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S U M M A R Y

Background: The carriage of multidrug-resistant (MDR) pathogens in medical students has
not been studied extensively, despite the fact that they are in contact with patients and
exposed to a hospital environment.
Aim: To investigate the intestinal and nasal carriage of MDR pathogens among medical
students and its association with their lifestyle and demographic data.
Methods: In 2021, first- andfinal-yearmedical studentswere invited to the study. Two rectal
swabs were used for detection of extended-spectrum b-lactamase (ESBL)-producing, coli-
stin-, tigecycline- or carbapenem-resistant Gram-negative bacteria and vancomycin-
resistant enterococci. Nasal swab was used for Staphylococcus aureus culture. S. aureus
isolates were characterized by spa typing; Gram-negative resistant isolates and meticillin-
resistant S. aureus (MRSA) were subjected to whole-genome short and/or long sequencing.
Findings: From 178 students, 80 (44.9%) showed nasal carriage of S. aureus; two isolates
were MRSA. In rectal swabs, seven ESBL-producing strains were detected. Sixteen students
were colonized by colistin-resistant bacteria, three isolates carried the mcr-1 gene (1.7%).
The mcr-9 (10.7%, 19/178) and mcr-10 (2.2%, 4/178) genes were detected by quantitative
polymerase chain reaction, but only two colistin-susceptible mcr-10-positive isolates were
cultured. The S. aureus nasal carriage was negatively associated with antibiotic and
probiotic consumption. S. aureus and colistin-resistant bacteria were detected more
frequently among students in contact with livestock.
Conclusion: Medical students can be colonized by (multi)drug-resistant bacteria with no
difference between first- and final-year students. The participation of students in self-
screening increases their awareness of possible colonization by resistant strains and
their potential transmission due to poor hand hygiene.
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Introduction

Antimicrobial resistance poses one of the greatest threats to
global health. The increasing occurrence of multidrug-resistant
(MDR) pathogens poses an economic burden to the healthcare
system and increases in-hospital mortality [1].

Active microbiological surveillance for multidrug-resistant
pathogen carriage is crucial for hospital infection prevention
and control. The intestinal or nasal carriage of resistant strains
among hospitalized patients or healthcare workers has been
studied and it was shown that both groups participated in the
transmission of MDR strains, mainly due to insufficient hand
hygiene compliance and a lack of awareness of MDR organisms
and mechanisms of their transmission [2e6]. The carriage of
MDR in medical students has not been studied extensively
despite the fact that they are also in contact with patients and
are also exposed to a hospital environment [7].

The majority of studies involving medical students focused
mainly on the nasal carriage of meticillin-susceptible S. aureus
(MSSA) and/or MRSA [7e9]. Data on the intestinal carriage of
MDR pathogens in medical student cohorts are mainly from Asia
and/or are often limited to extended-spectrum b-lactamase
(ESBL) carriage [10,11]. Therefore, to supplement limited
knowledge, the aim of our study was to investigate the faecal
and nasal carriage of MDR pathogens among first- and final-year
medical students and its association with demographic data
and the students’ lifestyle. In addition, we characterized the
acquired MDR isolates by whole-genome sequencing.
Methods

Sample collection

Between March and June 2021, first- and final-year medical
students of the 2nd Faculty of Medicine at Charles University,
Prague, Czech Republic were invited to participate in the
study. After being given detailed instructions, each student
self-collected two rectal and one nasal swab with a sterile
tampon placed in transport Amies media (Copan, Brescia, Italy)
and immediately transferred to the laboratory. Simulta-
neously, students completed a questionnaire to evaluate the
association between the carriage and demographics and life-
style including age, gender, overweight, nationality, type of
household (urban or rural), antibiotic consumption within the
month preceding sampling, frequency of use of antibiotics and
other drug consumption, employment of a family member in
the health sector, smoking, travelling within six months pre-
ceding sampling, owning pets, and type of diet. At the end of
the study, the anonymized results were presented to students.

