. In both cases, the process requires
the use of measuring tools such as calipers or profile gauges.
Furthermore, the process requires either a professional draft-
sperson or personal training in drawing, as well as expert but
general knowledge of the pottery shapes encountered, to be
able to orient the fragments correctly and capture all necess-
ary details. Expert knowledge is especially important for
hand-drawing ceramic profiles based on fragments of vessels,
where tactile experience of the material and drawing can reap
distinct benefits (Morgan and Wright 2018).

For most shapes, the profile is drawn oriented as if the
vessel was standing on a flat surface. The correct orientation
is determined based on the rim or base of the fragment (if
preserved) or on the circular marks left on vessel walls by
the process of forming on a wheel. This also applies to any
horizontally grooved decoration or sharp profiling, which
enable a correct orientation even with body sherds. Hand-
drawing can also illustrate surface textures and treatments,
such as painted or plastic decoration, and final digital draw-
ings are often combined with photographs. Documenting
one vessel or a vessel fragment in this way typically takes
between only a few minutes and tens of minutes, depending
on the skill and experience of the draftsperson, as well as the
size and complexity of the ceramic. The resulting illustration
can be used in a printed or electronic catalog, which can then
be visually compared with the catalogs of ceramic illus-
trations from other sites to assess similarities. For more in-

depth metric analysis, or computational shape matching,
the profile has to be extracted from the drawing by using
manual or semi-automated vectorization techniques that
usually involve some degree of programming (e.g., the
OpenCV library; Bradski 2000). In this work, it is also impor-
tant to consider the scale of the drawing so that the vector-
ized profile retains correct units.

As 3D recording technologies become more and more
accessible, they have become established as regular parts of
some archaeological documentation workflows (e.g., Seguchi
and Dudzik 2019). With photogrammetric techniques, for
instance, it is possible to produce a 3D model of an artifact
with sub-millimeter precision using only a common digital
camera (e.g., Luhmann et al. 2019; Göttlich et al. 2021).
Other techniques include laser or structured-light scanning
(e.g., Bitelli et al. 2020). The three-dimensional nature of
most archaeological evidence naturally calls for such
methods of documentation. Depending on the technology
used and the size and complexity of the artifact, however,
acquiring and subsequently processing the 3D model takes,
again, at least tens of minutes (with most 3D-modeling
methods requiring subsequent “cleaning”). Göttlich and col-
leagues (2021) report an average processing time of 37.5
minutes per ceramic fragment but also note that only 2.75
minutes of this time is needed for data capture (photogra-
phy) itself. Like 2D illustrations, 3D models can then be
used in electronic catalogs, can produce rendered represen-
tations of the artifact (requiring further processing), or can
be directly employed in metric and/or spatial analysis. This
approach also allows the production of high-precision draw-
ings in semi-automated ways using specialized software
(Karasik and Smilansky 2008). Creating a profile drawing
from such models, however, takes additional skill and time.
When high-resolution 3D scanning becomes more afford-
able and applicable in environments where light, tempera-
ture, and dust conditions cannot be controlled, we expect
it to become standard in ceramic documentation, especially
with published case studies demonstrating the production
of between 15–20 (Karasik and Smilansky 2008), 40 (Roose-
velt et al. 2015), and 50 (Poblome et al. 1997) ceramic illus-
trations per day (cf. Karasik et al. 2014, 210).

Computer aided drawing

Two key steps for producing a reconstruction drawing of a
ceramic vessel based on a rim fragment are capturing the
profile and calculating the diameter. Traditionally, the
profile is drawn by sight, tracing the profile, or using a
profile gauge, and the diameter is estimated by matching
the arc of the preserved portion of the rim to a diameter
chart, a prepared set of concentric circles of known diam-
eters. The profile drawing can then be digitized and con-
verted into vector format, allowing for computational
analysis. A more direct approach is digitization of the phys-
ical fragment itself. Karasik and Smilansky (2008) devised a
method to extract profiles and diameters from 3D scans of
ceramic fragments, which can be acquired using either struc-
tured-light scanning or photogrammetry. Challenges related
to maintaining appropriate lighting and climatic conditions
for 3D scanners, as well as the relatively long model-capture
and processing times required for each fragment, however,
limit the applicability of this approach for use at excavations
producing large quantities of new finds each season.
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For these reasons, we decided to adopt a new method that
had already been employed successfully for processing Neo-
lithic pottery (Demján 2016) and that promised functionality
in a broader range of lighting and climatic conditions, as well
as faster processing with no loss of quality. The new
approach uses static, industrial-grade laser line projectors
and cameras to capture only the vessel profile and horizontal
curvature directly. This device enables the operator to scan
profiles even under strong ambient light and is portable
and robust enough to sustain long-term operation in a
dusty and hot environment. The instrument, called the
Laser-Aided Profiler and developed by Peter Demján and
Vladimir Držík (2018), consists of a frame holding one
color and two monochrome cameras, two laser line projec-
tors, one light source, a glass pane to support the captured
fragment, and associated cabling and control circuitry
(Figure 1). A USB 3.0 port ensures power supply and data
connection to a personal computer on which dedicated soft-
ware is used to control the process.

The maximum dimensions of a captured profile are 250 ×
100 mm, but a stitching function allows for acquisition of
profiles of theoretically unlimited length. This function can
also be used to combine multiple captures of a profile in
case of more complex shapes where the laser cannot illumi-
nate the whole profile at once. Besides profiles, the device
can also capture color photographs of fragments at a resol-
ution of 2592 × 1944 pixels. Using the dedicated control soft-
ware, the user first captures the profile of a fragment via the
projection of a laser line that is captured by the monochrome
cameras and rendered on screen in real time. In the next step,

the user rotates the profile to orient it properly, which can be
assisted by placing the fragment on its rim on the glass pane
and using the partially captured outline as a guide. Next, the
user calculates the diameter of the vessel at its rim, perpen-
dicular to the profile, via the projection of a laser line parallel
to, and thus representing, the rim curvature. From these
measurements, the basic shape of the vessel is immediately
reconstructed, and the user can add additional details typical
to ceramic profile drawings in archaeology, such as inflection
lines, handle sections, illustration of plastic decorations, etc.,
in addition to color photographs captured by the color cam-
era. Optional textual and numeric descriptors relating to the
fragment or its context can also be entered here (Figure 2).
Following this method, a skilled user can create over a hun-
dred digital drawings per day, exportable in commonly used
formats (e.g., JPG, SVG, DXF, and PDF) and ready for further
analysis and publication.

