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Abstract: Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic
CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be
used as a fresh strategy to create newer methods of treating the condition. The liver and the
peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the
liver, peritoneal carcinomatosis is frequently regarded as the disease’s final stage. However, nearly
50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and
therapeutic approaches must be developed due to the disease’s poor response to present treatment
choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many
unique and amazing nanomaterials with promise for both diagnosis and treatment may be found
in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes,
dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell
polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted
anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with
nanomedicine have been proposed as a revolutionary approach to improve CRC detection and
treatment. This review highlights recent studies, potential, and challenges for the development of
nanoplatforms for the detection and treatment of CRC.

Keywords: colorectal cancer; nanomedicine; theranostics; clinical status; cancer therapy

1. Introduction

Colorectal cancer (CRC) is the third most common cancer in the world and the second
leading cause of death in 2020, with 1.93 million new cases and 930,000 deaths [1]. In 2020,
nearly 520,000 new cases and 245,000 deaths in Europe were registered [2]. The estimated
number of new cases in 2040 is 3.2 million, representing a 63% increase over the estimated
number of cases in 2020. CRC was the most malignant in 18 of 185 countries, and it ranked
second or third in another 78 countries [1]. Obesity, crimson meat, smoking, and excessive
drinking are all generic CRC risk factors. On the other hand, lifestyle changes, diet, and
genetic mutations play a role in the development of the disease. However, dietary fiber
and aspirin are considered protective factors [3–6].

CRC treatment is determined by the disease’s stage [7]. Surgical resection and post-
operative adjuvant chemotherapy are the most effective treatments in the early stages of
CRC. These treatments can successfully remove any remaining micrometastases, remove
any local implants during surgery, and reduced the probability of recurrence [3]. Blood
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stool tests, X-ray, colonoscopy, CT colonography, magnetic resonance imaging (MRI) scans,
stool DNA tests, flexible sigmoidoscopy, and barium enema have all been developed
for CRC diagnosis. However, CRC diagnosis is challenging due to the large number of
gaps that exist in addition to over-testing, over diagnosis, overtreatment, non-specificity,
and the heterogeneous nature of CRC [8]. The number of possible therapeutic targets is
constantly growing as a result of numerous factors that influence and contribute to the
onset and spread of the disease. In the end, this targeting potential will pave the way
for the development of a successful method for the management of disease and better
patient care. For several decades, research has focused on developing new approaches
and techniques for studying cancer, particularly in the areas of detection and early cancer
therapy to reduce mortality.

Nanoparticles have the potential to be employed for both diagnostic and treatment at
the same time. Researchers from all over the world are exploring the use of nanoparticles
because of these fascinating characteristics. The goal of this narrative review is to highlight
current knowledge as well as the most recent discoveries and clinical and research findings
concerning the use of nanoparticles (NPs) in CRC treatment. We focused on the theranostics
applications of various types of nanomaterials, including liposomal nanoparticles, poly-
meric nanoparticles, bio-nanoparticles, and metal nanoparticles that have shown significant
potential for applications in CRC detection and therapy (Figure 1).
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2. Colorectal Liver Metastasis

CRC most commonly metastasizes to the liver (CRLM); historically, the surgical
management approach to CRLM has evolved significantly [9]. Liver metastasis may be
located in the portal vein, which connects the colorectal and liver and is associated with
abundant blood supply [10,11]. Standard therapeutic protocols for CRLM are curative
resection, embolization, and chemotherapy, However, due to the location and size of the
tumor, the presence of extrahepatic disease, the patient’s comorbidities, or unresectable
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disease, surgery is only possible in 10–20% of cases, and less than 5 year survival rate is
about 30% [11,12]. It has shown to be challenging to target metastases effectively. Targeting
malignant cells within locations of metastasis is challenging due to biological hurdles that
must be overcome. The mechanisms driving metastasis are still being studied, which is
allowing for the development of new treatments. Metastasizing malignancies can now be
treated in ways that were previously unachievable thanks to targeted drug delivery using
technologies made possible by nanotechnology. Immunotherapy has the potential to treat
colon cancer since it triggers the body’s immunological system to attack malignant tumors..
Immune checkpoint inhibitors (ICIs) have swiftly become a popular treatment choice for
a variety of solid tumors due to their higher efficacy. By focusing on receptor or ligand
checkpoint proteins to inhibit immunosuppressive tumor signaling, such as programmed
cell death 1 (PD-1), PD-1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA-4),
ICIs restore the anticancer immune response [13]. Zhao et al. summarized several check
point inhibitors in CRC [13]. The progress and recent advances in cancer immunotherapy
in CRC are summarized in Table 1.

Table 1. The development of cancer immunotherapy in CRC.

Drug/Inhibitor Action References

Lentinan (LNT) and Ursolic acid (UA) Apoptosis was induced and immunogenic cell death was
initiated in CRC [14]

Porphyromonas gingivalis
For the treatment of cancer, M1/M2 macrophages, the growth
of primary and secondary tumors in CT26 colon cancer were
slowed by laser and anti-PD-1 treatment.