The study has been approved by the Ethics Committee of the
University Hospital Motol (reference number EK-1075/20) and
all the involved subjects signed informed consent.
Bacterial culture and antimicrobial susceptibility
testing

Nasal swabs
Nasal swabs were enriched in the thioglycollate broth

(Oxoid, ThermoFisher, Waltham, MA, USA) at 37 �C overnight.
The enrichment was plated on to a mannitol salt agar plate
(Oxoid) and a mannitol salt agar supplemented with 2 mg/L of
oxacillin (SigmaeAldrich; St Louis, Missouri, USA) for detection
of S. aureus and MRSA, respectively [12]. Suspected colonies
were identified by matrix-assisted laser desorption ionization-
time of flight mass spectrometry (MALDI-TOF MS) using Biotyper
v 3.1 (Bruker Daltonics, Hilden, Germany). Susceptibility test-
ing of S. aureus isolates to trimethoprim/sulfamethoxazole,
erythromycin, clindamycin, cefoxitin, tetracycline, gentami-
cin, ofloxacin, rifampicin, linezolid, fusidic acid, andmupirocin
(Oxoid) was determined by the disc diffusion method. The
results were evaluated according to the breakpoint values
defined by EUCAST or the Clinical Laboratory Standards Insti-
tute (CLSI) for ofloxacin only. Inducible clindamycin resistance
was tested by D-test [13,14].

All MRSA and MSSA isolates were characterized by spa typing
according to the protocol of the European Network of Lab-
oratories for sequence-based typing of microbial pathogens
(http://www.seqnet.org) [15]. Ridom StaphType software
(Ridom, Münster, Germany) was used for the spa type assign-
ment. MRSA isolates were subjected to the whole-genome
sequencing described below.

Rectal swabs
One rectal swab was enriched in Enterobacteriaceae

enrichment (EE) broth-Mossel (ThermoFisher) overnight at
37 �C. Enrichment cultures were plated onto the following
media using a sterile dacron swab (Dulab s.r.o., Dubné, Cze-
chia). For the detection of colistin-resistant Gram-negative
bacteria, the Brilliance� UTI Clarity� Agar (ThermoFisher)
supplemented with 3.5 mg/L of colistin (SigmaeAldrich) was
used as described previously [16,17].

In addition, 1 mL of enrichment broths was tested by
quantitative polymerase chain reaction (qPCR) after DNA
extraction for the presence of genesmcr-1e10 (Supplementary
Table S1). The specificity of PCR amplicons was confirmed by
Sanger sequencing. As mcr-9 and -10 genes are also detected
among colistin-susceptible isolates, PCR-positive enrichments
for the presence of mcr-9 and/or mcr-10 genes were plated on
to Brilliance UTI Clarity Agar without colistin and processed as
described above [18]. Suspected colonies were identified by
MALDI-TOF MS and antibiotic susceptibility testing to colistin
was performed by broth microdilution (Mikrolatest�; Erba
Lachema s.r.o., Brno, Czechia) in isolates grown on selective
media supplemented with colistin and/or showing the presence
of mcr-9 and/or mcr-10 by qPCR.

For ESBL and carbapenem-resistant Gram-negative bac-
teria, CHROMagar� Orientation medium supplemented with
0.4 mg/L of KPC supplement (CHROMagar, Paris, France) and
CHROMagar Orientation medium supplemented with 0.57 mg/L
of ESBL supplement (CHROMagar) were used. The ESBL phe-
notype was confirmed by the double-disc synergy test (DDST)
according to the EUCAST recommendation [19].

For detection of tigecycline resistance, 10 mL of EE broth
suspension was inoculated into thioglycollate broth supple-
mented with 1 mg/L of tigecycline (SigmaeAldrich), the
breakpoint for tigecycline resistance in E. coli and C. koseri
according to EUCAST [13]. All tubes showing bacterial turbidity
were plated on to non-selective agar and a disc diffusion test
was performed in growing isolates to test tigecycline resist-
ance. If the disc diffusion test predicted tigecycline resistance,
broth microdilution (Mikrolatest, Erba Lachema s.r.o., Brno,
Czechia) was performed for its verification. Among tigecycline-
resistant isolates, plasmid-bounded resistancemediated by the

http://www.seqnet.org
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tet(X) and tet(X1) genes was tested by qPCR amplification using
primers described previously with the new design for forward
primer tet(X1) because of a mismatch in the original primer
sequence (Supplementary Table S1).

