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Accurate large-scale simulations of siliceous zeolites by neural
network potentials
Andreas Erlebach 1, Petr Nachtigall 1 and Lukáš Grajciar 1✉

The computational discovery and design of zeolites is a crucial part of the chemical industry. Finding highly accurate while
computational feasible protocol for identification of hypothetical siliceous frameworks that could be targeted experimentally is a
great challenge. To tackle this challenge, we trained neural network potentials (NNP) with the SchNet architecture on a structurally
diverse database of density functional theory (DFT) data. This database was iteratively extended by active learning to cover not only
low-energy equilibrium configurations but also high-energy transition states. We demonstrate that the resulting reactive NNPs
retain DFT accuracy for thermodynamic stabilities, vibrational properties, as well as reactive and non-reactive phase
transformations. As a showcase, we screened an existing zeolite database and revealed >20k additional hypothetical frameworks in
the thermodynamically accessible range of zeolite synthesis. Hence, our NNPs are expected to be essential for future high-
throughput studies on the structure and reactivity of siliceous zeolites.
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INTRODUCTION
Zeolites are of central importance for numerous industrial
applications ranging from catalysis through adsorption to ion
exchange1, owing to their highly diverse structures and properties.
Theoretically, there are more than two million2–5 possible zeolite
frameworks but only 240 zeolite frameworks listed in the IZA
database6,7 have been prepared so far, a discrepancy known as
the zeolite conundrum5. Therefore, ongoing research focuses on
sophisticated synthesis routes, like the ADOR protocol8, allowing
the preparation of “unfeasible” zeolites that are not accessible by
standard solvothermal procedures9–11. Another way to prepare
new feasible or unfeasible zeolites is the polymorphous inter-
zeolite transformation under elevated temperature or pres-
sure12–16. Finding reliable and computational feasible protocol
for identification of hypothetical zeolites that could be synthesized
experimentally is still a great challenge.
In order to guide the ongoing search for new zeolites,

computer simulations proved indispensable yet challenging for
the (pre-)screening of structures and properties. Such a screen-
ing performed by Deem et al. allowed to narrow down the
number of possible zeolite frameworks to thermodynamically
accessible ones3,4. This Deem database generated by atomistic
simulations using analytical force fields contains about 330k
hypothetical zeolites. Other computational studies used the IZA
and Deem databases to estimate the feasibility of hypothetical
zeolites and formulated design rules for their targeted solvother-
mal synthesis17–20. Central quantity determining the feasibility of
zeolites is the correlation between the zeolite density and
energy, firstly calculated using atomistic simulations21 and then
confirmed by experiments22.
Recently, the advent of machine learning in materials science

and chemistry enabled the search for more complex correlations
of the zeolite structure23, stability, and properties24. For example,
graph similarity analysis of the Deem and IZA databases predicted
thousands of possible diffusionless transformations from known to
hypothetical zeolite frameworks25. Apart from zeolite synthesis,
machine learning studies also used the zeolite databases to find

structure-property correlations, e.g., for mechanical properties26,
discovery of new auxetic materials27 and gas adsorption capacities
to enable the targeted zeolite synthesis28. However, the critical
prerequisite for finding reliable correlations guiding experimental
studies is generating accurate structural and energetic data at the
atomistic level.
The atomistic simulations indeed provide vital insights into the

structure and properties of zeolites29. However, realistic modeling
of zeolites with ab initio quality is frequently hampered by the
prohibitive costs of first-principles methods. For example, only a
few studies used atomistic simulations investigating the collapse
of zeolites under high temperatures or pressures30,31. Under high
temperatures and low to moderate pressures, zeolites show a two-
stage transformation, first to a low-density and subsequently to a
high-density amorphous phase31–34. Computational studies of
such phase transition used either ab initio simulations employing
simple structure models with few atoms and short timescales30 or
more realistic structure models and longer timescales but with
analytical (reactive) force fields31. Large-scale simulations with ab
initio quality are therefore of fundamental importance for
discovering new zeolites not only by the screening of databases
but also through the understanding of reaction pathways of
zeolite phase transformations.
Enabling such simulations at a large-scale requires approximate

modeling of the potential energy surface (PES) that retains the
accuracy of high-level quantum mechanical calculations. In recent
years, numerous machine learning potentials (MLP) have been
proposed that accurately interpolate the PES providing the
necessary speed-up compared to ab initio simulations35–39.
Among them are neural network potentials (NNP)35 of different
types and architectures, e.g., hierarchical interacting particle NNP
(HIP-NN)40, tensor field networks41, and the graph convolutional
NNP SchNet42,43. The latter is a message-passing type NNP
architecture that uses trainable input representations of atomic
environments repeatedly refined by convolutional operations in
several iterations to model many-body interactions. Tests on
benchmark datasets37,42,43 focusing on molecular systems proved
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the very good accuracy of SchNet NNPs to model energy and
forces. However, little is known about transferability and accuracy
of SchNet for materials science related questions36, such as
diffusion44, phase stability45 and transitions46, phonon proper-
ties47, and especially its robustness for reactive phase transforma-
tions of zeolites. So far, a few studies trained MLPs for PES
modeling silica using polymorphs, surface models, amorphous
and liquid configurations48,49, including a recently trained MLP
accurately modeling the structure and high-pressure phase
diagrams of dense silica polymorophs50. However, no silica MLP
training considered the tremendous structural diversity of zeolites
and their reactive phase transformations.
The central aim of this work is the training of reactive SchNet

NNPs for accurate and general PES modeling of silica, including
the structural diversity of zeolites over a wide density range.
Training of an NNP ensemble allows active learning for iterative
extension of the reference dataset and refinement of the NNP35,51.
The final dataset covers the silica configuration space ranging
from low-density zeolites to high-pressure polymorphs, including
low-energy equilibrium structures and high-energy transition
states. This allows interpolation of the PES for accurate and
transferable modeling of siliceous zeolites within the most
relevant parts of the configuration space and enables the required
large-scale simulations with ab initio accuracy.
The trained NNPs facilitated the reoptimization of the Deem

database with high accuracy providing vital input for future
machine learning studies to find correlations between structure,
stability, and properties of zeolites. The database reoptimization
also revealed >20 k additional hypothetical zeolites in the
thermodynamically accessible range of zeolite synthesis. In
addition, rigorous accuracy tests of the NNPs showed good
agreement with DFT and experimental results, including not only
equilibrium structures and phonon properties but also silica phase
transformations under extreme conditions such as glass melting
and the thermal collapse of zeolites. The trained NNPs show an
accuracy improvement of about one order of magnitude for
modeling energy and forces compared to other PES approxima-
tions: two state-of-the-art analytical force fields including the non-

reactive Sanders-Leslie-Catlow (SLC) potential52,53 and the reactive
silica force field ReaxFF of Fogarty et al., and one tight-binding
DFT parameterization GFN0-xTB54,55. Consequently, this work
provides a computational tool for accurate, reactive modeling of
siliceous zeolites for their targeted design and synthesis.

