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Abstract

Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with

respect to clinical behavior and tumor morphology. The paternal uniparental disomy

(pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In

addition to LOH, UPD, the MLPA technique (ME030kit) also determines copy num-

ber variants and methylation of H19 and KCNQ1OT1 genes, which have not been

systematically investigated in RMS. All 127 RMS tumors were divided by histology

and PAX status into four groups, pleomorphic histology (n = 2); alveolar RMS PAX

fusion-positive (PAX+; n = 39); embryonal RMS (n = 70) and fusion-negative RMS with

alveolar pattern (PAX-RMS-AP; n = 16). The following changes were detected; negative

(n = 21), pUPD (n = 75), gain of paternal allele (n = 9), loss of maternal allele (n = 9),

hypermethylation of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion

of CDKN1C (n = 1). We have shown no difference in the frequency of pUPD 11p15.5 in

all groups. Thus, we have proven that changes in the 11p15.5 are not only specific to

the embryonal RMS (ERMS), but are often also present in alveolar RMS (ARMS). We

have found changes that have not yet been described in RMS. We also demonstrated

new potential diagnostic markers for ERMS (paternal duplication and UPD of whole

chromosome 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1).
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1 | INTRODUCTION

Rhabdomyosarcomas (RMS) represent a heterogeneous spectrum of

tumors in terms of clinical behavior and tumor morphology.1 RMS are

the most common malignant soft tissue tumor seen in children and

adolescence, with an annual incidence of 4.5 cases per million among

children. Histologically, RMS resembles developing fetal striated

skeletal muscle.2–4 They are frequently composed of primitive cells,

which only show a subtle evidence of lineage-specific differentiation;

however, they may mature and, in some cases, reach a stage close to

terminal differentiation resembling myotubes of a developing skeletal

muscle. Approximately 50% of rhabdomyosarcoma cases are diag-

nosed in the first decade of life.3 RMS is currently categorized by dis-

tinct histopathological subtypes, including embryonal, alveolar,
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pleomorphic, and spindle cell/sclerosing; these have distinct molecular

and clinical correlates.4–8 Age also influences the incidence of these

tumors. The embryonal RMS (ERMS) are the most common form in early

childhood, but some data indicate a second peak in early adolescence.3,4

Ras mutation (NRAS, KRAS, and/or HRAS) is noted in approximately 25%

of ERMS.9 Rarely, these mutations can be demonstrated in alveolar RMS

(ARMS).10 Compared to ARMS, ERMS generally show gain of whole

chromosomes 2, 7, 8, 11, 12, 13, and 20.11,12 Therefore, the copy num-

ber aberration is also different between ERMS and ARMS and can be

helpful in supporting the diagnosis of ERMS in difficult cases. Bimodal

peaks are not evident in children with ARMS. ARMS occur at all ages,

but are more common in adolescents and young adults.13,14 Cytogenetic

studies identify a frequent t(2;13)(q35;q14) or variant t(1;13)(p36;q14)

chromosomal translocation in most cases of ARMS. These translocations

involve the PAX3 gene on chromosome 2 or the PAX7 gene on

chromosome 1 and the FOXO1 gene on chromosome 13 to generate

PAX3-FOXO1 or PAX7-FOXO1 fusion genes, which encode fusion

proteins with oncogenic activity. Molecular pathologic analysis of fusion

status revealed that 80% of ARMS cases contain a FOXO1 fusion (60%

with PAX3-FOXO1 fusion and 20% with PAX7-FOXO1 fusion).14,15 This

finding is important because fusion-negative ARMS have molecular fea-

tures reminiscent of ERMS. The clinical outcome of children with fusion-

negative ARMS is similar to that of children with ERMS. In addition to

the presence of metastases, FOXO1 status is the most important prog-

nostic factor.14–17 In contrast to ERMS and ARMS, WHO-classified pleo-

morphic RMS primarily occurs in adult males in their sixth decade of

life.18 Finally, spindle cell/sclerosing RMS are an uncommon subtype,

accounting for 3%–10% of all cases of RMS. It affects both children and

adults.