In addition, the antibiotic susceptibility testing to clinically
commonly used antibiotics against Gram-negative bacteria was
performed in isolates resistant to tigecycline, colistin, and/or
ESBL producers using the microdilution method (SENSILAtest G-
I, G-II; Mikrolatest) with the EUCAST breakpoints or CLSI
breakpoints for the antibiotics not defined by EUCAST [13,14].
For cefoperazone/sulbactam, the breakpoint �64 mg/L
determined previously was used [20].

An additional rectal swab was used for VRE detection. After
the overnight incubation in VRE Broth Base supplemented with
2 mg/L of meropenem (Oxoid) at 37 �C, suspensions were
plated on to CHROMagar VRE base plates supplemented with
60 mg/L of VRE supplement (CHROMagar) using a sterile dacron
swab (Dulab). All isolates phenotypically matching Enter-
ococcus spp. were verified using MALDI-TOF MS and tested for
vancomycin resistance by disc diffusion.

Isolates were defined as multidrug resistant if they were
resistant to at least one agent in three or more classes of
antibiotics [21].

Whole genome sequencing

All detected resistant isolates excluding MSSA were char-
acterized by whole genome sequencing. DNA from one bac-
terial colony was extracted using MasterPure Complete DNA &
RNA Purification Kit (Biosearch Technologies, Hoddesdon, UK),
quantified using Qubit� dsDNA HS Assay Kit (ThermoFisher) and
the purity was measured using NanoDrop (ThermoFisher).

For the short reads sequencing, the DNA sequencing library
was prepared by Nextera XT DNA Library Preparation Kit (Illu-
mina, San Diego, CA, USA) according to the manufacturers’
instructions, pooled libraries were sequenced on Illumina
sequencer (HiSeq X Ten, Macrogen, Amsterdam, Netherlands).
Genomes of all isolates were assembled using SPAdes v3.15.5
[22].

To investigate the genetic localization of mcr genes, the
long reads sequencing was performed using Ligation Sequenc-
ing Kit, #SQK-LSK109 (Oxford Nanopore Technologies, Oxford,
UK) and a MinION #FLO-MIN106 flow cell (Oxford Nanopore
Technologies). FAST5 read files were base-called and con-
verted to FASTQ using Guppy v3.0.3þ7e7b7d0 (Oxford Nano-
pore Technologies). The hybrid assembly of long and short
reads was done using Unicycler v0.4.7 [23].

All raw sequence data in this study were submitted in the
NCBI Sequence Read Archive (SRA) under accession number
PRJNA882601. According to NCBI Taxonomy database rules,
E. hermannii was listed as Atlantibacter hermannii.

Bioinformatic analysis

FastQ, fasta and hybrid assemblies (formcr-positive strains)
data were analysed using the following tools available at the
Center for Genomic Epidemiology (https://cge.cbs.dtu.dk).
Sequence types (ST) and core genome ST (cgST) were defined
using MLST 2.0 and cgMLSTFinder 1.2; acquired antimicrobial
resistance genes and virulence factors were identified using
ResFinder 4.1 and VirulenceFinder 2.0, respectively. Plasmid-
Finder 2.1 was used for plasmid classification. KmerFinder 3.2
was used for distinguishing Enterobacter spp. strains [24e29].
In E. coli isolates, serotype and FimH/FumC type were deter-
mined by SerotypeFinder 2.0 and CHTyper 1.0 [27,30].
SCCmecFinder 1.2 was used for the determination of SCCmec
type in MRSA isolates [31].