RESULTS
Database generation and NNP training
Key prerequisite for the training of NNPs is the generation of a
diverse dataset covering the variety of atomic structures and
densities of zeolites in both low and high-energy parts of the PES
to accurately model structure, equilibrium properties, and phase
transitions. This was achieved by the computational procedure
depicted in Fig. 1. Firstly, a small zeolite subset of ten frameworks
was selected from the Deem database by farthest point sampling
(FPS) along with SOAP as similarity metric (see Section 4.1) to
capture the structural diversity with the least number of
configurations (Supplementary Fig. 1). Then, unit cell deformations
and MD simulations sampled low and high-energy parts of the
PES using the selected zeolites, higher density polymorphs,
surface models and amorphous (AM) silica. FPS extracted the
most relevant structures from every MD trajectory to reduce the
number of required DFT single-point calculations.
After training of an initial NNP ensemble, structure optimiza-

tions of the Deem and IZA database along with extrapolation
detection using a query-by-committee approach enabled the
search for additional frameworks required to sufficiently cover the
zeolite configuration space. The sampling of previously unseen
transition states included MD simulations for the melting of
β-cristobalite, equilibration of liquid silica and the zeolite
amorphization (ZA) of Linde Type A (LTA) and Sodalite (SOD).
These simulations and NNP retraining on the extended DFT
dataset were repeated until no extrapolation was detected. Two
reference methods, PBE+ D3 and SCAN+ D3, were used to train
NNPs (Supplementary Table 1) on the structural database
(Supplementary Fig. 2). The corresponding NNPs (and their

Fig. 1 Computational workflow. Starting from the Deem database (a) containing >330k hypothetical zeolites, a structurally diverse subset of
zeolites was first selected by farthest point sampling (FPS). Unit cell deformations and MD simulations were applied to the selected zeolites,
dense silica polymorphs, surface models and amorphous silica structures (b), followed by DFT single-point calculations on an FPS sparsified
set of configurations. The NNPs trained on the initial database were iteratively refined by active learning using structure optimizations and MD
simulations at high temperatures and pressures (c). The final NNP level calculations allowed the reoptimization of the Deem and IZA database,
prediction of structure and vibrational properties, and simulations of highly reactive phase transformations such as glass melting and zeolite
amorphization, including zeolites (FAU) not present in the training set (d).
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ensembles) are termed as NNPpbe (eNNPpbe) and NNPscan
(eNNPscan), respectively.
Finally, NNP level simulations were performed for: (i) the

reoptimization of the Deem and IZA database, (ii) glass melting
and ZA using Faujasite (FAU) not included in the training set to
evaluate the NNP robustness for reactive phase transformations,
and (iii) prediction of equilibrium structures and vibrational
properties to compare the NNP results with their reference
method and experimental data. Further details on the NNPs
training and dataset details are provided in Section 4.
When confronting NNPs results with available experimental

results, it must be stressed that NNPs cannot outperform the
reference method used for generation of the training data.
However, accurate NNPs help us understand the accuracy of the
reference level of theory (DFT in this work) with respect to
experiment providing that the NNPs retain DFT accuracy. Highly
accurate NNPs can be used for the simulations of experimental
observables using more realistic models and longer simulation
times than possibly allowed with more demanding DFT calcula-
tions. Thus, the accuracy of the employed DFT methods and the
NNPs is demonstrated first (Section 2.2) while the performance
with respect to experimental data is described in following
subsections (2.3–2.5).

Accuracy compared to other methods
Before evaluating NNP accuracy, we first benchmark the accuracy
of the dispersion corrected PBE and SCAN functionals using
available experimental data for the structure and energetics of
siliceous zeolites (Supplementary Tables 2 and 3). Two dispersion
corrections were considered, namely semiempirical D3 correction
by Grimme et al.56 and more involved many body dispersion
(MBD)57 correction (see Section 4.4 for more details). Previous
studies showed that dispersion corrected PBE (both D3 and MBD
corrected PBE) agrees best with the experimentally determined
structures and phase transition enthalpies of siliceous zeolites as
compared to several other GGA exchange-correlation functionals,
including also the non-local vdW exchange-correlation (XC)
functionals58. However, no SCAN benchmark data have been
reported so far for siliceous zeolites. Therefore, we used a small
test to compare the performance between SCAN and PBE. The
resulting relative energies are almost the same for both XC
functionals and both dispersion corrections and are in very good
agreement with observed phase transition enthalpies with mean
average deviations (MAD) of about 2–3 kJ mol−1, i.e., within the
chemical accuracy. However, SCAN shows slightly better perfor-
mance than PBE for modeling structural features, for example,
with a density MAD of 0.2 Si nm−3 (SCAN+ D3) versus 0.3 Si nm−3

(PBE+ D3). In addition, Supplementary Fig. 3 compares the
energies of the reaction pathway of the Stone-Wales (SW) defect
formation59 in a silica bilayer (in vacuum) calculated at the
PBE+ D3, SCAN+ D3, and B3LYP level. The B3LYP has been
shown59 to yield the energy barrier for the first reaction step (for
silica bilayer supported on Ru(0001) surface) close to experimental
activation energies (about 3–4% deviation) and can be approxi-
mated as a reference level of theory also for the SW defect
formation in a silica bilayer in vacuum. In comparison to the B3LYP
reference, the PBE+ D3 barriers are slightly underestimated (by
up to 0.67 eV—~7% of the highest energy barrier) while SCAN+
D3 barriers are slightly overestimated (by up to 0.59 eV—~6% of
the highest energy barrier). In light of these results, we conclude
that SCAN+ D3 provides a consistent, albeit small, performance
improvement over dispersion corrected PBE for equilibrium
properties and reactive transformations of silica. In addition,
earlier benchmarking studies for other systems showed that
SCAN+ D3 consistently outperforms PBE+ D3 not only for
equilibrium structures but also for reaction energies and activation
barriers60. Therefore, SCAN+ D3 will be taken as the reference

