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Introduction: Coeliac disease is a lifelong immune-mediated enteropathy

manifested as gluten intolerance in individuals carrying specific human leukocyte

antigen (HLA) molecules. Other factors than genetics and gluten intake, however,

may play a role in triggering the disease. The gut internal environment is thought to

be one of these potential contributing factors, and it can be influenced throughout

life.

Methods: We examine the impact of Lactiplantibacillus plantarum HEAL9 and

Lacticaseibacillus paracasei 8700:2 supplementation on the faecal metabolome

in genetically predisposed children having tissue transglutaminase autoantibodies,

i.e., coeliac disease autoimmunity. Probiotic strains were selected based on their

beneficial properties, including mucosal permeability and immune modulation

e�ects. The intervention group (n = 40) and control group (n = 38) took the

probiotics or placebo daily for 6 months in a double-blinded randomised trial.

Faecal samples were collected at baseline and after 3 and 6 months and analysed

using the 1H NMR for metabolome. The incorporation of 16S rRNA sequencing as

a supportive dataset complemented the analysis of the metabolome data.

Results: During the 6 months of intervention, the stool concentrations

of 4-hydroxyphenylacetate increased in the intervention group as compared

to controls, whereas concentrations of threonine, valine, leucine, isoleucine,

methionine, phenylalanine, aspartate, and fumarate decreased. Additionally, a

noteworthy e�ect on the glycine, serine, and threonine metabolic pathway has

been observed.

Conclusion: The findings suggest amodest yet significant impact of the probiotics

on the faecal metabolome, primarily influencing proteolytic processes in the gut.

Clinical trial registration: ClinicalTrials.gov, NCT03176095.
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Introduction

Coeliac disease (CD) is a lifelong immune-mediated
enteropathy manifested as gluten intolerance in individuals
carrying specific human leukocyte antigen (HLA) haplotypes (1).
Gluten intolerance occurs as a reaction to dietary gluten mostly
from wheat, rye, or barley anytime in life. It arises in a small
fraction of gluten-exposed genetically permissible subjects. Its
incidence seems to be rising globally (2, 3).

There are indications that the gut microbiome may play a role
in CD pathogenesis, progression, and clinical presentation (4–6).
Several studies have reported imbalances in the gut microbiome
of patients with CD leading to dysbiosis. Studies in the established
CD are, however, prone to reverse causation—it is unclear whether
these alterations are a symptom of the disease or a contributing
factor (6–8). Interventions with probiotics are, therefore, one
of the logical strategies for unravelling the role of bacteria in
disease pathogenesis.

Probiotics have been suggested as a potential adjunctive therapy
for CD (9, 10). Previous trials have mainly tested interventions
of genera Bifidobacterium and (formerly) Lactobacillus (11, 12).
Supplementation of Bifidobacterium breve has been suggested to
decrease pro-inflammatory cytokines and cause positive alterations
in the SCFA profiles (13). Even though most of the trials
focussed on ongoing CD, changes in the gut environment may
occur even before the diagnosis, thus preceding the disease
onset and potentially allowing prevention (6, 14). In the
present randomised clinical trial, Celiac disease Prevention with
Probiotics (CiPP) study (15, 16), children with the persistence
of tissue transglutaminase autoantibodies (tTGA), i.e., CD
autoimmunity, received Lactiplantibacillus plantarum HEAL9 and
Lacticaseibacillus paracasei 8700:2 probiotics, or placebo, for 6
months. This intervention resulted in alterations in the peripheral
lymphocyte immune response, but there was no overall difference
in tTGA levels compared with the placebo group (15). Subtle
changes upon the intervention were noted in the microbiota,
mainly in the abundance of genera Prevotella, Akkermansia,
Bifidobacterium, and Streptococcus (16).