Database-Integrated Storage and Descriptive
System

The control software of the Laser-Aided Profiler is linked to
the custom graph database management system Deposit
(Demján 2021a), where all elements of the drawing are
stored separately and can be easily retrieved for analytical
purposes or further editing. Using a graph database allows
us to maintain high granularity of the data, in which all com-
ponents of a drawing are recorded as individual, interlinked
records (Figure 3).

Stored drawings can be accessed as a whole to generate
catalogs in PDF format, but one can also retrieve individual
components of a drawing, such as the profile or the arc cap-
turing the vessel’s curvature, all stored as coordinates in
Well-Known Text (WKT) format at correct scales with
sub-millimeter precision.

The Deposit software was developed together with the
control application for the Laser-Aided Profiler to serve as
a data storage and management platform at both the collec-
tion as well as analysis stage. The decision to create a custom
solution was due to the specific requirements such software
has to fulfill, which were not covered by any open-source
and free data-management package.

At the data collection stage, it is important to maintain a
high granularity of the data. Different components of the
drawing have to be stored separately using one-to-many
relations (a ceramic vessel has one main profile line and can
contain multiple additional details, photographs, information
on context, etc.). As the project progresses and additional
archaeological information (stratigraphic, typological, spatial,
etc.) becomes available, we will need to flexibly modify and
extend the database schema. For such purposes, the graph
database format is much more suitable than a relational for-
mat. Specifically, we use a directed graph that has a hierarch-
ical structure that can be split into sub-trees which can again
bemerged into other trees, allowing for a streamlined merging
of collected datasets to a main database or the extraction of
subsets for purposes of data analysis or exchange.

A graph format is also beneficial at the analysis stage,
which will be more closely described in subsequent sections.
Automated shape matching produces dissimilarity matrices
which can then be used for hierarchical clustering of the
shapes. The resulting hierarchical relations between the
shapes and their membership in clusters, as well as the

Figure 1. The Laser-Aided Profiler hardware with schematic representation of
its function. The device consists of A, E) two laser line projectors; D, F) two
monochrome cameras which capture the projected laser lines; and, B) one
color camera with C) associated LED diode to photograph the finds and capture
their outlines. Red areas represent projection planes of the laser lines. Dashed
arrows represent the monochrome cameras’ directions of view.
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measures of dissimilarity between each pair of shapes, can
also be stored as weighted relations in a graph database.
This structure can be easily extended as new shapes are

added. The tree structure produced by automated hierarch-
ical clustering can further serve as a basic template for sub-
sequent classification of the ceramic vessels either manually

Figure 2. The Laser-Aided Profiler Control Application interface. Elements of the drawings are stored as separate interlinked records: A) profile; B) curvature arc
and its point of capture; C) rim point; D) bottom point; E) additional details (e.g., handle section); F) inflection lines; G) photograph; H) profile break lines; and, I)
optional additional descriptors.

Figure 3. Deposit database management software interface showing a visual representation of the database schema generated by the Laser-Aided Profiler Control
Application.
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or using additional stratigraphic, chronological, or typologi-
cal data. All standard graph operations can be performed
directly on the dataset, without the need to convert its struc-
ture. While all this is technically possible to achieve using a
relational database format, where links are represented
using join tables, there would be major performance issues
with relationship queries more than a couple of steps deep.

The reason we did not opt for an existing graph database
solution was that we needed a free, open-source system
capable of working both as a client-server where the storage
is kept on a SQL server as well as on individual computers
out of the box, without the need to set up a specific environ-
ment. Another technical requirement is the ability to store
the data both in a graph (node-link) format and as a standard
relational database for purposes of archiving and easy access
by external applications. The data queries can also be
exported in standard spreadsheet (CSV or XLS) formats.

Automated Shape Matching and Classification

Ceramic shape classification

Ceramic shape classification should never be an end in and of
itself but must always be a means for gaining deeper insights.
Various forms of seriation based on ceramic shapes were
introduced to archaeology quite early, yet while attempts
have been made to conceptualize and formalize these
approaches along the way (summarized most recently in
Albero Santacreu, Calvo Trias, and Rosselló 2017 and Barto-
lini 2017; cf. also Plog 1983, Dunnell 1986, and Orton and
Hughes 2013, all of which make clear that the issues raised
here have remained unresolved for years), many archaeolo-
gists practice them rather intuitively or simply follow their
teachers, who in turn followed their teachers, as is more
common in academic archaeological practice. Experience
shows, however, that producing a useful, workable classifi-
cation, which does not become one’s master but rather pro-
vides a good service, is not as easy as it may seem and lies
somewhere between art and science.

In what follows here, we discuss a specific type of classifi-
cation that targets the chronological development of shapes,
because it is vessel shapes and their accurate and efficient
documentation that stand at the center of this work. An
efficient classification should fulfill several criteria: it should
classify the material at hand; it should allow for subdivisions,
but not too many, or else it becomes too difficult to remem-
ber; it should be structured in such a way so as to enable a
better grasp of the chronology of the materials it represents
(not only their functional differences); and, it should be
replicable by other experts, ideally at other sites. What
makes a classification most useful and efficient, then, is its
structure, and each type of material, in combination with
its chronology and degree of complexity, potentially needs
a different structural approach. To a certain degree, it is
intuitive and requires a certain feeling or talent, and also
flexibility, in lumping and splitting like and unlike. Whereas
some categories of finds have naturally or functionally simple
classification structures, ceramic shapes are certainly not one
of them. For ceramics, possibly more so than for other fields
of material production, human creativity factors strongly—
not necessarily that of the modern humans classifying it,
but that of the ancient potters who produced the materials
that have become part of the archaeological record.