DFT method and NNP trained on the SCAN+ D3 data (NNPscan)
will be considered as the reference NNP in the following sections,
in which we will compare its performance to other PES
approximations (analytical force fields, tight-binding DFT, etc.)
and experimental data.
The NNP accuracy, together with the accuracy of the commonly

used SLC potential, a reactive force field (ReaxFF), and one tight-
binding DFT implementation (GFN0-xTB), is evaluated for the set
of single-point energy calculations on a test set of structures taken
from the NNPscan simulations (Sections 2.3–2.5). This test set
contains 1460 configurations including (i) close to equilibrium (EQ)
structures randomly chosen from the NNPscan optimized zeolite
databases (see Section 2.3), (ii) silica bilayer configurations of the
Stone-Wales defect formation (see Section 2.5), and (iii) high-
energy structures from the glass melting and ZA simulations (see
Section 2.5). These structures were not included in the reference
dataset for NNP training. The entire test set can be found in the
Zenodo repository (https://doi.org/10.5281/zenodo.5827897).
Table 1 summarizes the MAE and RMSE of energies and forces

of all methods with respect to SCAN+ D3 results (Supplementary
Table 4 shows PBE+ D3 results). Figure 2 shows the correspond-
ing energy error distributions. In the case of EQ structures,
NNPscan energies are in best agreement with SCAN+ D3
calculations with an RMSE of <4.2 meV atom−1, which are about
the same as training errors of 4.7 meV atom−1 (Supplementary
Table 1) showing the good generalization capabilities of the NNPs.
Using the ensemble average of six NNPs (eNNPscan) provides only
minor improvement to the NNP accuracy. The analytical potentials
(SLC, ReaxFF) and GFN0-xTB show higher errors by more than one
order of magnitude. Such energy errors (~100 meV atom−1)
translate into uncertainties of zeolite phase stability calculations as
described in Section 2.3 (see Fig. 3) of about 30 kJ (mol Si)−1. The
fairly good agreement of SLC with experimental and DFT results

Table 1. RMSE and MAE of energies [meV/atom] and forces [eV/Å]
calculated for all test cases and only for equilibrium configurations
(EQ) with respect to SCAN+D3 results.

Level of theory Energy (EQ) Forces (EQ) Energy (all) Forces (all)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

sNNPscan 2.99 4.20 0.048 0.070 3.90 5.44 0.175 0.303

eNNPscan 2.83 3.95 0.046 0.067 3.83 5.49 0.155 0.265

SLC 88.0 111 2.612 3.431 207 313 3.206 4.166

ReaxFF 56.4 78.4 1.266 2.996 88.8 136 2.789 8.533

GFN0-xTB 57.5 106 0.302 0.787 127 201 0.735 3.391

Fig. 2 Error distribution of energies. Energy errors ΔE are given
with respect to SCAN+D3 for analytical force fields (SLC, ReaxFF)
and tight-binding DFT (GFN0-xTB) as well as NNPscan.
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(Supplementary Table 5) applies only to existing siliceous zeolites
but not to the rigorous test set including pure silica framework
models that cannot be synthesized in their high-silica form (see
Section 2.3). Therefore, the trained NNPs provide a sufficiently
accurate PES covering much larger configurational space than SLC
allowing reliable prediction of zeolite topologies that could be
thermodynamically accessible, e.g., via alternative synthesis routes
beyond solvothermal methods.
It must be stressed that the trained NNPs approximate energies

and forces of the reference level DFT with high accuracy even for

high-energy structures and transition states (Table 1). For example,
the NNPscan energies deviate about 10–27meV atom−1 from
their DFT reference for the glass melting trajectories (see Section
2.5). In addition, even the errors of the extrapolated configurations
of the ZA simulations (up to 40 meV atom−1) are at least three
times lower than the RMSEs of SLC, ReaxFF, and GFN0-xTB. Among
the latter, ReaxFF tailored for the elements Si, O, and H provides
the lowest energy errors but with an RMSE of 136 meV atom−154.
Recently, a benchmark study of ReaxFF potentials (parameterized
for C, O, H) reported similar energy RMSEs of about 100meV

Fig. 3 Calculated energies and densities of siliceous zeolites. Relative energies E are given with respect to α-quartz as a function of
framework density ρ (a) of hypothetical (black) and existing (red) zeolite frameworks calculated using SLC and NNPscan. Solid lines in
a indicate the energy-density range of purely siliceous zeolites (Supplementary Fig. 4). b Correlations of energies and densities obtained at the
NNPscan and SLC level. c Comparison of simulation results with experimental (EXP) values (Supplementary Table 5). Error bars correspond to
an estimated experimental accuracy of ±1 kJ (mol Si)−164.
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atom−1 for hydrogen combustion reactions61. On the other hand,
GFN0-xTB allows a more general modeling with a parameteriza-
tion for 86 elements focusing on equilibrium structures and
frequency calculations55. Therefore, GFN0-xTB shows a larger
energy RMSE for transition state structures (Fig. 2) yet gives higher
force accuracy than the silica potentials SLC and ReaxFF. Finally,
using an ensemble of six tailor-made silica NNPs provides only a
little improvement over single NNP calculations, the latter
achieves the best performance in terms of accuracy and
computational effort for the reactive modeling of silica.