[15]

NLG919

NLG919-mediated suppression of indoleamine 2,3-dioxygenase
1 (IDO-1) resulted in the reversal of the immunosuppressive
tumor microenvironment. The outcomes demonstrated that this
method might successfully eradicate CT26 colon cancers.

[16]

IPI-549 Utilizing Ce6 as a photosensitizer in immunotherapy for colon
cancer [17]

PD-L1 Inhibit
tumor growth and invasion of CRC [18]

Cytosine-phosphate-guanine
oligodeoxynucleotides (CpG ODNs) The greatest immunological supplements [19]

Mesoporous
SiO2 (or Mesoporous silica, MS)

Medication delivery systems to enhance cancer treatment, very
effective administration, excellent biocompatibility, simple
surface modification, and self-adjuvanticity

[20]

CD166& miR-148a A good prognostic marker for CRC [21]

3. Applications of Nanotechnology for CRC Diagnosis and Treatment

Several categories of molecules, such as toxins, nucleic acids, radioisotopes, and
hydrophobic drugs, are being used in cancer treatment. However, because of their extensive
off-target effects and instability in the biological environment, they are not suitable for
systematic injection into patients. The use of nanomaterials (NMs) as medication delivery
systems was originally described in 1986, and it has since been established that NMs
passively accumulate within tumoral tissues. NMs are regarded as therapeutic agents for
cancer because of their high specificity and longer blood circulation duration. There are
several families of inorganic and organic NPs with a wide range of sizes, structures, and
chemical compositions now accessible [22,23]. Inorganic nanoparticles, such as carbon
nanotubes, gold nanoparticles, iron oxide Nps, nonoshella and quantum dots, have good
stability and minimal biodegradability for diagnostic usage, making them suitable for
cancer imaging. Organic nanoparticles, such as liposomes, dendrimers, nano emulsions,
micelle and ferrin, have a lesser stability but higher biocompatibility, and there are many
ways to add functional groups for drug delivery (Figure 1).
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4. Iron Oxide Nanoparticles (IONS)

Iron oxide nanoparticles (IONS) or superparamagnetic iron oxide nanoparticles (SPI-
ONS) have attracted the attention of researchers due to their wide range of applications
in the biomedical field and also exhibit biocompatibility and non-toxicity [24,25]. The
magnetic core to the iron oxide nanocrystals ranges from 1 to 100 nm in diameter. IONS
have a variety of biological characteristics because of their small dimensions, slow rate of
deposition, effective surface area, and simplicity of cellular transport. The IONS loaded
with 5-fluorouracil (5-FU) with magnetic hyperthermia efficiently reduces the growth
of heterotopic human colon tumor growth in mice models [26]. The tertiary complex of
Epirubicin-5TR1 aptamer and SPION enables tumor detection by MRI and efficient delivery
of Epirubicin to the murine C26 murine colon carcinoma cells [25]. Human colorectal cell
lines (HCT 116) exposed to IONS coated with chitosan induced increased reactive oxygen
species (ROS), which activates Caspase 9/3 to cause apoptotic cell death [27].

5. Quantum Dots

Quantum dots are zero-dimensional nanomaterials with particle sizes ranging from
2–10 nm. The fluorescence emission properties of quantum dots are size-dependent. The
unique optical and chemical properties of quantum dots become noble materials for cancer
research, particularly CRC. The extended excitation wavelengths, photostability, narrow
emission band, and high quantum efficiency are advantageous properties of quantum dots
and have made them useful in biomedical applications [28,29]. These quantum dots are
used as fluorescent markers for various in vitro and in vivo cancer studies, but in vivo
studies are limited to non-targeted or xenograft labeling [30,31]. QDot655 targeted to
vascular endothelial growth factor receptor 2 (VEGFR2) showed its capability to detect
VEGFR2 expression in vivo CRC tumors [32]. Two cell lines, MC38 murine colon cancer,
and RAW 264.7 mouse macrophages cell line, were used to study the interaction between
IgG-functionalized Boron carbide (B4C) NPs, synthesized from B4C powder produced
by the direct reaction between boron and soot under argon flow. Analysis using flow
cytometry revealed that macrophages absorbed more fluorescently tagged NPs than cancer
cells [33,34].

6. Poly (Lactic-co-glycolic Acid) NPs/Nano Cells

The US FDA has cleared the use of poly (lactic-co-glycolic acid), or PLGA, a natural
and synthetic polymer NP, for medication delivery by oral administration. PLGA NPs are
very stable in biological fluids, physically and chemically stable, and protect encapsulated
medicines from enzymatic destruction. PLGA NPs can also enclose macromolecules, which
increases the molecules’ thermal stability and encourages prolonged release [35,36]. PLGA
is frequently used as a drug carrier because of its biodegradable and biocompatible qualities,
as well as its capacity to encapsulate hydrophilic and hydrophobic medicines [37,38].

Docetaxel loaded with PEGylated-PLGA nanocapsules and SPIONs successfully re-
stricted tumor growth in CT26 colon cancer [39]. The proliferation of the colon cancer
cell line HT-29 was reduced by 5-FU encapsulated in PLGA-NPs by incresing the in-
tracellular drug concentration in cancer cells [40]. 5FU-perfluorocarbons loaded into
EGF-functionalized PLGA NPs efficiently inhibited colon tumor growth [41]. NP-PEG-
FA/17-AAG (17 AAG incorporated into PLGA/PLA-PEG-FA-NPs synthesized through
one-step surface functionalized techniques) has improved the oral bioavailability and effi-
ciently treated ulcerative colitis and its associated tumors [42]. PHBV/PLGA NPs loaded
with 5-FU are a promising nano-drug delivery system in colon cancer treatment [43].