Faecal metabolites are primary products of microbial
metabolism, but also reflect factors such as bile and enzyme
activity, gut barrier function, transit time, and diet of the host.
Nuclear magnetic resonance (NMR) is one of the standard
methods used for the analysis of metabolites present in the Faecal
sample (17). The metabolite fingerprinting provides a snapshot of
the microbiota’s functional capacity as an overview of molecules in
the intestine (14, 17, 18). The most studied metabolites are short-
chain fatty acids (SCFAs), end-products of bacterial saccharolytic
activity. Especially in CD, SCFAs are of major interest due to
their involvement in immunomodulatory functions such as the
production of regulatory T-cells (19). Some studies also reported
alterations in SCFA production in CD patients (20–22), even when
on a long-term gluten-free diet (23). Other metabolites with altered
amounts in CD are glutamine and tryptophan, which also impact
the immune system (24, 25).

The aim of the present study was to describe the composition
of the faecal metabolome and test its changes associated with
the probiotic intervention in the setting of the abovementioned
randomised double-blinded clinical trial.

Materials and methods

Study participants and sample collection

The CiPP study recruited 78 children aged 2–11 years with
ongoing CD autoimmunity, i.e., defined as screening-identified
persistent positivity for tTGA in two consecutive samples, enrolled
between March 2012 and August 2015 (15). The enrolled children
were identified among carriers of HLA-genotypes associated with
CD (DR3-DQ2/DR3-DQ2, DR3-DQ2/DR4-DQ8, DR4-DQ8/DR4-
DQ8, and/or DR4-DQ8/DR8-DQ4).

Participating children were invited to a randomisation and
baseline visit (visit 0) and scheduled for follow-up visits ∼3 (visit
1) and 6 (visit 2) months later. Participants were randomised at
a 1:1 ratio to either placebo or intervention group. Among the
78 enrolled children (placebo, n = 38; intervention, n = 40)
(characteristics listed in Table 1), 63 (81%) provided faeces samples
for all three visits.

The study product was an equal mixture of Lactiplantibacillus
plantarum HEAL9, formerly classified as Lactobacillus plantarum,
and Lacticaseibacillus paracasei 8700:2, formerly classified as
Lactobacillus paracasei, in a total bacterial dose of 1 × 1010

CFU/sachet in maltodextrin (1.0 g). The placebo product consisted
of maltodextrin only. The combination of the two Lactobacillus

strains was chosen due to their different physiological effects, i.e.,
Lactiplantibacillus plantarum HEAL9 targets the permeability of
the mucosa, and Lactocaseibacillus paracasei 8700:2 targets the
immune system (26, 27). All enrolled children followed a regular
gluten-containing diet during the study.

Stool sample collection was carried out at home by the study
participant’s caregiver. Samples were stored at −20◦C until they
were transported to the lab, where they were kept at −80◦C until
the analysis. The faecal microbiome was previously analysed using
16S rDNA sequencing (16). The ensuing sequencing data were
reprocessed for this study, using the DADA2 pipeline (28) with the
non-redundant Silva database version 138 (29).

Faecal metabolome

The faecal aliquots were prepared accordingly to Jaimes et al.
(30). All chemicals and reagents used were of analytical grade
and were purchased from Sigma-Aldrich (Merck, Darmstadt, DE).
The 1H NMR spectra were recorded on a Bruker Avance III
HD spectrometer equipped with a broadband fluorine observation
SmartProbeTM with z-axis gradients (Bruker BioSpin GmbH,
Rheinstetten, Germany) operating at the proton frequency of
500.18 MHz. All samples were acquired using a 1D NOESY pulse
sequence with presaturation and calibrated to the internal standard
(3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt) at 0.0
ppm, manually phased in TopSpin 3.6.4 (Bruker Biospin GmbH,
Rheinstetten, Germany). The spectra were pre-processed with an
in-house script under MATLAB

R©
R2020a (MathWorks, Natick,

MA, USA) consisting of multipoint baseline correction in user-
defined segments, ensuring the same pre-processing for all the
spectra. Spectra between δ 0.5 and 9.0 ppm (excluding the residual
water region, δ 5.1–4.6 ppm) were reduced into defined buckets;
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TABLE 1 Baseline characteristics of study participants.