Zeolite databases
The trained NNPs enable the reoptimization of the Deem and IZA
database (available at: https://doi.org/10.5281/zenodo.5827897) to
provide highly accurate input for investigations of structure-
property relationships of existing and hypothetical zeolites. Figure
3a compares the relative energies and framework densities of the
NNPscan optimized databases with the results from the SLC
analytical potential, a state-of-the-art analytical potential for
silicious zeolites, taken from ref. 3 (www.hypotheticalzeolites.net,
accessed: November 29, 2019). For sake of clarity, only the low-
density zeolite analogue RWY62 (Ga2GeS6) is not shown in Fig. 3
(NNPscan: 61 kJ mol−1, 7.86 Si nm−3; SLC: 104.2 kJ mol−1, 7.62 Si
nm−3), which does not exist in a high-silica form due to a large
number of three-membered rings in the structure that would
induce high ring tension. Please also note that the Deem database
only includes hypothetical zeolites with relative energies up to
30 kJ mol−1, which were deemed thermodynamically inaccessible
in ref. 4 and therefore removed from the database.
Figure 3b shows the (qualitative) correlation between SLC and

NNPscan results - the relative energies (left panel) and densities
(right panel) of optimized structures from the Deem and IZA
databases are compared. The Pearson correlation coefficients are
0.89 and 0.98 for energies and densities, respectively. However,

the SLC results show systematically higher relative energies than
NNPscan for zeolites at high energies and densities, probably due
to the energetic overestimation of structural features in those
zeolites connected with the harmonic three-body bond-bending
term of the SLC potential. For example, SLC yielded up to 20 kJ
(mol Si)−1 higher energies for three-ring containing zeolites such
as OBW, OSO, NAB, and JOZ that can only be synthesized if Be is
incorporated in the framework (Supplementary Fig. 4)63. There-
fore, the SLC potential probably overestimates the relative
energies of hypothetical and existing frameworks that cannot be
synthesized as purely siliceous zeolites.
To verify that NNPscan shows improved accuracy compared to

SLC, Supplementary Table 5 compares the NNP and SLC results
with experimentally available relative enthalpies and densities of
15 siliceous zeolites and five silica polymorphs6,7,64. Additionally,
DFT optimizations were applied to a subset of five zeolites and five
polymorphs. Figure 3c qualitatively compares the dependence of
relative energies on the framework density of siliceous zeolites
calculated at the SLC, NNPscan, and SCAN+ D3 level with
experimentally determined phase transition enthalpies and
densities. Such energy-density correlations were used in previous
studies to find frameworks thermodynamically accessible for
solvothermal zeolite synthesis3,4. The analytical SLC potential
shows relatively good agreement with experimental results in the
case of purely siliceous zeolites along with an energy MAE of 4.0 kJ
(mol Si)−1. However, SLC systematically overestimates the
experimentally observed enthalpies (Fig. 3c and Supplementary
Table 5), which may relate to the energetic overestimation of
structural features in zeolites due to the bond-bending term as
described above. In contrast, the trained NNPscan achieved a
substantial accuracy improvement with an energy MAE of 2.2 kJ
(mol Si)−1. Structure optimizations at the SCAN+ D3 level of a
smaller subset give MAE close to NNPscan, namely, 2.7 kJ (mol
Si)−1, which is a similar deviation from experiment as reported in
previous DFT benchmark studies58. The MAEs of atomic densities
show a similar trend as that for relative energies, that is, the NNPs
provide significantly higher quality than SLC for quantitative
structural and energetic predictions of siliceous zeolites with
almost same accuracy as dispersion corrected DFT methods (see
Section 2.2 and Supplementary Tables S2 and S3).
Therefore, reoptimization of the Deem database using NNPscan

provides significantly improved input for the computational
design and discovery of new zeolite frameworks by analyzing
structure, energy, and density correlations for hypothetical and
existing frameworks3,4,17–20. The solid lines in Fig. 3a show the
range of relative energies and densities of the 40 zeolite
frameworks that have been successfully synthesized in their
purely siliceous form (Supplementary Fig. 4)65. The SLC calculated
(relative) energies and densities range between ~4–24 kJ (mol
Si)−1 and 13.5–21.2 Si nm−3, respectively. On the other hand,
NNPscan optimizations yield a narrower energy range of 6–19 kJ
(mol Si)−1 but similar densities of 13.3–20.4 Si nm−3 (dashed lines
in Supplementary Fig. 4). Hypothetical zeolites within these
energy ranges can be considered as thermodynamically accessible
by solvothermal synthesis methods. In the case of SLC, this applies
to about 33k frameworks of the Deem database. However, due to
the systemically overestimated SLC energies, >20k additional
hypothetical zeolites (total of about 53k) were obtained from
NNPscan calculations that fulfill the stability criterion mentioned
above (Supplementary Fig. 5). These results demonstrate the
crucial importance of accurate large-scale simulations of equili-
brium structures for the discovery of zeolites.

Vibrational properties
In addition to simulations of equilibrium configurations at zero
Kelvin, calculations of vibrational properties or free energies at
elevated temperatures require accurate modeling of close to

Fig. 4 Vibrational density of states (VDOS). Comparison of
SCAN+D3 and NNPscan calculated VDOS for a α-cristobalite and
b silica glass with experimentally observed VDOS (black triangles:
ref. 66, dots: ref. 71, squares: refs. 72,73). VDOS were calculated using
the velocity-autocorrelation from MD simulations (at 300 K) or the
finite-difference (FD) approach.
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equilibrium structures and forces on atoms. To test the reliability
of SCAN+ D3 and NNPscan for predicting the vibrational density
of states (VDOS), the VDOS of α-cristobalite was calculated at both
levels. Figure 4a shows both VDOS along with the experimentally
observed one66, and Supplementary Table 6 compares the
frequencies of each vibrational mode with the experimental
results from IR and Raman spectroscopy67–70. Since α-cristobalite
was part of the reference database, we performed additional
VDOS calculations (NNPscan level) on vitreous silica structures not
considered in the NNP training procedure. Three amorphous silica
structures were generated using independent simulated anneal-
ing MD runs (Section 4). The obtained VDOS for the glass models
are virtually identical (Supplementary Fig. 6), demonstrating
sufficient sampling of amorphous structures. Figure 4b shows
the average of the three calculated VDOS along with experi-
mental results71–73. Please note, the VDOS calculations at the
SCAN+ D3 level employed the finite-difference approach (FD)
using the harmonic approximation while the NNPscan level
calculations used MD simulations at 300 K for calculation of the
velocity-autocorrelation function (VACF, see Section 4). The latter
approach includes anharmonic effects, i.e., the temperature-
dependent shift of vibrational frequencies. However, at low
temperatures such as 300 K, only minor frequency shifts in the
order of 0.1 THz are expected (e.g., as shown before for Al2O3