Acquired uniparental disomy (UPD), also known as copy neutral loss

of heterozygosity (LOH), is a relatively common event in cancer.19,20

Acquired UPD can occur in two different ways; loss of one chromosome

followed by duplication of the remaining one leading to whole-

chromosome UPD, whereas somatic recombination leads to segmental

acquired UPD. In both cases, the copy number does not change. UPD

has the potential to lead to homozygosity of existing aberrations such as

mutation, deletion, methylation, histone-modification, or imprinted

genes.19 The paternal uniparental disomy (pUPD) of 11p15.5 is another

example of molecular changes in RMS.21–25 The classically described uni-

parental disomy of 11p15.5, as well as deletion of maternal allele, gain of

paternal allele or H19 hypermethylation alone and/or KCNQ1OT1 hypo-

methylation has been described in Beckwith–Wiedemann syndrome

(BWS).26–28 BWS is associated with some tumors such as nephroblas-

toma and hepatoblastoma.19 Similar genetic changes have been

described in some nephroblastomas without BWS syndrome.29

In this article, we aimed to confirm data from literature that UPD

or LOH of 11p15.5 is more frequent in ERMS than ARMS in a large

cohort of patients.4,24,28 However, our data showed that there was no

difference in the presence of UPD and LOH between all three groups:

the fusion-negative RMS with alveolar pattern (PAX-RMS-AP) group,

the ERMS group, and the ARMS PAX-positive group. The MLPA tech-

nique also allowed us to investigate changes in the imprinted 11p15.5

region (methylation status of H19, KCNQ1OT1), which have not yet

been investigated in RMS. Therefore, we were able to demonstrate

possible new diagnostic markers.

2 | MATERIALS AND METHODS

2.1 | Patients and samples

All the procedures of the study were approved by the Institute of

Medical Ethics Committee of University Hospital Motol. All the

patients signed an informed consent form at the time of admission;

this form explained that the tissues and other samples might be used

for scientific research but would not compromise patient data privacy.

A cohort of 127 (60 females and 67 males) patients with histologi-

cally confirmed rhabdomyosarcoma at University Hospital Motol seen

between 1995 and 2018 were included in this study. The median age

was 7 years. Among all, 79 patients were between 0 and 10 years,

33 were between 10 and 20, and 15 were more than 20. We used

92 frozen tissues and 35 formalin-fixed, paraffin-embedded tissues. All

samples contained tumor cells (at least 50%). Data on clinical characteris-

tics, including age and sex, were retrieved from medical records. None of

the patients with somatic chromosomal abnormalities in the 11p15.5

region had any clinical manifestations of BWA. In patients, where, con-

sent was obtained and germline DNA was available, we investigated

chromosomal abnormalities in the 11p15.5 region. But, none of these

abnormalities were demonstrated in any patient. Only one patient

(PRG123) with ERMS had rasopathy (Costelo syndrome; HRAS Gly12Ser).

The somatic mutations of HRAS, NRAS, and KRAS genes were examined

by the target NGS in 122 out of 125 tumor samples. Overall, we found

pathogenic mutations in these genes in 10 out of 122 samples (HRAS: 2�
PAX-RMS-AP, 3� ERMS; NRAS: 1� ARMS PAX+, 1� ERMS; KRAS: 1�
PAX+, 2� ERMS; Supporting Information, Table S2).

2.2 | DNA and RNA extraction

Total RNA was isolated from fresh frozen (92 cases) or paraffin-

embedded sections (35 cases) using extraction with TRIzol Reagent (Life

Technologies) or High Pure RNA Paraffin Kit from Roche (Roche), both

according to the manufacturer's instructions. The genomic DNA was

extracted from formalin-fixed, paraffin-embedded tissue blocks using

QIAamp DNA FFPE Tissue Kit (Qiagen) or fresh frozen sections using

extraction with TRIzol Reagent (Life Technologies).