Depending on the level of complexity and the specialization
of everyday activities in a given society, we see different
ranges of shapes and decorations. With more complex pot-
tery-producing societies, we typically see large ranges of
said qualities in the output of pottery, also possibly reflecting
multiple distinctive potters or workshops. It is this human
input and unpredictable degrees of creativity and/or chan-
ging fashions that make automated classification of shapes
so difficult.

In developing a chronologically sensitive shape classifi-
cation, one can start with more general classes, such as plates,
cups, bowls, pots, jars, jugs, and so on. These can be subdi-
vided into more specific classes—for instance, globular
cups, ogival cups, and carinated cups—based on the curva-
ture of the body and/or depending on other diagnostic fea-
tures, such as the shape of the lip, the type and number of
handles, or decoration, and variants thereof. All such classes
and sub-classes then need to be checked against stratigraphy
(whether vertical or horizontal) to identify the chronological
significance of shape changes. Even if some general shapes
can remain in use over centuries, most shapes do change
over time in some identifiable way. Within a broader evalu-
ation, one should also consider correlations between shape
and fabric, ware, and decorative motifs, combinations of
which can also show development over time. This is where
flexibility in lumping vs. splitting, grouping vs. dividing is
crucial, so that too many shape sub-classes are not created.
Ideally, a well-defined shape in a given fabric or ware should
be constrained to one or two chronological phases so that it
remains a valuable chronological tool, especially for synchro-
nization, whether between trenches or between sites. Such a
shape is then termed “chronologically sensitive,” and a full
archaeological assemblage might have a range of such shapes.
Finding the appropriate middle road between grouping and
dividing, too general and too specific, then, is often a sensi-
tive iterative process of trial and error.

Computational classification

Methods for more formalized classifications of ceramic
vessels based on statistical analysis of quantified nominal
attributes of shape and decoration were proposed as early
as the 1950s (Spaulding 1953). With the wider availability
of computers and digitization technology, it also became
possible to capture and computationally analyze vessel
shapes based on their measured geometry (Turpin and
Neely 1977; Gero and Mazzullo 1984; Durham, Lewis, and
Shennan 1995). While earlier techniques relied on comple-
tely preserved vessels, later approaches also allowed working
with sufficiently preserved rim fragments (Gilboa et al. 2004;
Karasik and Smilansky 2008, 2011; Smith et al. 2014). These
techniques, which can be described generally as shape
matching, depend on calculating the degree of (dis)similarity
between individual vessels based on the shapes of their
profiles. A dissimilarity matrix can be constructed using
these values, which can in turn be used as the input for clus-
ter analysis, thus assigning each vessel into a cluster of simi-
lar specimens. These clusters can then be interpreted as
shape classes. The calculated degree of similarity can also
be used to determine the assignment of a new find to an
already established class or sub-class by comparing it with
already assigned finds. Generally, this approach represents
so-called unsupervised machine learning; that is, it does
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not require an already-established classification schema and
a training dataset to assign the finds to classes based on their
shape. While supervised machine learning approaches, con-
centrating mainly on decorated pottery, are showing prom-
ising results in recent years (Gualandi, Gattiglia, and
Anichini 2021; Pawlowicz and Downum 2021), studies
using unsupervised approaches remain scarce.

One reason we still see no widespread use of these tech-
niques is their reliance on large datasets, ideally drawn
from several sites to cover the full spectrum of shapes in par-
ticular regions and periods. These datasets must contain
vessel profiles represented at correct scales as vector poly-
gons, which can be further used for mathematical shape
analysis. To create such datasets, robust, easy-to-deploy tech-
nologies are needed for acquiring vessel profiles and produ-
cing vectorized drawings in large numbers. One of the aims
of the methods presented here—coupling laser-aided profile
measurement with a specialized database management sys-
tem—is to enable archaeologists to achieve such goals within
convenient time spans.

Automated interactive shape clustering

Quantifying similarity
Automating the process of identifying ceramic fragments
with similar profiles, the basic prerequisite of a shape classifi-
cation, requires a method of quantifying the similarity (or
dissimilarity) of two profiles based on their geometric rep-
resentations. Such a method has to combine the differences
between the sets of coordinates of each profile mathemat-
ically into a single expression in a way that best captures
the character of each overall shape. Saragusti and colleagues
(2005) proposed a function that compares a specific geo-
metric property of the profile curve (e.g., radius, tangent,
or curvature) along the arc-length of the curve—that is, the
distance drawn along the surface of the profile from a zero
point set at the rim (Figure 4A). This approach proved to
be well suited for pottery shapes with relatively uniform
thickness along the whole length (Karasik, Smilansky, and
Beit-Arieh 2005). For more complex shapes, however, such
as vessels with a strongly pronounced lip, comparison

based on arc-length proved problematic. The problem arises
when the thickness of one or both of the vessel profiles
fluctuates, which results in the function selecting points for
comparison that do not correspond to the same parts of
each profile and hence should not be compared (Figure
4B). To solve this problem and enable comparison of profiles
with variable thickness or pronounced lips, we need to use a
function that is independent of profile thickness. Accord-
ingly, we simplify each profile to a central axis that runs
from the rim to the lowest preserved extent and use it as a
reference line for subsequent comparisons.

To construct the geometric axis of a profile (Figure 5A),
we first rasterize and reduce it to a topological skeleton
(Figure 5B). The skeleton is subsequently vectorized into a
set of non-branching curves using a shortest-path algorithm
(Figure 5C). In the final step (Figure 5D), the short curves are
pruned, and the remaining ones are joined to form the
profile axis. The axis calculation is implemented in the profi-
le_axis function in the fnc_matching module of the Cera-
Match application (Demján 2021b; see description in the
next section).