7. Dendrimers

Dendrimers are 3D chemical structures and highly branched globular molecules
that are very useful for nanopharmaceuticals because their backbones are biodegradable.
Dendrimers’ adaptability in the administration of anticancer drugs and their theranostic
uses in cancer therapy are widely established. Drugs can be delivered intracellularly via
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anticancer-binding dendrimers that bypass efflux transporters, increasing the bioavailabil-
ity of charged molecular payloads. Additionally, these dendrimers are employed in the
delivery of diagnostic chemicals for tumor-specific imaging [44,45]. The use of chemother-
apy to treat CRC has not been successful because just a small proportion of the drugs are
effective at reaching their target areas in tumors [46].

Cancer cells called circulating tumor cells (CTCs) move around and are primarily
responsible for the spread of tumors. Considering the importance of CTCs as indications of
poor outcomes, several approaches, including microfluidic-based and size-based filtering,
etc., have been employed unsuccessfully to extract CTCs from sizable populations of in-
terfering cells. Dendrimers attached to antibodies have been utilized in many techniques
to identify colorectal CTCs, such as the capture of colon cancer HT29 cells using sialyl
Lewis X antibodies and PAMAM dendrimers [47]. In addition to diagnostic applications,
dendrimers have also been reported to be used for in vitro anticancer experimental therapy.
G4-PAMAM dendrimers conjugated to capecitabine have been reported to reduce tumors
and reduce the by-product of capecitabine [48]. In colorectal C26 and HT29 cells, Au NPs of
PAMAM dendrimers coupled with curcumin showed significant cell uptake, internalization,
and cytotoxicity [49]. The PEGylated PAMAM dendrimers were loaded with camptothecin
and AS1411 (anti-nucleolin aptamer) for site-specific targeting of CRC cells [50]. The active
irinotecan metabolite, SN-38, is coupled with L-lysine dendrimers that include polyoxa-
zolines to increase effectiveness and reduce adverse effects [51]. Oxaliplatin-containing
PAMAM-G4 dendrimers exhibit improved targeting effects on CRC cells that express the
folic acid receptor in vitro. Gemcitabine-loaded YIGSR-CMCht/PAMAM dendrimer NPs
caused target death in HCT-116 cancer cells [52,53].

8. Carbon Nanotubes

The carbon nanostructures known as carbon nanotubes (CNTs) play a variety of roles
as carriers in the administration of drugs, gene therapy, immunotherapy, and diagnostics.
They possess excellent optical qualities, thermal conductivity, chemical stability, and func-
tionality. CNTs are hexagonal nanostructures made of tiny tubular carbon atoms that have
special physicochemical features [53]. Based on the number of carbon atoms in the sheet,
CNTs are classified as single-walled CNTs or multi-walled CNTs. Several studies reported
the effectiveness of CNTs in cancer diagnosis and therapy, and CpG-conjugated CNTs to
increase CpG uptake in mouse colon cancer cells and activate nuclear transcription factor
kappa β signaling. The conjugated CpG-CNT successfully attenuated the local xenograft
tumor growth and liver metastasis [54]. In contrast to their non-functional counterparts,
single-walled CNT/II-NCC fluorescein-functionalized composites displayed intrinsic ac-
tivity on cancer cell lines (Colon cancer cell lines-Caco-2). Through receptor-mediated
endocytosis, the single-walled CNT-binding antibody C225 binds to CRC cells that express
the epidermal growth factor receptor. Single-walled CNT nano biocomposites improved
colon cancer cell killing during photodynamic treatment [55–57].

9. Liposomes

Liposomes are synthetic, lipid-based vesicle carriers that are non-toxic. In 1961, the
FDA approved the use of liposomes as nanocarriers for the delivery of drugs. They have a
tiny, spherical aqueous core and a phospholipid bilayer structure [58]. The main advantage
and characteristic of NPs is their compact size, which supports the application of particles
for the efficient and targeted administration of drugs for the treatment and diagnosis
of diseases [59]. These particles also have a few modest adverse effects. Liposomes
are primarily employed as delivery vehicles for nucleic acids, proteins, and peptides
among other NPs. There are three different types of liposomes depending on how they
function: thermo-sensitive/pH-sensitive/magnetic liposomes, active targeting, and long-
circulating or stealthy liposomes [60]. For instance, Thermodox® is a thermosensitive
liposome used to treat CRC, while doxorubicin (Doxil), DaunoXome, and Marqibo® are
FDA-approved liposomal medications [61]. Over the last ten years, several investigations
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for the encapsulation of boron compounds into liposomes have been conducted. Low-
invasive cancer treatment with boron neutron capture is based on the neutron fission
process that takes place when molecules containing 10B are exposed to thermal neutrons.
PEGylated liposomes functionalized with transferrin (TF-PEG liposomes) with sodium
borocaptate (BSH) with concentrations of 107–123 nm/26–30 µg/µmol of lipid 6–8% were
verified for the specificity of the TF-receptor mediated binding in vitro in colon carcinoma
cells. In vivo colon-26 mouse colon carcinoma cells and ex vivo colon-26-bearing male
BALB/c mice exhibited decreased tumor growth rate [33,62].