Placebo Intervention Total p-value∗∗

Gender Females 24 18 42 0.1904

Males 14 22 36 0.0593

Total 38 40 78 0.1079

Age (years)∗ Females 5.4± 0.5 5.9± 0.5 5.6± 0.3 0.4179

Males 4.3± 4.3 4.7± 0.4 4.5± 0.3 0.7490

Total 5.0± 0.3 5.2± 0.3 5.1± 0.2 0.6384

Weight percentile for a given age (WHO)∗ Females 68± 4.6 71± 6.6 69± 3.8 0.4237

Males 73± 5.2 76± 5.5 75± 3.9 0.3320

Total 70± 3.4 74.0± 4.2 72± 2.7 0.1556

Use of dietary supplements or foods fortified with
probiotics before the study starts
- yes

19 18 37 0.6585

∗Data are presented as mean± s.d.
∗∗Wilcoxon test or χ-square test.

each bin representing a spin system or a part of a spin system
that was ideally pure, distinct, and quantitative—in most cases,
one bin for each metabolite. Ranges for the bins were chosen after
annotation of a subset of spectra in the software Chenomx ver.
8.6, using the built-in spectral library, our in-house database, and
published annotated stool spectra (30–33). A detailed description
of the workflow is shown in Supplementary Figure 1. For statistical
processing, buckets were normalised using probabilistic quotient
normalisation (34).

Statistical and multi-component analysis

Themetabolome was evaluated using the principal components
analysis (PCA) algorithm implemented in PLS-Toolbox 8.9
(Eigenvector Research, Wenatchee, WA, USA) under MATLAB

R©

R2020a environment including buckets of annotated and unknown
peaks. PCA was run with concentrations of all annotated and
unknown peaks identified in the spectrum, while all other tests
were run using only data of annotated features. Linear mixed-
effects models were built to characterise the changes in individual
metabolite abundance during the three visits; only the annotated
buckets were included. The models included individuals as random
effect varying intercept only, and the fixed effects were clinic
visits and intervention arm. The interaction term between clinic
visits and interventions was considered of interest with the aim
of showing the impact of dietary intervention in time. The
analysis was carried out using the package ’lmerTest’ v. 3.1–3
(35) in R v. 4.2.1 (36). Additionally, the Wilcoxon sum rank
test and the Wilcoxon signed-rank sum test were applied for
pairwise comparison between interventions at each visit as well
as for comparison within visit for each intervention, for the
subjects who completed all three visits. Correlations between
faecal metabolome and faecal microbiome were tested using
Spearman’s rank correlation test considering ρ > |0.5| using family
taxonomic levels that were detected at least in 40% of the samples;
the correlations were visualised as a heatmap using Euclidean

distance for clustering. Associations between metabolome and 16S
rRNA microbiome profiles were analysed on paired metabolome-
microbiome datasets of all samples regardless of the group and
visit. Only samples from children that provided faecal samples
at all clinic visits (visit 0, visit 1, and visit 2) were used for the
Wilcoxon tests. After the exclusion, 189 samples (n = 63) were
compared (intervention group, n=32; placebo group, n = 31). For
all other analyses, all faecal samples were included (intervention
group at visit 0, n = 38; intervention group at visit 1, n = 37;
intervention group at visit 2, n = 35; placebo group at visit 0, n
= 36; placebo group at visit 1, n = 34; placebo at visit 2, n = 36).
Furthermore, to uncover physiological patterns, a pathway analysis
between the groups at visit 2 was conducted using MetaboAnalyst
5.0 and the KEGG metabolic library using the genus E. coli as
a model organism and a proxy for the whole gut microbiota
(37, 38). The analysis was performed considering the metabolite
overrepresentation within a pathway using the global test, and the
influence of changedmetabolites on the pathway’s function through
relative betweenness centrality.