In order to take into account different aspects of the simi-
larity between two profiles (e.g., Figure 6A), the application
calculates four different metrics of dissimilarity: diameter,
axis, Dice, and rim Dice. All dissimilarity functions are
implemented in the fnc_matching module of the application
(Demján 2021b). Diameter dissimilarity is the average ratio
of the horizontal distances of points along the axes of the
profiles, measured so that the zero point of both profiles
on the x-axis is the axis of rotation (the horizontal midpoint
of the vessel) and the zero point of both profiles on the y-axis
is the rim. Only those points where both profiles overlap on
the vertical axis are considered (Figure 6B; Equation 1). The
equation can be expressed as follows:

Ddiameter = 1−
∑ymax

y=0 axy∑ymax
y=0 bxy

(1)

where ymax is the maximum y-coordinate (measured
from the zero point) and axy is the smaller and bxy the larger
of the two x-coordinates of the profiles at a specific y-

Figure 4. Radius function A) using arc length as a reference to compare two profile curves, with B) illustration of which parts of the profiles are compared.
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Figure 5. A) Extraction of the axis of a profile by B) topological skeletonization, C) shortest-path analysis, and D) pruning.

Figure 6. A) Different metrics of similarity between profiles of two vessels: B) diameter dissimilarity; C) axis dissimilarity; and, D) Dice dissimilarity, with key points
illustrated in red.
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coordinate. Diameter dissimilarity is calculated in the diame-
ter_dist function of the application.

Axis dissimilarity is the average Euclidean distance of
each point of one profile axis to the point of the second
profile axis equidistant along the axis from the zero coordi-
nate. The zero coordinates of both axes are set to their upper-
most point. The result is normalized by the maximum
possible dissimilarity of two axes of the same given length
—that is, the value one would get if the profiles were straight
and set horizontally opposite each other (Figure 6C;
Equation 2). The equation can be expressed as follows,

Daxis =
∑dmax

d=0

�������������������������������
(axd − bxd)

2 + (ayd − byd)
2

√
∑dmax

d=0 d2
(2)

where d is the distance along the respective axis from the
zero point, dmax is the length of the shorter axis, (axd, ayd) is
the coordinate of the axis of the first profile, and (bxd, byd)is
the coordinate of the second profile at distance d from the
zero point. Axis dissimilarity is calculated in the axis_dist
function of the application.

Dice dissimilarity is a metric based on calculating Dice’s
coefficient, where the similarity of two samples is expressed
as double their area of overlap, divided by the total area of
both samples. In this implementation, the application com-
pares two equally long sections of two profiles and calculates
the area of their overlap. The sections are selected along the
profile axis at specific key points where its curvature changes.
The key points are identified according to the following
algorithm (see also function find_keypoints): 1) For each
point of the profile, take a segment centered around this
point with the length of twice the average profile thickness.
Calculate profile curvature at this point as the area between
the curve and the line connecting the first and last point of
the segment. 2) Assign curvature to each point of the
profile axis as the higher of the curvature values of the closest
points of the inner and outer profile. 3) Find key points by
proceeding from axis points with highest to lowest curvature,
always leaving a gap equal to at least one average profile
thickness between two key points.

During the matching, each profile section is rotated
around the key point until the best match (lowest Dice dis-
similarity) is achieved. This is done so that the function is
independent of the overall orientation of the profiles. Each
section from one profile is matched against nearby sections
from the other profile, keeping only the best match. The
results are weighted by distance from the key point to
emphasize the center of the section and reduce mismatching
resulting from cutting of the profiles at the section bound-
aries (Figure 6D). The results are further normalized by
the weighted and summed areas of both sections. The root
mean square (RMS) of all results for two profiles, calculated
for the first versus the second profile and then vice versa, is
the final Dice dissimilarity of those profiles (Equation 3).
The equation can be expressed as follows,

DDice =

���������������������������������������������∑m
p=1 1−

2Ip
Ap + Bp

+
∑n

q=1
1− 2Iq

Aq + Bq

m+ n

√√√√√
(3)

where p is one of m key points of the first profile, and q is
one of n key points of the second profile. Ipand Iq are the
weighted areas of overlap of profile sections at key points p

and q. Ap and Aq are the weighted areas of the section of
the first profile at the respective key points, and Bp and Bq

are the same for the second profile. Dice dissimilarity is cal-
culated in the dice_dist function of the application.

The application also calculates Dice dissimilarity separately
for the rim. The process is similar to that used for the whole
profile, except only the first key point (closest to the rim) is
used. The purpose of this separate calculation is to emphasize
the importance of rim shape in the final matching result.

Computational classification
As mentioned above, the definition of a ceramic shape class or
sub-class depends on amultitude of criteria and requires a deep
knowledge of the material and its historical context. The ability
to find similar shapes in a large group is just one aspect of this
process; with increasing assemblage sizes, however, it becomes
an almost insurmountable obstacle. The automated clustering
technique presented here serves to overcome this initial chal-
lenge by pre-sorting the material in a way that puts visually
similar shapes close together in a hierarchical tree structure.
To enable a ceramics expert to achieve a valid classification,
we developed the CeraMatch application (Demján 2021b),
which serves as an interface to the integrated custom Deposit
database of digitized fragments and has three basic functions:
calculate (dis)similarity between samples; perform automatic
clustering; and, allow users to rearrange clusters freely until
they represent a valid classification. Furthermore, CeraMatch
quantifies the degree of similarity of each fragment to a certain
class, allowing for a probabilistic approach to classification in
which each vessel profile has quantifiable probabilities of
belonging to particular classes or sub-classes.

The application uses a hierarchical cluster analysis (HCA)
algorithm to assign each fragment into a cluster of similar
specimens, a prerequisite for classification. The algorithm
requires the input of a dissimilarity matrix to calculate dis-
tances between newly formed clusters. In the previous steps,
the dissimilarity of a particular profile (e.g., Figure 7A) to
others was calculated by four different metrics of dissimilarity
(diameter, axis, overall Dice, and rim Dice; Figure 7B–D).
These metrics can be recorded in the form of a n× n× 4
matrix, where n is the number of fragments in the dataset.

The standard HCA algorithm requires a method of calcu-
lating the distances between newly-formed clusters, for
which a single dissimilarity metric is needed. The first step
is to reduce the dissimilarity matrix to n× n dimensions.
This is achieved by normalizing the four metrics of dissimi-
larity Dij1..4 for each of a set of n fragments (Equations 4 and
5) and calculating the RMS to combine the metrics into one
value (Equation 6; Figure 7E).