10. Gold NPs

The most stable noble NPs are considered to be gold NPs. They may be nanostructured
into shapes such as pyramids, bowls, cubes, spheres, rods, flowers, branches, wires, and
cages. Gold NPs are safer, more effective in delivering drugs, and more focused on targeting
cancer, thanks to precise surface coating [63]. Gold NPs improved the efficacy of cisplatin
delivery and effectively decompressed CRC vessels [64]. Similar to nanoemulsions, gold
NPs can bind multiple molecules such as antibodies, nucleic acids, proteins, enzymes,
and fluorescent dyes. These factors enhance the properties of gold NPs, such as stability,
biocompatibility, and functionalization in the medical field [65].

11. Nanoemulsions

As the name suggests, nanoemulsion systems are composed of oil, water, and sur-
factants to create a clear colloidal solution. They are characterized by low toxicity, high
stability, good heat sensitivity, pH sensitivity, and good potency. Today, CRC cells are the
target of anti-angiogenic medications. These substances are vulnerable to barriers and
produce toxicity and resistance. Nanoemulsions can easily penetrate through angiogenic
tissue in tumor niches to kill cancer cells. To distribute drugs that are not soluble in water
and have a hydrophobic core, nanoemulsion devices are employed. Nanoemulsions have
been coupled with different antibodies for selective and precise targeting, efficient drug
delivery, and therapeutic efficacy [63]. Nanoemulsions bind polyethylene glycol as well
as antibodies. DNA complexes and polyelectrolyte complex microcells both have more
promise as therapies for cancer. An emulsifier that is frequently used and approved is
Tween-80 [66,67].

12. Other NPs

Therapeutic drugs used in conventional cancer therapies harm the immune system
and have several side effects. By encapsulating therapeutic chemicals and then delivering
tailored medications to tumor niches, nano-drug delivery systems minimize adverse effects.
These systems, such as Plitidepsin-unloaded polymersomes, near-infrared fluorescent
proteinoid-poly (L-lactic acid), P (EFG-proteinoid-poly (L-lactic acid)] random copoly-
mer, proteinoid-proteinoid-poly (L-lactic acid) copolymer, etc., not only lessen toxicity
in the body but are also highly stable, biocompatible, and effective. Several copolymers
are efficient against CRC cells and have no negative side effects. For the treatment of
CRC, curcumin has been nano-formulated as micelles, nanogels, liposomes, NPs, and
cyclodextrins [68].

13. Targeted NPs in CRC Research

NPs are being looked at as a way to improve the effectiveness of chemo-treatments
by specifically targeting tumor cells. This means that fewer side effects are likely to occur
for patients, and the drugs may be more effective in killing the tumor. Nano-drug delivery
systems are better than free drugs because they have increased bioavailability, better tissue
targeting, and fewer side effects [69]. They are being used to address a variety of illnesses,
including eye conditions [70], inflammation of the colon [71], osteoporosis [72], Alzheimer’s
disease [73], and ischemic stroke [74]. Chemotherapy medications can be used to treat
cancer both primary tumors and metastases. However, these drugs have many limitations.
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For example, they often have little selectivity, meaning they cannot easily reach tumor cells.
Additionally, high doses of these drugs can sometimes cause side effects.

Targeted nanoparticles are made up of either natural or synthetic materials. Natural
nanoparticles, such as those made from biological materials such as cells or vesicles, have
more biological components and are more permeable to medication. Synthetic nanopar-
ticles, such as those made from inorganic materials, are more permeable and have better
drug-delivery properties than other types of carriers. Nanocarriers need to be compati-
ble with cells and biodegradable so they do not have a big impact on their growth and
metabolism [75]. They can be loaded with lots of active substances, such as chemothera-
peutics drugs to treat cancer, RNA molecules that can silence genes, proteins, and contrast
agents. This technology is advancing quickly, and we are expecting nanocarriers to improve
the effectiveness of cancer treatments [76]. By altering the pharmacokinetics and tissue
distribution of chemotherapeutic medications, preventing tumor growth, and lowering
drug toxicity to healthy tissues, targeted NPs as DDSs can assist in increasing the specificity
of these therapies [77]. NPs modified with a target can help to improve the concentration
of drugs in tumor tissues, which can help to treat tumors and improve tumor diagnosis
and treatment. NP therapy is good for delivering drugs to tumors specifically, and it
prevents the release of the drugs into the general population. This can improve the pharma-
cokinetics and pharmacodynamics of the drugs and help overcome tumor cell resistance
mechanisms [78].

NPs made of special materials can protect the contents from being damaged by outside
forces and can provide controlled, sustained release of the drug. Natural polymers such as
chitosan, gelatin, and alginate can be used to create the NPs, while synthetic polymers such
as polyethylene glycol (PEG), polylactic acid (PLA), and polycaprolactone (PCL) can also
be used. While natural polymers are more environmentally friendly, synthetic polymers
are easier to create and modify and have better biodegradability [79].