Results

Changes in metabolome related to
probiotic administration

Forty-six metabolites were identified using a semi-targeted
approach covering primarily molecules of short-chain fatty acids,
branched-chain fatty acids, amino acids, and sugars. The most
abundant metabolites were propylene glycol, acetate, butyrate,
leucine, and alanine. Additionally, 145 unknown spectral features
were uncovered (Supplementary Table 1). An exploratory data
approach based on PCA was used as a first step to assess
the progress of individuals through the study. Neither common
tendency nor clear distinction between the subjects based on the
placebo or intervention group was observed at the baseline, visit
1, and visit 2 (Figure 1; Supplementary Figures 2A–C). Therefore,
a PCA model showing subjects at visit 1 and visit 2 after having
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FIGURE 1

Principal component analysis for faecal metabolites between study participants either receiving a mixture of Lactiplantibacillus plantarum HEAL9 and

Lacticaseibacillus paracasei 8700:2 (intervention) or placebo. Paired data are connected with arrows from the baseline towards scheduled follow-up

visits after 3 months and 6 months.

subtracted the registered concentrations at visit 0 on a subject-by-
subject basis was considered to highlight the trends possibly hidden
by the differences naturally occurring among subjects. No common
tendency was observed (Supplementary Figure 2D). On the other
hand, the multilevel modelling showed a significant association (p
< 0.05) of the interaction between time (visits) and the intervention
and placebowith eight faecalmetabolites (Figure 2). These included
a decrease mean slope in the intervention group of threonine (p =
6.9×10−5, Figure 2A), methionine (p = 0.015, Figure 2B), leucine
(p = 0.022, Figure 2C), valine (p = 0.027, Figure 2D), isoleucine
(p = 0.043, Figure 2E), phenylalanine (p = 0.046, Figure 2F), and
marginally fumarate (p= 0.049, Figure 2G), and a positive slope for
the placebo group (Figure 2). Oppositely, 4-hydroxyphenylacetate
(p= 0.001, Figure 2H) increased within the intervention group.

In addition to the linear mixed-effects models, univariate
statistics was performed with pairwise comparison for each visit
separately. This approach has uncovered differences at the baseline
between fumarate production, higher in the intervention group (p
= 0.021) caused by an outlier in the treatment group. Thus, the
two groups were considered equal in terms of metabolomic profile.
The stool composition of donors under probiotic supplementation
differed in lower ethanol (p = 0.017) and glycerol (p = 0.046) at
3 months when compared to the placebo group; nevertheless, a
similar difference did not occur at 6 months visit. At 6 months,
probiotic supplementation caused a significant increase of 4-
hydroxyphenylacetate (p = 0.019, Figure 3A), while a decrease was
reported in aspartate (p = 0.037, Figure 3B), lactate (p = 0.027,

Figure 3C), and threonine (p = 0.001, Figure 3D) when compared
to the baseline.

The pathway analysis showed depletion in six metabolic
pathways; glycine, serine, and threonine metabolism (p = 0.013);
cyanoamino acid metabolism (p = 0.024); methane metabolism
(p = 0.025), pyruvate metabolism (p = 0.027); cysteine and
methionine metabolism (p = 0.033); and nicotinate and
nicotinamide metabolism (p = 0.049). The perturbed metabolic
pathways in the faecal samples are shown in Supplementary Table 2
and Supplementary Figure 3.