D′ = D−

min
i,j[[1,n]

Dij1

min
i,j[[1,n]

Dij2

min
i,j[[1,n]

Dij3

min
i,j[[1,n]

Dij4

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

D′′ = D′

Dij1

Dij2

Dij3

Dij4

⎛
⎜⎜⎝

⎞
⎟⎟⎠

(5)
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DRMS =
������������∑4

k=1 D
′′2
ijk

4

√
(6)

The RMS combined dissimilarity is useful for finding the
closest match for each fragment. To arrive at a reasonable
clustering, however, only those shapes that are sufficiently
similar according to all metrics should be grouped together.
In this way, the application mimics the way archaeologists
perform shape classification, where vessels with relatively
large differences in diameter or profile orientation, for
instance, can be considered similar and of the same type if
they match according to other aspects, such as rim shape
or overall profile curvature. The application takes this varia-
bility into account in its HCA algorithm by introducing a
limit parameter when calculating distances between newly
formed clusters. The limit parameter determines the maxi-
mum normalized dissimilarity D′′ between fragments for
them to be considered members of the same cluster. If the
limit condition is met, the application uses the distance
between cluster centroids to determine which two clusters
are closest and thus which are the next to be joined in the
hierarchy. The modified HCA algorithm uses the following
formula to calculate the distance between centroids cI and
cJ of clusters I and J, implemented in the get_clusters func-
tion of the application (Equation 7):

The number of clusters formed depends on the limit cri-
terion, which can take values between 0 and 1. In our experi-
ence, it is best to start with a value of limit = 0.68 and to
experiment by increasing or decreasing it in increments of
0.05. This approach proved more intuitive than the required
manual selection of the number of clusters when using the
standard HCA algorithm, because it is independent of the
size and variability of the dataset.

The dissimilarities calculated between each pair of
recorded fragments are stored in the Deposit database in
the form of weighted relations. Because the calculation for
a large dataset (1000 + fragments) can take several days,
this method of storage allows for calculation of dissimilarities
for newly added samples separately, without the need to re-
calculate the whole dataset. Clustering results are also stored
in the form of a tree graph, linking the samples in a hierarch-
ical structure that can be used to visualize the clustering
without the need for re-calculation (Figure 8). Full database
integration also ensures the availability and portability of the
complete dataset and easy replicability of the results of shape
analysis.

After clustering, the samples (ceramic fragments) are rep-
resented as drawings arranged in a tree structure (dendro-
gram), in which branches can be freely moved, individual
samples can be reassigned to different clusters, and new clus-
ters can be formed (Figure 9). It is also possible to import a

(partial or complete) cluster assignment in the form of a
spreadsheet table, which is then used as the basis to construct
a dendrogram and assign previously unprocessed samples to
the clusters with the most similar shapes.

To sum up the shape classification process, it can follow
two approaches. First, the application can build a classifi-
cation “from scratch” by auto-clustering the shapes of bet-
ter-preserved fragments. Second, it can assign new
fragments to previously established classes based on the
degree of similarity to individual shape clusters. These
approaches can be alternated as the dataset grows and new
classes or sub-classes are established.

Ceramics from Kaymakçı: A Brief Case Study

Kaymakçı is a fortified hilltop with associated extramural
settlement situated in central western Anatolia, on the wes-
tern flanks of the Marmara Lake Basin, north of the Gediz
River. The site was discovered during a regional survey in
2001, was intensively documented via non-invasive methods
by the Central Lydia Archaeological Survey (CLAS), and has
been the focus of excavations under the Kaymakçı Archaeo-
logical Project (KAP) since 2014 (Roosevelt and Luke 2017).
The primary stratigraphic and architectural phases identified
so far reflect the most intensive habitation during the local
Late Bronze Age (LBA) in the middle centuries of the 2nd
millennium B.C., yet finds and absolute dates demonstrate

activities stretching back into the Middle Bronze Age, at
least to the beginning of that millennium. Seven excavation
areas dispersed over a fortification system, an inner citadel
and surrounding slopes, and a broad and densely occupied
terrace reflect at least defensive, ritual, storage, domestic,
and productive activities and abundant ceramic finds deriv-
ing from them (Luke and Roosevelt 2017; Roosevelt et al.
2018) (Figure 10).

The ceramic assemblage of Kaymakçı is principally
embedded in local western Anatolian traditions. Because it
is the first systematically excavated assemblage in the
immediate region from this period, there is no local and
pre-existing ceramic classification with which to compare
it. Slightly further afield, the quite well-defined typo-chrono-
logical systems of contemporary Minoan and Mycenaean
pottery on Crete and the Greek mainland across the Aegean
Sea (Mountjoy 1998; Hallager 2010; Rutter 2010) provide
some comparative value, with Troy at the northern tip of
the western Anatolian coast (Pavúk 2014) being a somewhat
better match. Closer to our region of interest are sites in the
gulf of Izmir, in the central part of the western Anatolian
coast (see below), but other coastal sites still await full pub-
lication. The best-known site inland is Beycesultan in the
Upper Meander valley, often considered southwestern Ana-
tolia (Lloyd and Mellaart 1965; Mellaart and Murray 1995;
Dedeoğlu and Abay 2014). While again of some typologically

‖cI − cJ‖ =

��������������������������������������������������������������������������������
∑

i,j [ I < J
i , j

D2
RMS ij − (|I| + |J|)

∑
i,j [ I
i , j

D2
RMS ij

|I| +

∑
i,j [ J
i , j

D2
RMS ij

|J|

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

|I||J|

√√√√√√√√√√
, max

i,j[ I<J
D′′
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1, max
i,j[ I<J

D′′
ij . limit

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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JOURNAL OF FIELD ARCHAEOLOGY 9



comparative value, the Beycesultan assemblage is really that
of an inland western Anatolian ceramic province. Further
east, Late Bronze Age pottery assemblages are dominated
by north-central Anatolian or Hittite traditions (Glatz
2009; Schoop 2011; Mielke 2017), which are radically differ-
ent in terms of both production and shape classes, as well as
functional use.