Passive targeting helps increase the effectiveness of the Enhanced Permeability and
Retention (EPR) effect by exploiting the basement membrane in tumors with an incom-
plete vascular system. This can also release the drug at specific places for targeted drug
delivery by making use of the unique pH, enzyme environment, and intracellular reducing
environment of the tumor site. By altering the surface of NP carriers, effective targeting is
made possible. Antibodies, peptides, sugar chains, and nucleic acid aptamers are just a
few examples of probe molecules that can precisely attach to the target molecule and are
connected to the carrier surface by chemical or physical means. Utilizing ligands that bind
to tumor cells can boost the percentage of nano-drugs that reach the target [80].

Designing targeted nanoparticles for cancer treatment requires considering factors
such as biocompatibility and degradability, stability of physical and chemical properties,
and the aggregation of nanoparticles at the tumor site. Based on these considerations, a
variety of heavily designed targeted nanoparticles have been studied extensively in cancer
chemotherapy.

14. Passive Targeted NPs
14.1. Facile NPs

Through enhanced EPR effects, facile NPs passively deliver chemotherapy to ma-
lignant tissues. Normal tissues have a tightly packed microvascular endothelial barrier
that prevents large molecules and lipid particles from easily crossing the vascular wall. In
contrast, tumor tissues have a wide vascular wall gap and poor structural integrity, which
makes them more susceptible to exposure to nano-drugs with a small diameter [81].

Polymers such as PLGA can be found in nature, and they are made up of many differ-
ent kinds of molecules. Albumins and chitosans can be produced using polymer materials
such as PLGA. Some types of polymer substances are made to be biodegradable, and they
have good compatibility with other molecules. PLGA-NPs are nanoparticles made from
PLGA that are designed to be taken up by cancer cells and release chemotherapeutic drugs
and other substances into the cancer cells. The PLGA-NPs were coated with cholesterol to



Int. J. Mol. Sci. 2023, 24, 7922 8 of 19

make them more likely to be absorbed by tumors. In comparison to free oxaliplatin, the
oxaliplatin-loaded NPs exhibited greater pro-cancer cell apoptosis and protection against
non-tumor cells [82]. In addition, microfluidics allows for more precise control of drug
release, which can reduce adverse effects due to drug dose [83]. The negative charge on
the surface of polylactic-glycolic acid (PLGA) nanoparticles negatively affects their rate of
cellular uptake, while polymeric surface coatings that have a cationic charge can signif-
icantly enhance the cellular uptake and aggregation of nanoparticles at tumor sites [84].
Nanoparticles with a positive surface charge can take up more cancer cells and increase
the drug concentration inside them [85]. Other therapeutic components, such as pigment
epithelial-derived factor (PEDF), adriamycin (ADR) [86], and nucleic acid molecules [87,88],
can also be prevented from aggregating and being phagocytosed by the nanoparticles,
prolonging their circulation time in vivo.

14.2. Targeted NPs with a pH Sensitivity

As previously indicated, chemotherapy is influenced by hypoxia and an acidic TME
resistance. This transmission system was created using pH-sensitive polymers that re-
mains stable in physiological conditions and have an impact on tumor tissues by lowering
pH, increasing anti-tumor effectiveness, and minimizing adverse effects. Along with pH-
responsive polymers, they have basic residues or ionizable acidic residues sensitive to
ionization by changing the pH of the surrounding medium. In addition to this, they are
distinctively triggered by environmental pH, which results in changing the physicochemi-
cal properties such as solubility, chain conformation, surface activity, and conformational
changes [89]. The pH can alter due to several physicochemical characteristics, such as poly-
mers with imine bonds, tertiary amine bonds, amide bonds, and ionizable weak acid groups,
which are acid-sensitive connecting segments. Acidic TME-responsive cancer nanothera-
peutics are widely manufactured. Polyacrylic acid (PAA) is a drug carrier with carboxyl
groups that hydrolyze and break in acidic TME, rupturing polymeric NPs and releasing
anti-tumor drugs [90]. Lee et al. [91] utilized a cisplatin-loaded poly (acrylic acid-co-methyl
methacrylate) copolymer to achieve well-targeted therapeutic benefits in the CT26 animal
CRC model. Under acidic conditions, the amine bonds are easily hydrolyzed and unsta-
ble. The pH-sensitive NPs were constructed from CRC treatment based on their special
pH-responsive properties. Zhang et al. [92] developed TME Doxorubicin (DOX), which
was grafted onto an imine bond-based aldehyde HA and then bound to mPEG to create
pH-sensitive cleavable mPEG 2k-DOX. When compared to free drugs, doxorubicin’s in vivo
circulation duration is increased by around 12.5 times thanks to the PH-sensitive loading
of NPs, which also efficiently targets tumor tissues to prevent toxicity. Feng et al. [93]
have synthesized nanomicelles based on PEG and poly (N-(N′,N′-diisopropyl amino ethyl)
aspartamide) (P(Asp-DIP)) and poly (lysine-cholic acid) (P(Lys-Ca)) of nano micelles. The
tertiary amino group in p (Asp-DIP) is pH-responsive. In acidic TME, the released drug
components are hydrophobic-hydrophilic transitions. Encapsulation with paclitaxel and
superparamagnetic iron oxide in copolymers (SPIO) demonstrated that paclitaxel was
delivered to tumor tissue by pH-sensitive micellar NPs in an MRI-visible drug delivery
system. In acidic conditions, the boronic ester bonds [93] and hydrazone bonds [94] are
unstable and commonly present in preparing pH-sensitive NPs. In an acidic environment,
an increase in drug release rate is due to prepared diblock copolymers based on mPEG and
polyamino acid blocks and bonds doxorubicin of deblock copolymers through pH-sensitive
hydrazone bonds according to Brunato et al. [95]. The majority of alkaline chemothera-
peutic medicines refuse to enter cells after protonation in acidic TME, which causes tumor
cells to naturally develop resistance. In acidic hypoxic TME, the release of medications to
destroy tumor cells via sensitive targeted NPs also lowers non-specific tissue harm.