74,
MgSiO3

75) not influencing the comparison of different PES
approximations shown in Fig. 4.
In the case of α-cristobalite, the VDOS calculated at the NNPscan

and SCAN+ D3 level are almost identical with a frequency MAD of
about 0.4 THz for NNPscan compared to the SCAN+ D3 reference
(Supplementary Table 6). Both SCAN+ D3 and NNPscan show
good agreement with experimentally determined frequencies
with MADs of 0.3 and 0.5 THz, respectively. The largest deviations
of SCAN+ D3 (up to 1.6 THz) and NNPscan (up to 2.0 THz) from
experiment were obtained for the high-frequency modes A2 (at
34.4 THz) and B2 (at 35.6 THz). We obtained slightly higher
frequency errors at the NNPscan level when the FD approach
was applied to calculate the harmonic VDOS (Supplementary Fig.
7 and Supplementary Table 6) with an MAD of 0.9 THz from the
experiment. These frequency changes are not connected with
anharmonic (temperature) effects as described above74,75. Most
likely, the FD approach is prone to minor force errors of the few
single-point calculations required to compute the VDOS. In
contrast, the employed MD approach samples the VACF over a
trajectory with several thousand microstates, probably facilitating
a certain cancellation of the force errors and resulting in a better
agreement with the SCAN+ D3 FD results.
Since the MD approach proved more accurate for VDOS

calculations at the NNPscan level, this procedure was also applied
to the VDOS calculations of vitreous silica. Similar to α-cristobalite,
the NNPscan calculated VDOS is in good agreement the
experimentally observed one. In the case of the high-frequency
doublet, the NNPscan calculations yielded a systematic shift by up
to 1.5 THz with respect to the experimental VDOS. This shift is
similar to the one observed above for the α-cristobalite VDOS at
the SCAN+ D3 and NNPscan level. Therefore, these systematically
underestimated vibrational frequencies are expected to arise from
the limitation of the DFT reference method. In summary, the
trained NNPs can accurately model equilibrium structures and
properties in line with their DFT reference and are in good
agreement with available experimental observations.

Phase transitions
Apart from close to equilibrium properties, considering high-
energy parts of the PES including transition states is indispensable
for simulations of phase transitions and the thermal stability of
zeolites potentially leading to the discovery of new zeolites. To
showcase the accuracy of the trained NNPs for the description of

reactive events the Stone-Wales defect formation59 in a silica
bilayer was chosen as a test case. Figure 5 depicts the reaction
path for Stone-Wales defect formation along with DFT and NNP
energies (cf. Methods section). The bilayer structure is similar to
the hypothetical bilayer structure in the reference dataset which
consists of four, five, six and ten-membered rings (Supplementary
Fig. 2c). However, no transition states from a six to seven-ring
topology were included in the training set. Nonetheless, the
NNPscan shows good agreement with its DFT reference. NNPscan
deviates <0.207 eV from the corresponding DFT value, which is
about 2% of the highest barrier.
Achieving general modeling of reactive and non-reactive

zeolite phase transitions beyond the model reaction path
described above requires diverse configurations of the high-
energy parts of the PES. Two extreme cases of phase
transformations were considered to probe the quality of the
PES interpolation between the low-energy EQ and high-energy
transition states, i.e., via Si-O bond cleavage (cf. Section 4.3): the
melting and annealing of amorphous silica and ZA. Figure 6
shows the relative energies with respect to α-quartz for
simulations using the NNPs including the melting of β-cristobalite
and the amorphization of LTA and FAU zeolites. Note that
simulations of β-cristobalite melting and LTA amorphization up to
mass density of 2.2 g cm−3 (22 Si nm−3) were used for training
and active learning procedure, however, these simulations were
carried out with different potentials, either ReaxFF or the initial
NNPs (see Method section). Figure 6 also depicts results of DFT
single-point calculations performed for a subset of structures as
accuracy checks.
During the first 0.5 ∙ 106 timesteps of the β-cristobalite melting

simulation at 4800 K, only a few defects were created. The steep
increase of the energy at about 0.6 ∙ 106 timesteps corresponds to
the phase transition into liquid silica. After 106 timesteps, the
temperature was lowered stepwise down to 2500 K with no
considerable changes in the structure during the last 100 000
timesteps. Again, NNPscan and SCAN+ D3 results show very good
agreement. Similar to the results for the Stone-Wales defect
formation energies, NNPscan does not deviate from SCAN+ D3 by
<2–3% (~27meV atom−1).
In contrast to the melting of glass, thermal zeolite amorphiza-

tion involves not only Si-O bond breaking but also considerable
volume changes during the collapse of the framework. To mimic
the thermal collapse of LTA and FAU, the structures were
equilibrated at 1200 K for 6.5 ns with a stepwise volume reduction
every 500 ps such that after 12 equivalent volume steps a mass
density of 2.4 g cm−3 (24 Si nm−3) was reached (cf. Method
section). The target density exceeds the density range of the
configurations in the AM and ZA part of the reference dataset by
about 10% to demonstrate the NNP accuracy in extrapolated
regions of the PES. Figure 6b, c show the energies of the last
2 ∙ 106 timesteps of the trajectories. Figure 6d depicts example
structures taken from the MD trajectory. Note that FAU was not
included in reference database. In addition, the equilibration time
of the last volume step was 1 ns in the case of FAU to ensure full
equilibration in the final stage of the framework collapse.
FAU shows no Si-O bond breaking up to the density of

amorphous silica (2.2 g cm−3). However, the microporous struc-
ture considerably changes, mainly due to the collapse of the
large cages. Starting from a mass density of 2.4 g cm−3, the
trajectories of FAU show Si-O bond breakage and reformation
events during the last 106 timesteps. The transition states are
five-fold coordinated Si leading to cleavage of Si-O bonds and
reorientation of SiO4 tetrahedra. The same bond cleavage
mechanism was obtained for LTA. However, the first bond
breaking was obtained at a density of 2.1 g cm−3 as indicated by
the energy drop in Fig. 6c.
Up to a density of 2.2 g cm−3, the deviation of NNPscan from