The closest comparative proxies for ceramics from Kay-
makçı, then, remain those of the coastal zone around the

bay of Izmir and, to a lesser degree, Troy. Ceramic traditions
at these sites are broadly known, but their locations on the
Aegean coast result in substantial influence from across the
Aegean Sea, as well as actual imports (Ersoy 1988; Mangalo-
ğlu-Votruba 2015; Erkanal-Öktü 2018; Aykurt 2020). How-
ever, Aegean influenced pottery and actual imports are
rather rare further inland, yet this may partly result from
the lack of excavations and the fact that the majority of
inland western Anatolian ceramics is known only from sur-
veys (summarized in Pavúk 2015; see also Roosevelt and
Luke 2017; Pavúk and Horejs 2018). In the absence of strati-
graphic sequences, full reliance on survey ceramics even gave
some the impression of the near absence of developed LBA
activities in the area until recently. The importance of Kay-
makçı in this respect is clear. The 2nd millennium B.C. cer-
amic wares and fabrics of Kaymakçı and the Marmara
Lake basin had already been defined according to surface
survey ceramics prior to excavation (Luke et al. 2015), yet
the full variety of shapes still had to be defined. For this, a
more robust dataset of excavated samples was needed.

Ceramic documentation

From its inception, the Kaymakçı Archaeological Project
aspired to rapid and holistic recording of excavated pottery,
simultaneous with the process of excavation (Roosevelt et al.
2015). Following washing, sorting, counting, and weighing
according to ware groups, rims, handles, and bases are sep-
arated for more detailed documentation. At first, a system
of 3D laser scanning of selected diagnostic pieces was
initiated, focusing on rims because of their diagnostic poten-
tial, along with extraction of 2D profile drawings via Karasik
and Smilansky’s (2008) software. This resulted in highly
accurate profile drawings, yet it quickly became clear that

Figure 7. Example of how different metrics of dissimilarity identify different “most similar” vessels. At right are the shapes most similar to A) a vessel according to
B) diameter, C) axis, D) Dice, and E) combined dissimilarity using root mean square.

Figure 8. Deposit database schema of storing dissimilarity metrics between
samples and clustering results. The graph nodes represent Deposit objects
(equivalent to records in a relational database); the edges represent relation-
ships between objects. The objects are members of different classes (equival-
ent to tables in a relational database). The CMCluster class (triangles)
represents clusters generated in the CeraMatch (CM) application, the CMNode
class (square) represents nodes in the clustering hierarchy tree, and the Sample
class (circles) represents individual ceramic samples. The weighted relations
diam_dist (dashed line), dice_dist (dotted line), dice_rim_dist (dot-dash) and
axis_dist (long-dash) represent different metrics of dissimilarity.
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the speed of our workflow was insufficient for handling the
volume of material recovered from a site like Kaymakçı,
with tens of thousands of diagnostic fragments excavated
each year. While around 40 ceramics could be recorded via
3D laser scanning a day (Roosevelt et al. 2015, 336), sub-
sequent software processing into profile drawings added
more time to the process, resulting in our inability to main-
tain the desired pace of recording.

The workflow improved in 2017 with the introduction of
laser-aided profile measurement, as described above. That
year, a total of 1188 fragments were recorded. After familiar-
ization with recording routines, 70 drawings on average were
produced per day, with a maximum of 150 per day using one
device operated by one person. Increasing familiarization and
fine-tuning of the instrument and software resulted in 837
drawings in the 2018 season (over half the number of days,
with an average of 76 drawings per day), 1693 drawings in
2019 (with an average of 81 and a maximum of 254 drawings
per day), and 775 drawings in 2021 (with an average of 48 and
a maximum of 112 drawings per day). In total, 4493 profile
drawings have now been generated from the assemblage of
Middle and Late Bronze Age pottery from Kaymakçı.

Since currently available digitization techniques do not
allow for capturing the profile of complete vessels with closed
shapes—because the scanner camera cannot “see” inside the
vessel—these are not part of our dataset. Since complete
vessels represent only a very small fraction of all ceramic
samples (25 out of the 61,961 recorded to date), we expect
that excluding them does not significantly change the results
of our analysis. Nevertheless, we are working on a method to
estimate even hidden interior profiles and thus be able to
include complete vessels in the future.

Towards a shape classification

Automated clustering
As the body of digital data produced via laser-aided profile
measurement grew, it became possible to consider auto-
mated clustering to aid shape classification, as described
above. In the first attempt, the full dataset of several thou-
sand fragments was used. The automatically generated clus-
ters CeraMatch created from this full dataset were at first
unsatisfactory: clusters that should have represented poten-
tial classes and sub-classes did not withstand the visual test
of experienced ceramicists. Accordingly, a more refined
selection of samples drew only from the more complete
rim profiles, from the rim down to the carination or the
widest diameter, still including several hundred pieces. The
results of this clustering attempt were better, yet still
mixed, with both successful (Figure 11) and less successful
matches (Figure 12), and with the majority falling some-
where between these extremes.

Automated clusters representing successful shapematches
generally include shapes with relatively simple body profiles,
distinctive axes, and rim forms, or a combination of these
characteristics. Simple shapes such as hemispherical lipless
bowls, for instance, clustered very well (Figure 11A). This
was also the case with plates and simple carinated cups.
Some small and medium bowls clustered very well (Figure
11B), but less well in most other cases, seemingly dependent
on the complexity of the body profile and rim form (see
below). Semi-closed jars also clustered very well (Figure
11C), probably a result of a distinctive profile axis combined
with a relatively simple rim form (see Figure 11C). The
same applies to jars with everted rims (Figure 11D).

Figure 9. The CeraMatch application used to calculate, visualize, and modify the clustering of ceramic shapes.

JOURNAL OF FIELD ARCHAEOLOGY 11



Figure 10. Oblique view of the Kaymakçı citadel towards the north. Note the three cars in the middle of the image for reference scale.