14.3. NPs with Redox Responsiveness

In normal tissues and cells, TME redox status differs significantly in the microenviron-
ment. The imbalance of the redox status is due to ROS and metabolic enzymes associated
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with glutathione being overexpressed in several subcellular structures [96]. The overall
oxidative stress state is dependent on high ROS levels and high levels of glutathione (GSH),
a reducing agent. Using the TME-specific redox microenvironment and GSH and ROS as
stimulators of intelligent response NPs, redox-sensitive NPs can be created [92]. Cancer
development, progression, and metastasis are closely associated with GSH in regulating
intracellular redox homeostasis [97]. A GSH-rich TME has disulfide, the most prevalent
chemical connections between NPs and anti-tumor medications, then control pharmaceuti-
cals are reduction-responsive chemical bonds release [98]. NPs with lipoic acid (LA) and
xylan (Xyl) conjugated for niclosamide (Nic) loading. Redox-responsive NPs was prepared
by using thioester bonds, which help to release the loaded drug in tumor cell [99]. SN-38
coupled with redox-responsive NPs is created from ethylene glycol oligomers (OEG) via
thioether linkages. Thioester bonds are responsive to both ROS and GSH, according to the
results. The thioether bonds can be hydrolyzed under the oxidative influence of ROS, and
they can be sulfated in the presence of GSH. In both cases, this helps in redox-responsive
NPs releasing drugs to tumor sites. Under mild stimulation, conduction Di-selenium bonds
are more sensitive than their counterparts, which include sulfur because they have lower
bond energies. They also forcefully target drug release in response to changes in redox
levels in the microenvironments, which helps to reduce non-specific tissue harm [100]. The
targeted NPs, redox-responsive, access tumor cells through the ECM, which enhanced EPR
effects as simple NPs. They are activated by a particular redox environment of the tumor
tissue to release medications, which helps to reduce non-specific tissue harm [4]. Different
nanomaterials for CRC detection and treatment have been discussed in Table 2.

Table 2. Overview of CRC detection and therapy nano compositions.

Nanocompositions Structure /Drug Loading/Encapsulation
Efficiency Application Reference

Carbon nanotubes
Synthetic polyampholyte conjugated into
single-walled carbon nanotubes (SWCNTs) for
the delivery of Paclitaxel in cancerous cells

Detection and Treatment [101]

Iron oxide nanocrystals
The diameter of iron oxide particles is with
1–100 nm. Wheat germ agglutinin (WGA) and
Methotrexate SPIONS

Detection [102,103]

CUR-CS-NP Curcumin incorporated with chitosan
nanoparticles (200–300 nm/-/80%/) Detection and Treatment [104]

Carbon nanotubes

Synthetic polyampholyte conjugated into
single-walled carbon tubes (SWCNTs) for the
delivery of paclitaxel in cancerous cells
(142 nm/-/93%)

Detection and Treatment [105]

NP SQ emcitabinel isoCA-4 Precipitates of gemcitabine, isocombretastain
A-4 (isoCA-4) Treatment [105]

Dendrimers Synthetic polymer with hyper-branched pattern
with monomer units of regular repeats Detection and Treatment [106]

Gold Nanoshells
Gold surface plasmon resonant made up of silica
nano core-shell and surrounded by an ultra-thin
shell of gold

Detection and Treatment [107]
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Table 2. Cont.

Nanocompositions Structure /Drug Loading/Encapsulation
Efficiency Application Reference

Quantum dots Semiconductor nanocrystals range from 2–10 nm
in diameter Detection and Treatment [107]

Nanocells or PLGA
nanoparticles

PLGA copolymers with different structural
variants are used as efficient carriers of drug
delivery

US FDA-approved therapy
and detection [108]

Liposomes Closed and self-assembled lipid bilayer structure
and colloidal (-/400–600 mg/m2/17%) Detection and Treatment [109]

Oxaliplatin/DCK and 5-FU

Nanoemulsion loaded into hydrophilic 5-FU and
amphiphilic Oxaliplatin linked
N-deoxycholic-L-methyl ester (DCK)
(20 nm/10 mg /38.1%)

Treatment [110]