SCAN+ D3 is <11meV atom−1, which is about 3% of the highest
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energy at the phase transition. At densities above 2.2 g cm−3,
larger NNP errors (up to 40meV atom−1) were obtained showing
the onset of the extrapolation region in the high-energy part of
the PES not covered by the training dataset (Supplementary Fig.
2b). The higher NNP errors are also indicated by the increased
spread of the energy predictions of the NNP ensemble enabling
future refinement of the NNPs by active learning. Indeed, the NNP
energy deviation from the DFT reference considerably increased
once the energy spread of the NNP ensemble exceeded ~8meV
atom−1 (Supplementary Fig. 8). However, even the extrapolated
NNP energies qualitatively agree with the SCAN+ D3 results with
a Pearson correlation coefficient of 0.99 and 0.66 for FAU and LTA,
respectively, showing a fairly systematic energy shift from the
reference values (Supplementary Fig. 9). These results demon-
strate that SchNet provides reasonable atomic configurations even
in extrapolated regions at densities about 10% above the
reference data facilitating a robust sampling of the configuration
space for further active learning and NNP refinement.

DISCUSSION
Energy errors of a few meV atom−1 and force errors of about
100–300meV Å−1 have been reported previously for state-of-the-
art MLP such as moment tensor or Gaussian approximation
potentials trained for large-scale simulations of different materi-
als38,45–47. Results reported herein show that SchNet NNPs provide
the same quality as other MLPs not only for close-to-equilibrium
structures of materials but also for high-energy bond-breaking
scenarios. In addition, we have demonstrated that the trained
SchNet NNPs retain DFT accuracy and provide at least an order of
magnitude higher accuracy compared to analytical force fields
and tight-binding DFT.

Previous trained reactive NNPs for silica48 used a DFT database
containing only two polymorphs (quartz and cristobalite), two
surface structures, amorphous, and liquid silica configurations
with unit cells comprising <144 atoms. The NNPs of Behler and
Parrinello show RMSEs of about 200 meV Å−1 for forces, i.e.,
somewhat higher compared to the RMSE of the database test set
used in this work (147 meV Å−1, Supplementary Table 1). The DFT
database used in this work covers several low- and high-density
polymorphs, 2D models, amorphous structures, and the large
structural diversity of zeolites using unit cells with up to 400
atoms, including high-energy transition states (Supplementary
Fig. 2). Therefore, the NNPs provided in this work aim for a far
more general modeling of the silica PES compared to previous
studies48 using only a small number of dense polymorphs, surface
models, and amorphous silica structures.
The glass melting simulations clearly demonstrated the good

NNP modeling accuracy for bond-breaking events at 4800 K.
During the equilibration at such high temperatures, the MD
trajectory showed numerous five-fold coordinated transition
states of Si in good agreement with DFT results. These MD
simulations were performed using silica glass density (2.2 g cm−3)
covered by the reference dataset containing configurations with
densities from about 1.6 g cm−3 to 2.2 g cm−3 (16–22 Si nm−3) for
high-energy transition states and densities from 1.0 to about
4.5 g cm−3 (10–45 Si nm−3) for low-energy EQ structures.
For comparison, the density range of the simulated zeolite

collapse was 1.3 to 2.4 g cm−3. At densities below 2.2 g cm−3, MD
simulations showed bond-breaking events in the case of LTA
(2.1–2.2 g cm−3) and no bond cleavage in FAU. For both zeolites,
the NNP energies and forces showed no extrapolation and
agreed well with DFT results at densities <2.2 g cm−3. Note that
FAU was not part of the reference database. Only further

Fig. 5 Energetics of Stone-Wales defect formation. Energies for transition states (TS) and intermediate (I) structures are calculated at the
DFT (B3LYP taken from ref. 59) and NNPscan level. Shaded areas indicate the energy range calculated with all six NNPs (solid line: ensemble
average).
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Fig. 6 Reactive silica phase transformations. Comparison of SCAN+D3 and NNPscan energies for a melting and annealing of β-cristobalite
as well as amorphization of b FAU and c LTA by compression. Shaded areas in a–c show the energy range of all six NNPs (not visible in a due to
energy scale) and dashed lines in b and c indicate compression steps. Structures and mass densities (g cm−3, in brackets) are depicted in d. Si:
yellow, O: red, Si (after bond breaking): green.
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compression to artificially high densities up to 10% beyond silica
glass density resulted in NNP extrapolation. However, the
difference between NNP and DFT energies was even in the
extrapolation region at least three times lower (<40 meV atom−1)
than the RMSEs of the other PES approximations (e.g., 136 meV
atom−1 for ReaxFF) shown in Table 1. In addition, the MD
trajectories contain physically reasonable configurations allowing
straightforward extension of the DFT dataset and further NNP
refinement. Hence, these ZA simulations demonstrate that the
SchNet NNPs are transferable and reasonably data-efficient
interpolators of the silica PES as exemplified by qualitatively
correct description of zeolite amorphization even slightly beyond
the interpolation region.
The employed ZA simulation protocol only mimics the thermal

zeolite collapse and does not provide realistic modeling of this
phase transition. In fact, there are no reports of the thermal
collapse for purely siliceous LTA and FAU. Most experimental
studies on such phase transformations used Al-containing zeolites
showing that zeolites with Si/Al ratios >4 are thermally very stable
due to the higher energetic barrier for breaking Si-O bonds than
Al-O bonds30,34. Therefore, the ZA simulations required artificial
compression to higher densities to obtain a higher degree of
amorphization. However, even at lower densities (<2.2 g cm−3),
the ZA simulations showed bond-breaking events in LTA without
extrapolation and in agreement with DFT results. These results
demonstrate that the NNPs also reliably interpolate reactive parts
of the PES that are relevant for transformations between different
zeolite structures.
In summary, the trained NNPs allow general and accurate

modeling of siliceous zeolites with DFT accuracy. This includes
modeling of thermodynamic stabilities, equilibrium properties as
well as reactive and non-reactive phase transitions of zeolites by
interpolation of all relevant parts of the PES. Even in the observed
cases of extrapolation, the NNPs showed qualitative agreement
with DFT results with energy errors far lower than analytical force
fields demonstrating the robustness of SchNet NNPs that allows
their straightforward refinement and extension by active learning.
Thanks to active learning, the NNPs capture the structural
diversity of zeolites that is used for reoptimization of the Deem
database with high accuracy. The revised database provides vital
input for future machine learning studies on structure-stability-
property correlations facilitating the computational—in silico—
design and discovery of zeolites. Finally, NNP extension for
modeling zeolites containing heteroatoms such as Al or guest
molecules such as water is a promising route towards realistic
atomistic modeling of zeolites under synthesis and operating
conditions29,76 with ab initio accuracy.