2.3 | PAX3-FOXO1 and PAX7-FOXO1 fusion
detection

2.3.1 | PCR analysis

Complementary DNA (cDNA) was prepared from 10 μL of RNA in

20 μL of reaction volume. The reaction mixture contained Tris–HCl

50 mM, pH 8.3; KCl 75 mM; MgCl2 3 mM; dithiotreitol l0 mM;
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dNTP 0.5 mM each; random hexamers 12.5 mM; and 50 units of

MMLV reverse Transcriptase (Gibco BRL) according to the manufac-

turer's instructions. Reverse transcription included an incubation

period of 60 min at 37�C. Qualitative RT-PCR for the fusion gene

PAX3-FOXO1, PAX7-FOXO1 was performed with primers which are

listed in Table S1. Quantitative RT-PCR for fusion gene PAX3/7--

FOXO1 and was performed on LightCycler (Roche), using TaqMan

technology. PAX3-FOXO1 and PAX7-FOXO1 primers and probes for

RQ-RT-PCR were designed by TipMolBiol; Human beta 2 microglobu-

lin was used as a housekeeping gene.30 The expression of fusion

genes was calculated using absolute quantification. A diluting line of

plasmids was used for preparation of standard curves. Normalized

expression (PAX3/7:FOXO1) was determined as a ratio between

fusion transcript and B2-microglobulin levels. Each PCR run was per-

formed in duplicate, and the mean value of the results was calculated.

2.3.2 | MS-MLPA

The SALSA MS-MLPA Probemix ME030 BWS/RSS assay was used

for the detection of aberrant methylation of one or more sequences of

the IC2 (KvDMR) and IC1 (H19DMR) domains in the 11p15 BWS/RSS

region. This assay can also be used to detect deletions/duplications in

the aforementioned chromosomal region (MRC-Holland). MS-MLPA was

performed following the manufacturer's instructions.31 Data were

analyzed using Coffalyser Software (MRC-Holland).

2.3.3 | SNP array

SNP microarray study was carried out commercially either from Illu-

mina (HumanCytoSNP-12 DNA Analysis Bead Chip Kit 300 K or

HumanCytoSNP-850 K v1.2 Bead Chip Kit [Illumina®]). Images were

captured with iScan. Data were analyzed (primary) using Illumina's

GenomeStudio and BlueFuse Multi Software. The resolution was set

as 0.1 Mb for deletion, 0.5 Mb for gain, and 3 Mb for UPD.

2.4 | LOH study

The presence of LOH was studied in 102 tumor samples. Each sample

was compared with the constitutional DNA of the same patient

obtained from bone marrow aspirate or from peripheral blood. All

constitutional samples were without tumor cell contamination as con-

firmed by molecular techniques (negative results of RQ-RT-PCR for

MYOD1, α/γ acetylcholine receptor, PAX3-FOXO1, and PAX7-FOXO1).

A panel of six highly informative microsatellite markers was used

(Table S1). Amplification was performed with primers labeled

with fluorescent dye (6-FAM) in a final volume of 20 μL containing

50–100 ng of DNA template, 1–2 mM MgCl2, 10 pM of each primer,

0.2 mM dNTPs, 1� reaction buffer, and 0.3 U Taq polymerase

(Top-Bio). Amplification was performed in an automated thermal

cycler with 5 min 95�C denaturation step followed by 30 cycles of

94�C denaturation for 30 s, annealing at the temperature of 60–66�C

for 45 s, and extension at 72�C for 30 s. The last cycle was followed

by a final extension at 72�C for 20 min. PCR products were detected

by fragment analysis using an automated genetic analyzer ABI PRISM

3130 or 3500 (Applied Biosystems).

2.5 | Statistics

For statistical comparison, Fisher's exact test was used; this test

assumed the null hypothesis (H0) that all variables are independent. If

p value ≤0.05, we can reject the null hypothesis. All statistics were

performed in R software version 4.0.3 (https://www.r-project.org/).

3 | RESULTS

3.1 | Histological features and PAX3-7FOXO1
status of RMS

All the tumor specimens were histologically evaluated following the

classification of soft tissue tumors. The ERMS were confirmed in

70 cases, PAX-RMS-AP in 16 cases, ARMS PAX+ in 39 cases (PAX3+

n = 33; PAX7+ n = 6), and 2 cases had pleomorphic histology (PML).