Figure 11. Examples of successful automated clustering: A) hemispherical lipless bowls; B) small to medium bowls; C) semi-closed jars; and, D) jars with everted
rim. The cluster numbers reflect their hierarchical order and correspond to the labels in Supplemental Materials 1 and 2.
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Automated clusters representing less successful shape
matches almost invariably include carinated forms, whether
plain or ridged, and the least fully preserved profiles. Three
examples illustrate the problems (see Figure 12). In each of
these automated clusters, CeraMatch included a variety of
body profiles, axes, and rim forms that is greater than accep-
table in standard shape classification. In clusters of carinated
bowls (see e.g., Figure 12A–B), it is only the overall size that
seems to unite the samples—including a combination of
diameter and wall thickness—while the axis and especially
the rim form are often quite divergent. In other clusters
(see e.g., Figure 12C), jugs and both carinated bowls and
simple bowls are mixed, suggesting that CeraMatch settings
weighted the upper profile axis more significantly than other
characteristics. While our approach includes a separate
metric for rim shape (the rim Dice dissimilarity), future
inclusion of other non-shape metrics, such as fabric, ware,
and surface treatment or decoration, would likely improve
clustering results in cases where the shape alone is not a
sufficient discriminant.

Manual clustering and comparison with automated
clustering
Until automated clustering can produce satisfactory shape
classes completely independently, a combination of manual
and automated clustering may be the most productive way
forward. A manually produced classification can also serve
as a useful check against the challenges of automated cluster-
ing described above. For these reasons, a preliminary classifi-
cation was produced manually for Kaymakçı according to
the standard practices outlined above.

Using the several hundred samples of more complete
profiles selected for automated clustering, every piece was
manually assigned to a shape class or sub-class. Unsurpris-
ingly, the Kaymakçı assemblage comprised the broad cat-
egories of shapes known well from nearby Aegean coastal
sites. These include plates, globular cups, carinated cups, lip-
less rounded bowls, carinated bowls with rolled rim (the so-
called bead-rim bowls), carinated bowls with ribbed shoulder
(ridged bowls), and carinated bowls with concave shoulder
(A60-bowls at Troy), among many other shape classes.
Unexpected, based on comparanda, was the high degree of
variability within these classes, such that the dividing lines
between them were often rather fluid. Kaymakçı potters
appear to have combined the individual elements that
define ceramic classes rather freely and were also very
good at scaling. They produced almost identical shapes—
with similar profiles, axes, and rim forms, for example—in
a variety of sizes, ranging from larger cups through small
and medium-sized bowls to large open jars. Nevertheless,
broad shape categories were defined by this manual process.

As a kind of reverse control, we then compared manual
clusters against CeraMatch’s automated clusters (Supplemen-
tal Materials 1, 2; Demján et al. 2021). In the two examples
illustrated here (Figure 13), the degree of agreement between
manual clusters and automated clusters is captured visually by
illustrating the samples of a manual cluster first, followed by
the associated automated clusters into which the same
samples fall. Samples in automated clusters that belong to
the selected manual cluster are shown in black, while those
found in other manual clusters are shown in gray.

In both examples, CeraMatch assigns the components of
the manual clusters that were deemed similar to the

Figure 12. Examples of less successful automated clustering: A–B) carinated bowls and C) a mixed cluster. The cluster numbers reflect their hierarchical order and
correspond to the labels in Supplemental Materials 1 and 2.
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human eye to multiple separate automated clusters (two
clusters in the first example and four in the second). This
shows that CeraMatch weighted certain parameters (e.g.,
diameter, thickness, or axis) more heavily than did the man-
ual clustering, resulting in automated clusters that are more
divided/split than grouped/lumped. In some cases, this may
be a useful indication that manual clusters should be further
divided, but such determinations must also be based on the
functional and chronological sensitivity of the particular
shape. For the full comparison of manual vs. automated clus-
ters, see Supplemental Materials 1 and 2.

One further attempt was made to guide CeraMatch in the
identification of which parameters were most significant.
Morphologically distinctive and well-preserved key shapes
that served as the most representative samples of manual
clusters were taken as the potential seeds of automated clus-
ters, similar in concept to supervised classification. Despite

several iterations and modified settings, this experiment
yielded only very general clusters. The most likely reason
for this generalization is that while CeraMatch is good at
finding the most similar shape for each fragment based on
a singular distillation of metrics (the RMS combined value
described above), it is not yet as good at selecting the most
significant variables in each case and the requisite degree
of similarity (between profile axes, diameters, rims, etc.)
that make two fragments with relatively low overall morpho-
metric similarity still belong to the same class.

General evaluation

Ceramic documentation via laser-aided profile measurement
is the most successful method we have encountered for the
Kaymakçı ceramics so far, enabling the project’s goal of
rapid documentation. The method achieves a satisfying

Figure 13. Comparison of two manual clusters (A and B) with associated automated clusters. Vessels in automated clusters not present in selected manual clusters
are displayed in gray. The cluster numbers reflect their hierarchical order and correspond to the labels in Supplemental Materials 1 and 2.
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speed of recording, as well as versatile data management,
manipulability, and export, with no loss in the level of accu-
racy required for morphometric shape matching and classifi-
cation. While this method of ceramic documentation
demonstrated clear success, automated clustering of the
dataset in CeraMatch for shape classification encountered
more challenges, especially when compared against the pre-
liminary manual classification based on the same dataset.

As described above, CeraMatch’s automated clustering
routine grouped certain shapes more successfully than
others, with visually different degrees of within-cluster hom-
ogeneity, and almost always produced a larger number of
clusters than manual clustering from the same selection of
samples. CeraMatch almost always took a finer approach
than manual clustering, generally tending towards splitting
rather than lumping samples. The input parameters and tol-
erances clearly gave more weight to wall thickness than did
manual clustering, and this resulted in a newly clarified
understanding that wall thickness is indeed a good proxy
for overall vessel size. CeraMatch was also sensitive to gen-
eral profile axis, or orientation, the presence or absence of
a sudden change in profile axis (e.g., carination), and diam-
eter, as predictable from the four metrics of shape dissimilar-
ity it evaluates.