For the detection of chromosomal mutations leading to
colistin or tigecycline resistance, single nucleotide poly-
morphism (SNP) analysis was performed using Snippy [32]. The
following strains were re-annotated with RASTtk and used as
reference strains: wild-type E. coli K-12 MG1655 (NC_000913),
Escherichia hermannii ATCC 33651 (NZ_CP042941),
K. pneumoniae MGH 78578 (CP000647) and mgrB gene from
K. pneumoniae KP51 (MF431845), Klebsiella michiganensis
KCTC 1686 (CP003218), Pseudomonas aeruginosa ATCC 27853
(CP011857), Enterobacter cancerogenus FDAARGOS 1428
(NZ_CP077290), Enterobacter cloacae subsp. dissolvens SDM
(NC_018079), Enterobacter roggenkampii FDAARGOS
(NZ_CP077407) and Enterobacter hormaechei subsp. hoff-
mannii DSM 14563 (NZ_CP017186) [33]. For E. hermannii,
K. michiganensis and Enterobacter spp., phenotype including
antibiotic profile or heteroresistant subpopulation is unknown.

Statistical analysis

Statistical analysis was performed in R v. 2021.09.1. The cor-
relation between variables was determined using Fisher’s exact
test or c2-test as appropriate. Within statistically significant
results (P< 0.05), anodds ratiowasdetermined.Bodymass index
was calculated to predict underweight or overweight.

Results

Study participants

A total of 389 medical students were invited to participate
in the study, of whom 221 were in their first year of study and
168 were in their final (sixth) year of study. A total of 178 of
them agreed; 118 (66.3%) were first-year students and 60
(33.7%) participants were final-year students. Females repre-
sented 53.4% (63/118) and 60.0% (36/60) (P ¼ 0.40) among the
first-year and final-year students, respectively. The age ranged
from 19 to 24 years with a mean age of 21.3 years (SD� 1.9) and
from 25 to 30 years with a mean age of 25.8 (SD � 1.0) among
first-year and final-year students, respectively. The other
characteristics acquired from the questionnaires are summar-
ized in Supplementary Table S2.

Nasal carriage of Staphylococcus aureus and MRSA

The prevalence of nasal carriage of S. aureus and MRSA
among students was 44.9% (80/178) and 1.1% (2/178), respec-
tively. There was no statistically significant difference
between first- (47.5%, 56/118) and final-year (40.0%, 24/60)
students (P ¼ 0.34). Men were significantly more often colon-
ized (P ¼ 0.049) with an almost two-fold odds increase (1.82;
95% CI: 1.00 to 3.32).

The negative correlation with nasal carriage of S. aureus
was observed among students taking antibiotics within one
month preceding sampling (P ¼ 0.02). Of 11 students with
recent antibiotic treatment, only one carried S. aureus (9.1%)
(nine-fold decrease in the odds of colonization: 0.11; 95% CI:

https://cge.cbs.dtu.dk
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0.01 to 0.89). Similarly, only two students (2/14, 14.3%) using
probiotics and/or prebiotics were colonized by S. aureus (P ¼
0.02, a five-fold decrease in the odds: 0.18; 95% CI: 0.04 to
0.85). By contrast, 11 out of 14 students who reported contact
with livestock (poultry, pigs, rabbits, bulls and/or horses) were
carriers of S. aureus (P ¼ 0.01, a five-fold increase in the odds:
5.05; 95% CI: 1.36 to 18.78). The complete evaluations of
associations for the nasal carriage of S. aureus and P-values are
presented in Supplementary Table S2.

Staphylococcus aureus isolates were resistant to eryth-
romycin (21.3%, 17/80), cefoxitin (2.5%, 2/80), tetracycline
(2.5%, 2/80), gentamicin (2.5%, 2/80), fusidic acid (3.8%, 3/
80), clindamycin (1.3%, 1/80) and mupirocin (1.3%, 1/80). The
clindamycin resistance was inducible in 16 isolates (20.0%, 16/
80). All isolates tested remained susceptible to co-trimoxazole,
ofloxacin, rifampicin and linezolid. Five (6.3%) isolates were
defined as MDR (both MRSA and three isolates of MSSA)
(Supplementary Table S3).