METHODS
Dataset generation
Generation of the initial DFT datasets used PBE+D3 single-point
calculations applied to a diverse set of structures, including silica
polymorphs, surface models, hypothetical, and existing zeolites. First, ten
hypothetical zeolites were selected from the Deem database by Farthest
Point Sampling (FPS)77,78 to find the most diverse subsample of atomic
environments. The FPS employed the similarity distance metric d(A, B)
between two zeolites A, B calculated using the average similarity Kernel
K A; Bð Þ of the smooth overlap of atomic positions (SOAP)79 descriptor
(Supplementary methods)80:

d A; Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2K A; Bð Þ
q

: (1)

Apart from the ten selected zeolites, the FPS detected a hypothetical
silica bilayer in vacuo (72 atoms, 12 Å vacuum layer), which was also added
to the dataset (Supplementary Fig. 2c). Additionally, the dataset included a
hypothetical α-quartz (001) surface model (120 atoms, 15 Å vacuum layer)
terminated with dangling Si-O bonds. The dataset also contained five
existing zeolites (CHA, SOD, IRR, MVY, MTF) and six silica polymorphs (α-

quartz, α-cristobalite, tridymite, moganite, coesite, and stishovite) for
consideration realistic silica structures.
All selected configurations were optimized at the PBE+ D3 level under

zero pressure conditions. Next, 210 different unit cell deformations were
applied to all optimized structures (Supplementary information). Further
sampling of atomic environments close to the optimized configurations
used ten ps MD equilibrations (ReaxFF level) at 600 K and 1200 K. The
200 most diverse structures were extracted from every MD trajectory by
the FPS described above. The resulting set of structures constitutes the
low-energy, close to equilibrium (EQ) part of the silica database
(Supplementary Fig. 2).
Sampling of high-energy configurations and transition states used MD

simulations (ReaxFF level) for melting and simulating annealing of
β-cristobalite (2 × 2 × 2 supercell). After scaling its mass density from 2.3
to 2.2 g cm−3 (silica glass density) and geometry optimization, the
structure was equilibrated for 100 ps at 6000 K. Next, the temperature
was reduced to 3000 K in three steps along with an equilibration for
100 ps at each temperature step. The equilibration at 3000 K used
additional 100 ps to improve the structural sampling. Again, FPS was
applied to the MD trajectories to find the 1000 most diverse configura-
tions. To generate low-energy amorphous structures, ten configurations
from the 3000 K MD trajectory were optimized (quenched) at constant
volume (PBE+ D3 level). The lowest energy structure obtained was
optimized under zero pressure conditions. Subsequently, the 210 lattice
deformations used above (Supplementary information) were applied to
the fully optimized unit cell. Structures generated from the simulated
annealing of β-cristobalite are denoted as amorphous silica in the
reference database (Supplementary Fig. 2).
In contrast to the melting of silica polymorphs, low-density zeolites

show a significant volume contraction during melting, that is, thermal
collapse. To mimic this process, eight hypothetical zeolites were
equilibrated at 1200 K for 100 ps employing ReaxFF. Then, the unit cell
volume was scaled stepwise such that after ten equivalent steps, the mass
density of silica glass (2.2 g cm−3) was reached. After each contraction step,
the zeolites were equilibrated for 100 ps. FPS of the resulting trajectories
located 1000 diverse structures for each zeolite that fall into the ZA
category of the dataset (Supplementary Fig. 2).
Single-point calculations at the PBE+ D3 level were applied to the initial

database providing energies and forces for the training of an ensemble of
six NNPs allowing their iterative refinement.

NNP refinement
Refinement of the initially trained NNP ensemble requires extrapolation
detection for previously unseen configurations. This is achieved by
performing simulations using one leading NNP and applying single-point
calculations to the trajectory using the remaining five potentials35. If the
energy and force predictions deviate by >10meV atom−1 or 750meV Å−1,
respectively, from the NNP ensemble average, additional PBE+D3 single-
point calculations were added to the reference database. Simulations and
re-training of the NNP ensemble were repeated until no extrapolation was
detected during test simulations.
To enhance the structural diversity of the EQ dataset, the Deem (>331k

structures, www.hypotheticalzeolites.net, accessed: November 29, 2019)
and IZA (235 fully connected frameworks) databases were optimized using
constant (zero) pressure conditions. Additionally, β-cristobalite was
equilibrated at 4800 K for 1 ns to sample more liquid silica configurations.
Extension of the ZA dataset used the same computational protocol for the
thermal collapse (up to 2.2 g cm−3) of zeolites described above but for the
frameworks LTA and SOD, which were not considered in the initial ZA
dataset. The resulting PBE+ D3 dataset contains about 33k structures with
up to 400 atoms per unit cell. Single-point calculations at the SCAN+ D3
level were also applied to the final database to train the NNPscan
potentials. More details on the DFT database are summarized in the
supplementary information (Supplementary Figs. 1 and 2).
Training of NNPpbe and NNPscan used energy and forces of the