Compared to manual clusters, automated clusters were
almost too sensitive to some parameters, however, such as
diameter measurements, which are given larger ranges in
the manual classification. Conversely, automated clusters
seem to have glossed over some finer details, such as grooved
or ridged decoration and rim form. The experience of expert
ceramicists suggests that some of these finer within-cluster
differences, which may seem insignificant to the algorithmic
or inexperienced eye, are in fact quite crucial in identifying
chronologically sensitive shape classes. It is hoped that statisti-
cal evaluation will help untangle how significant these differ-
ences are following the completion of stratigraphic modeling.

Discussion

Tying together various points raised above, both general and
specific, brief discussion here emphasizes the benefits of this
new method of documentation and shape clustering and
looks forward to future prospects and possibilities.

First, we return to the brief definition of an efficient shape
classification offered above. There is likely no way for an
automated computational shape classification to achieve
the full sophistication of a manual approach, with all the
necessary splitting and merging it entails, and especially if
it excludes the stratigraphic and fabric/ware information
that is almost always incorporated into final, more holistic
ceramic typologies. Nonetheless, an automated or semi-auto-
mated computational shape classification is clearly of use
when handling a large dataset, produces interpretable results,
and thus provides a complementary approach. A well-inte-
grated combination of computational and manual
approaches is likely the best way forward. One should keep
in mind the reason this research was undertaken: the need
to record large masses of pottery quickly, accurately, and
in a way that avoids bias and other problems deriving from
sampled datasets as much as possible. While manual classifi-
cation will always serve as a verification for computational
classifications, it is only the latter that can begin to provide
evaluation of whole-site assemblages.

Looking to the future, the obvious next step for this
research is to incorporate into the analysis other components
of the rich datasets recovered from most archaeological sites
and, for us, from the Kaymakçı Archaeological Project. This
work can be seen as the first step in an ongoing program that
gradually includes more and more components of the KAP
dataset, beginning with those already at hand. One next
step would be to evaluate both the computational and man-
ual shape classifications against stratigraphic records and/or
archaeometric dating evidence. This could begin from those
excavation areas with the fullest stratigraphic representation
and extend by cross-checking with others. Another obvious
next step would be to integrate information about fabric,
ware, and surface treatment/decoration. Along with strati-
graphic relations and dating evidence, the aim here would
be to create a holistic typo-chronological model. Because
the graph-based database system employed here enables
recording of complex relations between all types of finds
and contexts, eventual incorporation of these datasets is
possible as well, from small finds to botanical and faunal evi-
dence and other contextual data. It is through this type of
modeling that we hope the additional benefits of compu-
tational classifications and clustering will become even
more apparent; because they are able to capture patterns in
large-scale, cross-trench analyses, they will help reveal con-
nections and patterns that remain invisible to the human eye.

Conclusions

Improved methods of documentation and analysis are nearly
constant desires in archaeology, and all the more so with
respect to ceramics, which compose the bulk of finds from
many archaeological sites. The technique of capturing cer-
amic shape information via laser-aided profile measurement
described in this article increases the daily output of a draft-
sperson without compromising precision or information
value when it comes to ceramic profiles and diameters,
which are the essential features for shape classification. It is
also fully capable of metrically recording additional vessel
features, such as bases, handles, and plastic attachments, as
well as photographically documenting color and other dec-
orative characteristics. While axially asymmetric shapes
and complex decorations will still benefit frommanual draw-
ing or 3D scanning, the bulk of most ceramic assemblages
can be completely processed using this technique, at the
same time eliminating the need for manual diameter esti-
mation and drawing, as well as subsequent digitization and
extraction of metric data for morphometric analysis.

Furthermore, the methods of recording and analysis
introduced in this article invoke innovative shape-matching
algorithms and automated clustering routines within a single
database (Deposit) and software environment (CeraMatch)
that enables a smooth workflow from initial recording to
the classification of ceramic shapes. The advantage of using
an unsupervised machine-learning approach based on tra-
ditional mathematical and statistical techniques (such as
Euclidean distance metrics and hierarchical cluster analysis)
is that it does not depend on large training datasets, as is the
case with supervised machine-learning methods. The large,
well-described, and digitized ceramic datasets necessary to
train neural networks are not yet available. While the
approach is unable to capture some subtle differences or
their combinations in certain shapes, which can be crucial
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for identifying chronologically sensitive shape classes or sub-
classes, it does provide a good starting point for datasets that
are too large to order manually. For the time being, it seems
that combining automated and manual clustering techniques
is the most profitable avenue of shape classification, preser-
ving the part-science, part-art nature of the endeavor.

The ability to express ceramic class attribution in a prob-
abilistic way should lead to improved accuracy in statistical
modeling when combined with other archaeological infor-
mation, for example, stratigraphy or radiocarbon dating.
Probabilistic assignment of fragments to classes and, sub-
sequently, classes to stratigraphic units also has the potential
to improve the results of seriation, which traditionally relies
on the quantified presence/absence of shape classes in strati-
graphic features such as graves or settlement pits.

In attempting to achieve such classification purely com-
putationally, the challenge of replicating human perception
is clear. As explained above, a classification that serves as a
useful tool and not just a descriptive categorization is a com-
plex and iterative process, requiring steps forward and back-
ward across fluid class boundaries and consideration of the
reasons underlying ancient potters’ choices. Because such
ancient decision-making processes remain somewhat
unknowable, nuanced human input is needed. Algorithmic,
fully automated routines are thus far unable to compete
with the polythetic expertise of the expert eye: different
sets of characteristics are important for different shape
classes and with changing importance from class to class.
Finding a unified set of characteristics that applies to all
shape classes is simply beyond the possible. Improvement
in this area could come from introducing multi-step auto-
mated clustering into the workflow—clustering first more
generally according to one set of criteria and parameter
weights and subsequently, within resultant clusters, accord-
ing to other sets of the criteria and parameter weights—yet
proof of this concept, among other future developments
such as inclusion of photographic metrics or stratigraphic
information, awaits future testing.
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