The 54 different spa types were assigned to 80 S. aureus
isolates (Supplementary Table S3). The most frequent spa type
was t084 with six first-year and two final-year students colon-
ized (8/80, 10.0%). Among first-year students, t1451 was very
common (5/80, 6.3%) but none of the final-year students was
colonized by this spa type.

MRSA isolates characterization

The two MRSA carriers were first- (G26B) and final-year
(G171B) students, respectively. The first-year student was a
Slovak male with no contact with animals. The final-year stu-
dent was a Czech female owning a dog and a cat. Both were
non-smokers, had no relatives working in a healthcare facility,
no travel history within six months preceding sampling, without
a specific diet, and had not been hospitalized or treated by
antibiotics within one-month preceding sampling.

Both MRSA isolates belonged to community-acquired
MRSA (CA-MRSA) lineage, i.e. ST80 the European CA-MRSA
(G26B, t044, SCCmec type IVc) and ST59 the Asian CA-MRSA
(G171B, t3527, SCCmec type Vb). Both isolates carried
PantoneValentine leucocidin (PVL). The isolate G26B was
resistant to cefoxitin, tetracycline and fusidic acid and carried
corresponding resistance genes mecA, tet(K), and fusB. Two
plasmids, rep7c and rep20, were detected in this isolate. The
rep20 plasmid carried the fusB and blaZ genes as they were
located in the same contig. The isolate G171B was resistant to
cefoxitin, erythromycin, and clindamycin, and carried mecA
and ermB genes explaining its resistant phenotype. No plasmid
was identified in this isolate. The characterization of isolates
using WGS data is summarized in Supplementary Table S4.

Rectal carriage of ESBL-producing bacteria

Twelve isolates from 12 students (12/178, 6.7%) were cul-
tured on ESBL chromogenic agar. All isolates were resistant to
ampicillin, cefazolin and cefuroxime. The resistance to
aztreonam, piperacillin, cefotaxime, ceftazidime, cefoper-
azone was detected in 11 out of 12 isolates. A summary of
minimum inhibitory concentration (MIC) values is listed in
Supplementary Table S5. The ESBL phenotype was confirmed in
seven isolates (six E. coli and one K. pneumoniae) by DDST, with
a prevalence of 3.9% (7/178). In five isolates (two Citrobacter
spp. and three Enterobacter spp.), ESBL production was not
confirmed by DDST. The isolates were frequently detected
among males (eight-fold increase in odds: 8.05; 95% CI: 0.95 to
68.37; P ¼ 0.045) (Supplementary Table S6) with no difference
between first- and final-year students (P ¼ 1.00).

All 12 isolates growing on ESBL chromogenic agar were
sequenced and analysed for carriage of ESBL genes. ESBL genes
were detected among seven confirmed ESBL producers: blaCTX-
M-14 (N ¼ 1), blaCTX-M-15 (N ¼ 4), blaTEM-1B (N ¼ 3), blaCTX-M-55
(N ¼ 2), blaOXA-1 (N ¼ 2), blaSHV-187 (N ¼ 1), as some of them
carried more than one ESBL gene. Interestingly, two E. coli
isolates of the same ST773 were detected in two first-year
students. Citrobacter spp. and Enterobacter spp. carried only
bla genes belonging to the class-C b-lactamase family naturally
occurring in these bacteria (blaCMY-104, blaACT-7, blaACT-15,
blaCMY-109, and blaMIR-3). The results of the characterization of
isolates are summarized in Supplementary Table S7.
Rectal carriage of colistin-resistant bacteria

Furthermore, 17 colistin-resistant isolates among 16 stu-
dents were identified with a prevalence of 9.0% with no differ-
ence between first- and final-year students (P ¼ 0.58). Contact
with livestock was only associatedwith colistin-resistant isolate
colonization identifiedwith a five-fold increase in the odds ratio
(5.07; 95% CI: 1.38 to 18.59) (Supplementary Table S6). Six iso-
lates were resistant only to colistin with MIC ranging between 4
and 16 mg/L. The remaining isolates were resistant to other
antimicrobials as well (Supplementary Table S8).