Nanogel

In aqueous solutions Beta cyclodextrin and
nanoparticles from nano gels in the presence of a
cross-linker 5-FU. Nanogels are biocompatible
materials and are efficient in releasing the drugs
(55 nm/-/40.48%)

Treatment [111]

PFA@PTX NPs Poly (ferulic acid) (PFA) and PFA NPs loaded
into paclitaxel (PTX) (100 nm/-/5.1–8.3%) Treatment and Detection [112]

SN-38 Liposome

SN 38-PA prodrug was synthesized by
conjugating the SN38-C10 ester bond to the
palmitic acid and encapsulated using the film
dispersion method into the liposomal carrier
(80.13 nm/3 mg/-)

Used for the treatment of
metastatic CRC patients [113,114]

FOLFOX 5FU, oxaliplatin incorporated into lipid
nanoparticles

Treatment (efficiently treated
in mice models) [115]

5FU/PEG-PBLG Polymeric nanoparticles loaded with 5FU
(200–400 nm/20–30 g/-) Treatment [116]

Oxaliplatin polymeric
nanoparticles

Oxaliplatin encapsulated in chitosan-coated
alginate microspheres Treatment [117]

Chitosan-HA oxa NPs Oxaliplatin-loaded polymeric NPs Targeted delivery to the tumor
environment [118]

Oxaliplatin liposomes Liposome embedding silicon microparticles Treatment [119]

nSN38 NCURSN38, Curcumin conjugated NPs
(-/10 mg/-) Treatment [120]

Celecoxib conjugated NPs Celecoxib containing Hap-Cht Nanoparticles Treatment [121]

Aspirin conjugated NPs Aspirin-loaded nano exosomes (50–150 nm/5%) Treatment [122]

Chol-butryrate SLNP
formulation Butyric acid lipid-based nanoparticles Treatment [123]

Endostatin polymeric NPs PEG-PLGA-Endostar Nanoparticles
(120–150 nm/20 mg) Detection and Treatment [124]

NBTX3 Hafnium oxide nanoparticles (NBTXR3) Treatment [125]

15. Combine Nanotechnology-Based Approaches for CRC Detection and Treatment

Recent advances in nanotechnology have allowed researchers to fabricate several
nanomaterials for precise diagnosis and treatment. However, the clinical applications of
nanotheranostics are limited because of their complex pharmacokinetics [126]. Various
nanomaterials have been verified in cancer biology and the nanocomposites include gold
NPs, dendrimers, liposomes, silica NPs, and nano-emulsions, these composites have been
used in imaging techniques and nano-drug delivery [127–130].
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16. Enhancement of Imaging Techniques

Nanomaterials have been used for improving the capability of imaging techniques
such as the persistent luminescence nanoparticles (PLNPs) which can be used as novel
optical nanoprobes for characteristic long-lasting near-infrared (NIR) luminescence in
optical imaging without autofluorescence and excitation [131]. The iron oxide-based NPs
and radioisotope chelator-free NPs have been used in magnetic resonance imaging (MRI)
and positron emission tomography (PET), respectively [132]. Recent studies have proved
that NPs can work as integrated diagnostic and treatment agents and can be used for
theranostic approaches [63].

17. Combined Drug Delivery

Drug delivery is the fundamental functional purpose of nanotechnology in the field of
cancer. By employing NPs to create the drug delivery system, the problems of multidrug
resistance, stability, efficacy, and biocompatibility have been improved. Chemotherapy and
other therapies usually have serious negative outcomes, which are also minimized with
the use of a formulation based on nanotechnology.

As an example, thiolated chitosan and 5-FU nanoencapsulation, a combinatorial
nanomedicine agent, are non-toxic and have improved chemotherapy efficacy in CRC
patients. A decrease in dose volume has also resulted from the use of nanomedicine.
Compared to 5-FU nanoencapsulation, the dose used in traditional therapy was significantly
greater and more hazardous [133].

Although several nanoformulations are undergoing clinical trials, the number of
nanoformulations used in clinical trials against CRC is limited. Some of the nanoformula-
tions used for the appropriate clinical trials against CRC are summarized in Table 3.

Table 3. A list of FDA drugs with nanoparticles that were tested in CRC clinical studies.

S.No Nanosystem Drug Used Application
FDA
Approval Status

Reference

1
Carbon
Nanoparticles

Carbon Nanoparticles Used in CRC laparoscopic surgery
Phase I trial of
150 participants

[134]

2
Cyclodextrin
Nanoparticles

Camptothecin
Rectal cancer, solid tumors, renal
cell carcinoma, and non-small lung
cell cancer

Phase I/II trial [135]

3 Liposome Vincristine

Sarcoma, colorectal cancer,
neuroblastoma, acute lymphoblastic
leukemia, brain tumors, and
lymphoma

FDA approved [136]

4 Liposome SN38 Metastatic CRC Phase II trial [137]

5 Liposome
Aroplatin (Liposomal
cisplatin analog)

Colorectal cancer Phase I/II trial [137]

6 Liposome Doxorubicin Colon cancer and liver metastasis Phase II trial [138]

7 Liposome
Liposome-encapsulated
Irinotecan (IRI)
hydrochloride PE

Second-line therapy for the
metastatic CRC

Phase II trial (Subsequently
terminated)

[139]

8 Liposome SN 38 liposome Metastatic CRC
Phase II trial
(Subsequently terminated)

[140]

9 Liposome
PEGylated liposome
(Narket-102), Irinotecan

Colorectal and Breast cancer Phase III and I trail [137]

10 CPX-1 liposome Floxuridine and Irinotecan Advanced colorectal cancer Phase II trial 65 participants [134]

11 PEP02 liposome
Leucovorin and Irinotecan
and 5-FU

Metastatic CRC Phase II trial 55 participants [134]

12 MM-398 Liposomal IRI
Advanced cancer of unresectable
nature

Phase Ib trial
10 participants

[134]
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Table 3. Cont.