3.2 | Detection of genetic abnormalities

All 127 RMS tumors were investigated by MS-MLPA using Probemix

ME030 BWS/RSS. We examined two PML samples, one showed

pUPD and the other was negative. Due to the small number of

samples and the impossibility of testing by SNP array and LOH11p

technique, we included only ERMS, PAX-RMS-AP, and ARMS PAX+

samples for further analysis. We found that only 20 (16%) cases were

negative out of 125 investigated samples. In the other 105 samples,

the following mutations were detected: pUPD (n = 74), paternal

duplication allele (n = 9), maternal deletion (n = 9), hypermethylation

of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion

of CDKN1C (n = 1; Figure 1D). CNV and UPD were compared by

LOH study and SNP array. Results from MS-MLPA and second tech-

nique were done in 104 samples (83%). Thus, only 21 samples (17%)

were without confirmation of the second method. Also, LOH study

and SNP array are unable to detect the methylation status of H19,

KCNQ1OT1 genes. A comparison of all techniques is summarized in

Figure 2. MS-MLPA + LOH study was investigated in 71 samples,

MS-MLPA + SNP array in 4 samples, and all three technics in 22 sam-

ples. We found only three results discrepancies (two cases MS-MLPA

and LOH study detected UPD, but SNP array did not; one case

MS-MLPA and SNP array detected loss of allele, but LOH study did

not). SNP array allows to detect the extent of UPD on chromosome

11. Thus, we can demonstrate whether it is a segmental change or a

UPD of the whole chromosome 11. We examined the SNP array in

26 tumor samples and found UPD in 12 of them. Interestingly, in six

VICHA ET AL. 3
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samples, we found UPD of the whole chromosome 11 and it was

always ERMS. Only three samples of ERMS had segmental UPD

(ERMS vs. ARMS group was p value = 0.001932).

Using MS-MLPA technique, we demonstrated different changes

and their numbers in ERMS, PAX-RMS-AP, and ARMS PAX+

(Figure 1A–C; percentages are expressed for a given group). The larg-

est differences were demonstrated between ERMS and PAX-RMS-AP

as well as ARMS PAX+ groups. The most common change demon-

strated in all three groups was pUPD (n = 74; ERMS 42/70, PAX-

RMS-AP 10/16, and ARMS PAX+ 22/39). Fisher's exact test showed

no statistically significant difference between these groups

(p value = 0.7452; Figure 1E). In contrast, we showed a statistically

significant difference in paternal duplication, where this change was

only found in ERMS (n = 9/70); when comparing ERMS/ARMS (PAX-

RMS-AP, ARMS PAX+), p value = 0.004669. On the other hand, a

change not found in ERMS is hypomethylation of KCQN1OT1. It was

only found in PAX-RMS-AP (1/16) and ARMS PAX+ (5/39). When we

evaluated all groups, p value = 0.006138, hence not statistically sig-

nificant. However, when we compared ERMS versus ARMS PAX+

p value = 0.004928, showing significance. All statistical assessments

of the changes with the largest differences are summarized in

Figure 1E.

4 | DISCUSSION

It is stated in the literature that the LOH or pUPD of 11p15.5 occurs

predominantly or exclusively in the ERMS.4,21,24,28 But Smith et al.

had a hypothesis that there is a possibility of translocation indepen-

dent pathway for development of ARMS. This is based on genetic

alterations at the region 11p15 for ARMS cases lacking the common

t(2;13) and t(1;13) translocations.32 Our data show that both the

ERMS and ARMS are associated with LOH at the 11p15 region with

changes in methylation status. We first described that changes at the

region 11p15 are a common event in the groups of ARMS patients

(with or without translocations). We have statistically shown no dif-

ference in the frequency of pUPD 11p15.5 between ERMS, PAX-

RMS-AP and ARMS PAX+ group (p value = 0.7452). Most of these

LOH 11p15.5 results were verified by at least two techniques. Based

on our data, LOH or pUPD 11p15.5 should not be used as an ERMS

marker. Using the MLPA technique, we were able to demonstrate

other changes in the imprinted 11p15.5 region (H19, KCNQ1OT1),

which have not yet been investigated in RMS. Of the 106 changes

detected in 11p15.5 region (H19, KCNQ1OT1), 31 were other than

pUPD. We can divide them into three groups. First, where IGF2 was

upregulated, the second group with downregulation of CDKN1C

(p57Kip2), and the third, where both mechanisms were present at the

same time. The first group contains a gain of paternal allele and hyper-

methylation of H19. The second group contains hypomethylation of

KCNQ1OT1 and the deletion of CDKN1C. The third group contains

pUPD and loss of maternal allele.