The mcr-1 gene-mediated plasmid-borne colistin resistance
was found among three E. coli isolates (3/17, 17.6%) of STs 744,
69 and 10 with a prevalence of 1.7% (3/178). IncX4 and IncI2
plasmids were found to be the vectors of themcr-1 gene in two
and one isolates, respectively (Supplementary Table S9). Two
mcr-1-carrying IncX4 plasmids showed 100% similarity and they
did not carry any other genes of resistance (Supplementary
Figure S1). Two of the mcr-1-carrying strains were isolated
fromCzechwomen living in the city, one first-year and onefinal-
year student.The third isolatewas cultured fromaSlovakman in
thefirst year of study.Theydidnot report relatives inhealthcare
settings, smoking, specific diet, or contact with livestock.

In the remaining 14 colistin-resistant isolates, no mcr genes
were detected. In all colistin-resistant isolates (includingmcr-1-
harbouring strains), SNPanalysiswas performed tofindmutations
in genes associated with polymyxin resistance phenotype. Sev-
eral missense and frameshift mutations were found in genes
encoding PmrABC, PmrG, PmrK, PhoPQ, MgrB, and ArnC proteins
(Supplementary Table S10). In the PmrD protein, several muta-
tions were found; however, all of them were identified as natu-
rally occurring alternative protein isoforms according to the
Uniprot database (www.uniprot.org/uniprotkb/P37590/entry).
In addition to themcr-1gene, twoof threemcr-1-positive isolates
carried two identical amino acid substitutions: S29G in PmrA and
C27Y in PmrC. However, amino acid substitution in PmrA (S29G)
was a natural isoform of this protein (www.uniprot.org/
uniprotkb/P30843/entry). E. hermannii carried only one SNP
within the whole genome leading to amino acid substitution in
MgrB protein (Q22L). The results of SNP analysis are listed in
Supplementary Tables S11e27. New putative polymorphisms
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Table I

Summary of cultured bacterial isolates and the carriage prevalence among medical students

Detected isolates First-year students

(N ¼ 118)

Final-year students

(N ¼ 60)

Total (N ¼ 178) Risk factors

Staphylococcus aureus 56 (47.5%) 24 (40.0%) 80 (44.9%) Males (þ); antibiotics one month
preceding sampling (�); probiotics/
prebiotics consumption (�); contact
with livestock (þ)

MSSA 55 (46.6%) 23 (38.3%) 78 (43.8%)
MRSA 1 (0.8%) 1 (1.7%) 2 (1.1%)

ESBL 5 (4.2%) 2 (3.3%) 7 (3.9%) Males (þ)
Escherichia coli 4 (3.4%) 2 (3.3%) 6 (3.4%)
Klebsiella pneumoniae 1 (0.8%) 0 1 (0.6%)

Colistin-resistant 13 (10.2%)a 4 (6.7%) 17 (9.0%)a Contact with livestock (þ)
Klebsiella spp. 1 (0.8%) 2 (3.3%) 3 (1.6%)
E. colib 7 (5.9%) 2 (3.3%) 9 (5.1%)
Enterobacter spp. 4 (3.4%) 0 4 (2.2%)
Pseudomonas aeruginosa 1 (0.8%) 0 1 (0.6%)

Tigecycline-resistant 2 (1.7%) 1 (1.7%) 3 (1.7%) Relatives in healthcare settings (þ)
(P ¼ 0.06)c

E. coli 1 (0.8%) 0 1 (0.6%)
Enterobacter hormaechei 1 (0.8%) 0 1 (0.6%)
K. pneumoniae 0 1 (1.7%) 1 (0.6%)

e, negative correlation; þ, positive correlation; MSSA/MRSA, meticillin-susceptible/resistant Staphylococcus aureus; ESBL, extended-spectrum b-
lactamase.
a One student was colonized by two isolates of Enterobacter spp.
b Three mcr-1-positive strains (two from first-year student and one from final-year student).
c Trend towards significance.
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which have not previously been published as associated with
colistin resistance are listed in Supplementary Table S28.