Associations between metabolome and
microbiome

The relative abundance of identified families and the
concentration of the annotated metabolites showed that
families Pasteurellaceae, Monoglobaceae, Ruminococcaceae,
Lachnospiraceae, Carnobacteriaceae, and Aerococcaceae were
positively associated with saccharolytic metabolites such as glucose
and revealed negative correlation with proteolytic metabolites
(Figure 4). Of particular interest was the inverse correlation
between the family Pasteurellaceae and glucose (ρ = 0.58, p <

2.2 × 10−16; Figure 5A). The reverse was observed for families
Rikenellaceae, Oscillospiraceae, Christensenellaceae, Oscillospirales
family UCG-010, Oscillospirales family UCG-011, Marinifilaceae,
Barnesiellaceae, Akkermansiaceae, Eubacterium coprostanoligenes
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FIGURE 2

Prediction of changes in abundances of the eight metabolites in participants either receiving a mixture of Lactiplantibacillus plantarum HEAL9 and

Lacticaseibacillus paracasei 8700:2 (intervention) or placebo from the beginning of the study (visit 0), to 3 months (visit 1) and 6 months (visit 2).

Significant metabolites identified by linear mixed-e�ects models showing the impact of dietary intervention in time: (A) threonine, (B) methionine, (C)

leucine, (D) valine, (E) isoleucine, (F) phenylalanine, (G) fumarate, and (H) 4-hydroxyphenylacetate. Raw p-values and p-values adjusted after the

Benjamini–Hochberg correction are shown.

group, Anaerovoracaceae, Defluviitaleaceae, Peptococcaceae,
Tannerellaceae, and Desulfovibrionaceae, which were positively
associated with an environment rich in proteolytic metabolites
such as phenylacetate and negatively correlated with saccharolytic
metabolites (Figure 4). An inverse correlation was observed
between the family Rikenellaceae and glucose (ρ = −0.58, p

< 2.2×10−16; Figure 5B). The abundance of Rickenellaceae

diminished exponentially with increased glucose. On the other
hand, the family Rikenellaceae was positively correlated with
metabolite isovalerate (ρ = 0.52, p < 2.2×10−16; Figure 5C). The
family Lactobacillaceae did not manifest any significant correlation.

Discussion

The present study gives evidence that 6 months of intervention
of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus

paracasei 8700:2 given to children with CD autoimmunity
participating in a randomised, double-blinded placebo-controlled
clinical trial has led to a significant decrease in threonine in the
faecal metabolome and a significant rise in 4-hydroxyphenylacetate
compared to the placebo group, as measured by 1H NMR
and determined using linear mixed-effects models. There was
also a tendency for other amino acids, such as valine, leucine,
isoleucine, aspartate, methionine, and phenylalanine, together
with fumarate, to decrease after the intervention. Their changes

were borderline significant, though not after the adjustment for
multiple comparisons.

All these metabolites are linked to protein breakdown and
imply an effect on proteolytic fermentation in the gut. In the
gastrointestinal tract, there is a delicate equilibrium between
saccharolytic and proteolytic fermentation, and disturbances in
this balance can be associated with various disease conditions
(39, 40). Proteolytic fermentation, in general, leads to a protein,
and peptides breakdown into amino acids, mainly resulting in
the production of branched-chain fatty acids, polyamines, etc.
(41), while saccharolytic fermentation degrades dietary fibre to
simple carbohydrates to generate primarily SCFA and other organic
acids (42). However, the suppression of the proteolytic pathway
observed in our study was not translated into an increase in
saccharolytic fermentation.

Proteolysis was previously shown to increase in disease states
such as gut inflammation, where tissue damage occurs, and cells
and cell exudates are released to the intestinal lumen and are
subject to bacterial hydrolysis (43). In a study by Di Cagno et al.
(44) which compared the metabolome of children with treated
CD with healthy controls, a higher abundance of amino acids was
found in the stool of CD children. Similar results were reported
by De Angelis (45). In this light, our results may suggest a
preventive nature of the probiotics and their potential ability to
shape microbial metabolism towards a balanced state.
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FIGURE 3

Changes in abundance of faecal (A) 4-hydroxyphenylacetate, (B) aspartate, (C) lactate, and threonine (D) in study participants either receiving a

mixture of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 (intervention) or placebo (placebo) at baseline (visit 0) and

scheduled follow-up visits after 3 months (visit 1) and 6 months (visit 2). Asterisk indicates significant di�erences *p < 0.05, **p < 0.01 before

applying the Benjamini–Hochberg correction, after the correction no significant changes were recorded.