databases calculated at the PBE+ D3 and SCAN+D3 levels, respectively.
The resulting test RMSE are ~4.7 meV atom−1 for energies and
147meV Å−1 for forces (Supplementary Table 1). These errors are about
an order of magnitude lower compared to other methods approximating
the PES of silica (cf. Section 2.2).
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Test simulations
The final geometry optimization of the Deem and IZA database was
performed at the NNPscan level. To test the NNP quality for reactive
events, structures of the Stone-Wales defect formation were taken from
ref. 59. The unit cell parameters were optimized at the NNPscan and
NNPpbe level keeping the fractional coordinates and the vacuum layer
frozen, followed by DFT single-point calculations using the optimized
structures. MD simulations (timestep 1 fs, NNPscan level) of the thermal
LTA and FAU collapse served as a test case of the final NNPs (FAU was
not part of the final reference dataset). These simulations used the
same procedure described above, but with 12 compression steps up to
a mass density of 2.4 g cm−3 and an equilibration time of 500 ps
between each step.
Test simulations (NNPscan level) for the annealing of amorphous silica

used three different initial structures: β-cristobalite and two vitreous silica
structures taken from the ReaxFF simulated annealing described above.
Melting of β-cristobalite employed an equilibration for 1 ns at 4800 K. After
geometry optimization, the two amorphous structures were equilibrated
for 1 ns at 4200 K due to their lower energetic barrier for transition to the
liquid state. In all three cases, the temperature was stepwise decreased to
2500 K in 100 K steps and an equilibration time of 25 ps per temperature
step. The last structures of the MD trajectories were optimized under zero
pressure conditions. The obtained glass configurations were equilibrated
for 10 ps at 300 K (NVT ensemble), followed by another 10 ps equilibration
using the NVE ensemble. Calculation of the VDOS used the velocity
autocorrelation function from the NVE trajectory. In the case of α-
cristobalite, the harmonic VDOS was calculated at the NNPscan and
SCAN+ D3 level using a 3 × 3 × 2 supercell and the finite-difference (FD)
approach. In addition, calculation of the anharmonic α-cristobalite VDOS at
the NNPscan level employed MD simulations at 300 K with the same
computational protocol used for the silica glass structures.

Computational details
DFT simulations at the GGA (PBE)81 and meta-GGA (SCAN)82 level
employed the Vienna Ab initio Simulation Package (VASP, version
5.4.4)83–86 along with the Projector Augmented-Wave (PAW) method87,88.
Calculations at constant volume used a plane-wave energy cutoff of 400 eV
while the constant pressure optimizations used cutoff of 800 eV. The k-
point grids had a linear density of at least one k-point per 0.1 A−1 along
the reciprocal lattice vectors. The consideration of long-range dispersion
interactions is essential for accurate modeling of zeolites58,89,90. However, it
has been shown that accurate modelling of dispersion in porous materials
can be challenging91,92 and that the SCAN functional in particular can
exhibit non-systematic accuracy for description of dispersion in systems
with variable sizes and densities93. Therefore, we considered two types of
dispersion corrections with both PBE and SCAN functionals, a simple
semiempirical one proposed by Grimme et al. (D3)56 (with Becke-Johnson
damping)94 and more involved density-depended many-body dispersion
(MBD)57 correction, and we compared their performance with available
experimental data for equilibrium structures and energies of siliceous
zeolites (Supplementary Tables S2 and S3). The MBD correction was used
with the vdW scaling parameters β of 0.84 for PBE and 1.12 for SCAN as
optimized in ref. 93. We found that both dispersion corrections provide
virtually the same quality with respect to experimental data on equilibrium
structures and energies, similar to the results of a previous study
(considering PBE functional only)58. Therefore, we opted out for the
computationally less demanding Grimme D3 dispersion correction for the
dataset generation.
Training of SchNet42 NNPs employed the Python package SchNetPack43

and random splits of the reference datasets into training, validation, and
test sets at a ratio of 8:1:1 that showed lowest RMSEs for different tested
split ratios (Supplementary Fig. 10). Mini-batch gradient descent optimiza-
tion was applied for training along with a mini-batch size of eight
structures and the ADAM optimizer95. During NNP training the learning
rate lowered stepwise (from 10–4 to 10−6) by a factor of 0.5 if the validation
loss shows no improvement after 15 epochs. We used the same squared
loss function for energy and forces as in ref. 42 along with a trade-off factor
of 0.01, that is, with high weight on force errors. The setup of the NNP
hyper-parameters used six interaction blocks, 128-dimensional feature
vectors, a cutoff radius 6 Å and a grid of 60 Gaussians for expansion of
pairwise distances as input for the filter generating networks. A similar
training and hyper-parameter setup provided very good NNP accuracy and
training performance in previous works42,43.

Calculations with the trained NNPs employed the atomic simulation
environment (ASE)96. Simulations at the ReaxFF54 level used the large‐scale
atomic/molecular massively parallel simulator (LAMMPS)97,98 and in the
case of the Sanders-Leslie-Catlow (SLC) potential52,53 the General Utility
Lattice Program (GULP)99. GFN0-xTB55 calculations were performed with
the xTB program package (version 6.3.3, available at: https://github.com/
grimme-lab/xtb).
Unless stated otherwise, all MD simulations used a time step of 0.5 fs

and the canonical (NVT) ensemble with the Nosé-Hoover thermostat100,101.
Calculation of the harmonic VDOS at the SCAN+ D3 and NNPscan level
employed the finite-difference (frozen-phonon) approach implemented in
Phonopy102 along with displacements of 0.02 Å. The calculation of the
VDOS and anharmonic vibrational frequencies from MD trajectories used
the Python packages pwtools (available at: https://github.com/elcorto/
pwtools) and DynaPhoPY103, respectively. Calculations of the SOAP
descriptor were performed with the Python package Dscribe104.

DATA AVAILABILITY
The Deem and IZA database, the trained NNPs, and the test set used for accuracy
evaluation is openly available in a Zenodo repository (https://doi.org/10.5281/
zenodo.5827897). The Deem database contains >331k hypothetical zeolite frame-
works geometrically optimized at the NNPscan level. The NNPscan optimized
database of the International Zeolite Association contains 236 exiting, fully
connected zeolite frameworks. Both databases are SQLite database files of the
Atomic Simulation Environment (ASE) containing the ASE Atoms objects with
energies and forces calculated at the NNPscan level and are readable with ASE’s I/O
module. Additionally, the repository contains plain text data as csv files containing
zeolite features such as relative energies and densities for both the Deem and IZA
database. The remaining data for the reproduction of results is available upon
reasonable request.
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