The first group is dependent on the increased expression of the

IGF2 protein, which is a protein hormone known to regulate cell pro-

liferation, growth, migration, differentiation, and survival. The gene is

parentally imprinted. Loss of imprinting of the IGF2 gene is a recurrent

observation in growth disorders that combine overgrowth with a vari-

ety of malignant tumors.33 The mRNA IGF2 overexpression can be

directly regulated by methylation of IGF2 gene. We did not prove

methylation of P4 promotor of IGF2 gene in our sample's cohort by

MLPA (MLPA data did not show). Overexpression of mRNA IGF2 may

not always lead to overexpression of the IGF2 protein and activa-

tion34 of the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase

B (PKB) pathway of the mitogen-activated protein kinase (MAPK)

pathway or angiogenesis.35 Downstream activation is dependent not

only on IFG2 protein expression, but also on its receptors, and binding

proteins.33,34,36,37 Thus, changes in the IFG2 pathway must be well

F IGURE 1 Genetic abnormalities. (A) Characterization of chromosomal abnormalities in ARMS PAX+. (B) Characterization of chromosomal
abnormalities in PAX-RMS-AP. (C) Characterization of chromosomal abnormalities in ERMS. The percentage of chromosomal changes was
calculated from the number of samples in each RMS subgroup (ARMS PAX+ (A), PAX-RMS-AP (B), and ERMS (C)). Thus, it shows the proportional
representation of chromosomal changes in a given RMS subgroup. (D) Summary information on chromosomal abnormalities from all three groups

(ARMS PAX+, PAX-RMS-AP, and ERMS). The percentage of chromosomal changes was calculated from all RMS samples. Thus, it shows the
proportional representation of chromosomal changes in all RMS samples. (E) Statistical assessments of the changes with the largest difference
(Fisher's exact test). ARMS, alveolar rhabdomyosarcomas; ERMS, embryonal rhabdomyosarcomas; KCNQ1OT1, Potassium Voltage-Gated
Channel Subfamily Q Member 1 overlapping transcript 1; PAX, paired box 3 or 7 negative fusion; PAX�, paired box negative fusion; PAX+,
paired box 3 or 7 positive fusion; pUPD, paternal uniparental disomy, H19, H19 gene; RMS, rhabdomyosarcomas.
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F IGURE 2 Oncoplot—comparison of molecular genetics methods, histology, and clinical data. BI, bi-allelic expression; CR, complete
remission; 2.CR, second complete remission; KCNQ1OT1, Potassium Voltage-Gated Channel Subfamily Q Member 1 overlapping transcript 1;
LOH, Loss of heterozygosity; MONO, mono-allelic expression; ND, non done; Neg, negative; NI, non-informative; OK, no change; PAX3, paired
box 3 positive fusion; PAX�, paired box negative fusion; PAX7+, paired box 7 positive fusion; PLM, pleomorphic RMS; PR, partial remission;
pUPD, paternal uniparental disomy; VGPR, very good partial remission.

VICHA ET AL. 5
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orchestrated, leading to tumor growth. Therefore, we need more

information about this coordination in RMSs.

The second group depends on the decreased expression of the

p57kip2, encoded by the CDKN1C gene, which is a member of

the Cip/Kip family of cyclin-dependent-kinase inhibitors (CKIs), and

plays a key role in mammalian development by regulating cell prolifer-

ation and differentiation in a number of different tissues.38 Specifi-

cally, it has been reported that p57Kip2 inhibits the kinase activity of

cyclin-CDK complexes in vitro, including cyclin E (A)/CDK2 and cyclin

D1,2/CDK4.39 CDKN1C is expressed after birth only in the heart,

brain, lung, kidney, pancreas, skeletal muscle, testis, and placenta.