The decreased threonine concentration was the major change
in the metabolome. Threonine synthesis by the human digestive
system is limited, but it can be synthesised from glucose and
aspartate by gut microbiota members (46). Additionally, we have
seen a reduction in aspartate levels, and although we have not
observed any alterations in glucose levels, the findings imply the
regulation of this pathway. Furthermore, the pathway analysis
confirmed an effect on threonine metabolism. In a previous
study, which was based on this sample set examined using 16S
rDNA sequencing, we noted an increase in abundance of the
Prevotella, Akkermansia, Streptococcus, and Bifidobacterium genera
(16). These genera lack a significant link to threonine in terms of
its production, but Akkermansia is a prominent degrader of mucus
(47). Mucus is a protective layer in the gut, and threonine is a
highly abundant amino acid in the mucin protein core (48, 49).
The Akkermansia, thus, may indirectly influence the threonine
levels in the gut by degrading the mucus. However, increased

levels of threonine would be expected based on this hypothesis,
but a decrease was observed. This could be a sign of a healthier
gut state as increased mucus degradation is associated with its
physical disruption (50). Subsequent research on this finding is
highly desirable.

4-Hydroxyphenylacetate, the only compound which increased
after the intervention, is a colon microbial catabolite of tyrosine
(51). This again suggests an effect on the proteolytic fermentation
and breakdown of its metabolites. 4-Hydroxyphenylacetate itself
may exhibit a biological effect in the gut, such as hepatoprotective
and antioxidative properties (52). 4-Hydroxyphenylacetate does
not seem to have a significant direct link to the altered genera in
the same trial nor coeliac disease itself.

In addition to metabolome changes, the present study showed
interesting correlations between microbiota and metabolites using
all data regardless of the condition. Human gut microbial
populations are characterised by several core taxa, including genera
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FIGURE 4

Correlations heatmap identifying associations between gut microbiota abundance at the family level and faecal metabolites in all study samples

regardless of the visit and intervention.

FIGURE 5

Spearman’s rank correlation plot between gut microbiota abundance at the family level and faecal metabolites in all study samples regardless of the

visit and intervention. (A) Linear regression between the family Pasteurellaceae and glucose. (B) Linear regression between the family Rikenellaceae

and glucose. (C) Linear regression between the family Rikenellaceae and isovalerate. Correlations with ρ > |0.5| are shown.

Ruminococcae, Prevotella, and Bacteroides (53). The first two genera
are linked to the degradation of fibre or saccharolytic pathways,
whereas Bacteroides are associated with proteolytic pathways.
There are clear links with dietary intake as a plant-based diet is
associated with higher levels of Prevotella and Ruminococcus, and
meat consumption favours Bacteroides (54). Moreover, Bacteroides
are increased in states of inflammation (55). In our correlation

analysis, we detected strong correlations of the saccharolytic
metabolites like glucose with families such as Ruminococcaceae,
whereas other families such as Rikenellaceae showed correlations
with amino acids and amino acid breakdown products. This
clustering highly corresponds with the metabolic capacity of
different taxa as mentioned above and shows the complementary
nature of the two methods.
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Conclusion

The combination of Lactiplantibacillus plantarum HEAL9
and Lacticaseibacillus paracasei 8700:2 showed marginal, though
significant changes in the levels of numerous stool metabolites
in children genetically predisposed to CD after 6 months
of intervention, mainly consisting of differences in amino
acids profiles, indicating a shift towards known healthier
metabolic patterns. The observed reduction in threonine levels
is also worth emphasising, as threonine is an amino acid
closely associated with gut mucus. The metabolic pathway
related to threonine appears to be impacted by probiotic
the intervention.
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