Screening for the presence of mcr genes in enrichments
showed positivity formcr-1 in two samples fromwhich twomcr-
1-carrying isolates were acquired, and none of the mcr genes
2e8wasdetected. Theprevalenceof themcr-9 gene carriageby
qPCRwas 10.7% (19/178) but noneof these isolateswas cultured
on selective agar without colistin. The mcr-10 gene was detec-
ted among five students (2.8%) and only two Enterobacter rog-
genkampii were cultured on selective agar without colistin. In
mcr-10-carrying isolates, the mcr-10 gene was located on two
variable IncFIB (pECLA) plasmids (Supplementary Figure S2).
Both isolates were susceptible to colistin. Although one isolate
(G151A) was susceptible also to other antimicrobials tested, the
other mcr-10-positive isolate (G171A) was resistant to first to
third generations of cephalosporins, aztreonam and piper-
acillin/tazobactam (Supplementary Table S8). The WGS char-
acteristics of mcr-10-harbouring isolates are listed in
Supplementary Table S29.

Rectal carriage of tigecycline-resistant bacteria

Three tigecycline-resistant isolates were detected in three
students (1.7%, 3/178). One isolate of K. pneumoniae (4 mg/L)
was detected in a final-year Czech woman and isolates of
E. coli (2 mg/L) and Enterobacter hormaechei (8 mg/L) were
detected in first-year students (one woman and one man) (P ¼
0.26) (Supplementary Table S6). All three tigecycline-resistant
isolates were also resistant to tetracycline, ampicillin and
ampicillin/sulbactam. Tigecycline-resistant K. pneumoniae
and E. hormaechei showed MDR phenotype, as both were
resistant also to the first- and second-generation cepha-
losporins and chloramphenicol (Supplementary Table S30). No
statistically significant associations were found but all three
students recorded relatives in healthcare settings (P ¼ 0.06).

In the tigecycline-resistant E. coli isolate, the tet(A) gene
was present without mutations. In the other two isolates, no
tet genes were detected. SNP analysis comparing tigecycline-
resistant isolates with the reference showed several non-
synonymous substitutions in the proteins associated with the
tigecycline-resistant phenotype and multidrug efflux systems
but some of the mutations were found also among tigecycline-
susceptible isolates acquired in this study (Supplementary
Tables S31eS34).
Rectal carriage of vancomycin and carbapenem-
resistant bacteria

No isolate was cultured on selective media for VRE and
carbapenem resistance detection.

The summary of antimicrobial-resistant isolate carriage
among first- and final-year medical students and its association
with demographic data and lifestyle are listed in Table I.
Altogether, 17 MDR isolates from 15 students (8.4%, 15/178)
were detected with no significant difference between first- and
final-year students (P ¼ 0.78). The most frequent were E. coli
(7/17), S. aureus (5/17), K. pneumoniae (3/17), and Entero-
bacter spp. (2/17). The remaining 97 isolates were resistant to
fewer than three classes of tested antimicrobials.
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Discussion

Hospital screening for antimicrobial resistance is often
limited to patients and healthcare workers but medical stu-
dents are in general not included in the screening. In the
present study, we evaluated the carriage of clinically impor-
tant drug-resistant bacteria among medical students including
the nasal carriage of S. aureus or MRSA and intestinal carriage
of VRE, carbapenem-, colistin-, tigecycline-resistant and ESBL-
producing bacteria and its association with demographic data
and lifestyle.