S.No Nanosystem Drug Used Application
FDA
Approval Status

Reference

13 Nal-IRI Irinotecan
Gastrointestinal and colorectal
cancer

Phase I/II trial
64 participants

[134]

14 NKTR-102/IRI
Formulation of IRI
conjugated with PEG/RI
for prolonged release

KRAS mutant metastatic colorectal
cancer

Phase II clinical trial
83 participants

[134]

15 Polymer
DAVANAT (Carbohydrate
polymer) and 5-FU

Colorectal cancer treatment
Phase I/II trial
(Subsequently terminated)

[84]

16
PEG-PGA polymeric
micelle

SN38
Ovarian, lung, and colorectal
cancers

Phase II trial [141]

17 PEG-rhG-CSF

PEGylated recombinant
human granulocyte
colony-stimulating factor
(CSF)

Solid malignant tumors (Head, lung,
ovarian, colorectal, and neck cancer)

Phase IV trial
420 participants

[134]

18
Polymeric NPs +
Cetuximab +
Somatostatin analog

Somatostatin analog and
combination of NPs
cetuximab

Metastatic CRC Phase I trial 30 participants [134]

19 Silica NPs
Fluorescent
CRGDY-PEG-Cy5.5- carbon
dots

Colorectal malignancies and Breast
cancer

Phase I/II trial
86 participants

[134]

20
Regulatory
lymphocytes (Tregs);
anti-CTLA-4

Ipilimumab and anti-PDL1
atezolizumab Cytotoxic
antibodies expressed on the
surface of Tregs

Colorectal cancer FDA approved [126]

18. Conclusions and Future Prospective

Research on the creation of new drug delivery systems, targeted therapies, and medi-
cal devices has expanded as a result of the development of nanotechnologies. With the help
of nanotechnology, medical tools have evolved from a single mode of action to multifunc-
tional platforms, such as nano theranostics, which combines medicines and diagnostics.
Nanomaterials have been successfully used in preclinical research to treat cancer.

Treatment is made simpler and quicker by combining therapy and diagnosis, or
the theranostic application of nanomaterials. CRC is mostly linked to lifestyle, sex, and
race, indicating that some demographics are particularly sensitive. Thus, it appears that
routine CRC screening is strongly advised to stop CRC from occurring. Early detection
of CRC improves survival and cancer-cure prospects. Nanomaterials’ potential for the
theranostic treatment of CRC is still being explored. Numerous researchers have already
documented the effective therapy of CRC in vivo in a variety of CRC model animals as well
as in vitro in cancer cell lines. However, new strategies are required to enhance the existing
therapies. Maybe more recent therapies employing nanomaterials to treat CRC are going
to be available for clinical application. While having a lot of potentials, there are some
problems with these nanotherapeutic systems’ biodistribution, localization improvement,
biocompatibility, and in vivo effectiveness to treat colorectal cancer in real-time. Although
the use of these nanomaterials for the treatment of colorectal cancer is still in its early
stages, researchers and scientists are eager to include nanotechnological techniques in the
management of CRC. The majority of targeted NP research is still in the animal testing
phase at this time. From research to clinical applications, targeted NPs for CRC therapy
still have a long way to go. The nanoparticles should be created to address the tumor’s
biology by improving drug absorption because each patient’s tumor is unique in terms
of its features and microenvironment. More in vivo preclinical investigations are needed
to fully understand the mode of action of the formulations against CRC. More study is
required but the development of nanoparticles for delivering drugs has significant promise
for improving the standard of living and survival of CRC patients.
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The significance of nanotechnology in contemporary medicine has been underlined
by the thorough analysis of predicted immune toxicity assays, nanoparticle surface charac-
terization, and quantitative comparison of encapsulated versus free drug fractions. Addi-
tionally, many nanoparticle-based studies have concentrated on the creation of methods to
tailor innovative drug conjugates, diagnostics, and therapeutic devices. In addition to that,
therapeutic agents, fluorescent molecules, or even magnetic materials can be programmed
into nanocarriers to be released at the colorectal cancer site. This increases the bioavailabil-
ity, drug solubility, stability, and tumor specificity of therapeutic agents compared to free
molecular cargo.

The nanotechnology used to treat CRC has developed sufficiently in recent years
to support the most current developments in tumor diagnosis and therapy, going far
beyond conventional systems. With the aid of the current methodology, it can be coupled
with entirely innovative therapeutic and diagnostic principles. Hence, nanomedicine will
eventually be able to play a crucial part in the management of human CRC despite the
numerous difficulties in the application of nanotechnology.
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