CDKN1C is a paternally imprinted gene, expressed exclusively from

the maternal allele.37,40–42 CDKN1C defective expression is generally

responsible for overgrowth disorders, such as the BWS syndrome,

and also in certain cancer types.15,37,43–48 Interestingly, Figliola et al.

have proven that CDKN1C is a target of the muscle-specific factor

MyoD1.49 MyoD1 induces CDKN1C expression by interacting with

CDKN1C promoter or between direct interaction of MyoD1 with

CDKN1C.49,50 Thus, the deletion of the CDKN1C gene may lead to

impaired myoblast differentiation and rhabdomyosarcoma formation.

Moreover, many authors have attributed p57Kip2 level as a valuable

prognostic marker, since a decrease of its expression has been corre-

lated to poor prognosis.45,51 We included only one patient with ERMS

in this group.

The third group is the most common in our cohort (pUPD 59%;

loss of maternal allele 7%). Therefore, we assume that both overex-

pression of IGF2 and downregulation of CDKN1C are involved in the

tumorigenesis of RMS.

Moreover, we first demonstrated two changes that are more spe-

cific to the ERMS or ARMS group. The paternal duplication (7% cases)

was demonstrated only in the ERMS group. This difference was

shown to be statistically significant (p value = 0.004669), and thus

could be a new diagnostic marker separating ERMS and ARMS; there-

fore, indicating possible differential activation of this pathway in RMS.

In contrast, hypomethylation of KCNQ1OT1 was demonstrated in one

case only in the ARMS group (4.8%). In the case of PAX-RMS-AP, in

which, we demonstrated the hypomethylation of KCNQ1OT1, we also

investigated other possible fusions typical for ARMS (Archer sarcoma

panel v3, data not shown here); but we did not detect any fusion.

When we compared ERMSs and ARMSs, the result was not statisti-

cally significant (p value = 0.00618), but when we evaluated ERM

versus ARMS PAX+, we showed statistical significance

(p value = 0.004928). We have demonstrated not only a possible

diagnostic marker, but that reduced CDKN1C expression may be more

important for patients with ARMS than for ERMS.

The extent of UPD on chromosome 11 is another possible diag-

nostic feature that has not been described, as we have shown that

UPD of the whole chromosome has only been demonstrated in ERMS

(p value = 0.001932). We hypothesize that this finding is related to

the fact that ERMS is generally characterized by whole chromosome

aberrations.12

The IGF pathway still offers a wide variety of interesting develop-

ments that may contribute to the future development of growth

factor-based therapies in RMS.36,52–54 Accordingly, a number of

small-molecule RTK inhibitors (RTKIs) and monoclonal antibodies

(mAbs) targeting the IGF-binding domain on the Insulin-Like Growth

Factor 1 Receptor (IGF1R) were developed for use in cancer treat-

ment. To date, all of these strategies have failed in clinical trials, pri-

marily owing to the onset of acquired resistance.53 Instead, we

support the option that by identifying and applying predictive bio-

markers, a cohort of patients with IGF1R-driven tumors who will be

more likely to respond positively to treatment, may be identified.

ClinicalTrials.gov identifier (NCT number): NCT03041701, A Phase I/II

Trial of the Insulin-Like Growth Factor 1 Receptor (IGF-1R) Antibody

AMG479 (Ganitumab) in Combination with the Src Family Kinase

(SFK) Inhibitor Dasatinib in Patients with ERMS and ARMS.

Our study showed that changes in the 11p15.5 are not specific to

the ERMS but are also often present in the ARMS. Using the MLPA

technique, we have described changes that have not yet been

described in RMS. We demonstrated new potential diagnostic

markers for ERMS (paternal duplication and UPD of whole chromo-

some 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1). These

prognostic features need to be validated in larger cohorts of patients.

These proven changes also lead us to the concept of using tar-

geted therapy in patients with relapsing ERMS or ARMS, although it

will be necessary to clarify a number of factors that may affect the

success of such therapy.
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