A high prevalence of MSSA (43.8%) with a low prevalence of
MRSA (1.1%) was found in our study, which is in line with data
from Portugal where nasal carriage of 37.1% and 0.2% of MSSA
and MRSA, respectively, was detected in 475 students of two
biomedical faculties. By contrast, another Portuguese study
that screened nursing students in Portugal showed that a con-
siderable portion of students was colonized by MRSA during
their education (10.6%) [34]. Lower prevalence rates were
found in Irish second-year medical students where 28.8% (128/
444) and 2.0% (9/444) were nasal carriers of MSSA and MRSA,
respectively, and 955 Polish students without clinical practice
(MSSA 25.5% and MRSA 0.1%) [35,36]. In another Polish study,
MRSA strains were detected only among the students with
clinical practice (1.8%, 3/165) when compared to the students
without practice in the hospital (0/156) [37]. Similarly, two
studies from Spain found a difference in MRSA nasal carriage
between healthcare students who had not had clinical practice
(0%) and who already worked in a hospital (1.3 and 4.3%)
[38,39]. In this study, no significant difference in MRSA nor
S. aureus nasal carriage between first- and final-year students
was observed, which is in line with another Czech study that
also showed no significant difference in S. aureus nasal carriage
among 307 first- (32%) and fifth-year (30%) medical students,
but no MRSA was cultured [40]. In S. aureus isolates, the most
prevalent spa type found was t084, which was previously
detected in healthy young males with intermittent S. aureus
carriage [41]. The MRSA spa t044 detected in this study was
found in one case in the Czech surveillance study including 441
MRSA isolates from asymptomatic carriers of inpatients and
outpatients, and MRSA spa type t3527 was not detected [42].

Analysis of demographic and lifestyle data showed that
contact with livestock but not with companion animals (cats
and dogs) was found to be positively associated with S. aureus
nasal carriage. It was previously reported that farm animals
(especially poultry and pigs) could serve as a reservoir of
S. aureus for humans, but companion animals were not fre-
quent carriers of S. aureus [43]. By contrast, antibiotic, pro-
biotic, or prebiotic consumption showed a negative correlation
with S. aureus nasal colonization. Regarding the effect of
probiotics, some probiotic bacteria, i.e. Bacillus spp., were
found to inhibit S. aureus nasal colonization by interference
with the quorum sensing signalling system [44].

Data on the intestinal carriage of drug-resistant strains by
medical students are scarce. Most of the available studies are
from China and Nepal and are often limited to ESBL carriage
[10,11]. In Europe, a Portuguese study detected 16 (14.4%) out
of 111 faecal samples of healthcare students positive for ESBL-
producing Enterobacterales, which is higher than in our study
(3.9% (7/178)). Interestingly, the authors found blaCTX-M-1 as
the most frequent ESBL gene (76%), which is commonly found in
livestock isolates, and only 18% of Portuguese ESBL producers
carried blaCTX-M-15, which predominates in most European
studies including our study (57%) [45].

Our study detected more ESBL producers among first-year
students (5/7) similar to the above-mentioned Portuguese
study which also found zero prevalence of colistin- and
carbapenem-resistant strains using SuperPolymyxin and Super-
Carba media, respectively, by contrast with a remarkably high
prevalence of colistin resistance (9.0%) in our study [45].
Moreover, three students (1.7%) carried mcr-1-positive E. coli.
Similar to S. aureus nasal carriage, a significantly higher prev-
alence of ESBL producers was found among males than among
females. The higher carriage rate of opportunistic pathogens in
males such as S. aureus or Neisseria meningitidis has been
reported previously [46,47]. This may be associated with
lifestyle-related factors that vary between males and females
including hand hygiene habits or participation in contact sports
[48]. Sex hormones can be another attribute, as contraceptives
have been linked with a higher risk of S. aureus nasal carriage
[49]. However, no association between contraceptives and the
carriage of any pathogen was found in our study.

Travelling abroad (especially to Asia) was suggested as a risk
factor for colonization with colistin- and carbapenem-resistant
strains in the study of Dao et al., where 2.6% of students became
carriers of carbapenemase-producing Entero-bacterales after
an internship abroad and 6.8% of students acquired the mcr-1
gene-carrying bacteria [50]. In our study, travelling was not
found to be a significant factor, but because of the coronavirus
pandemic, only a limited number of students had travelled
abroad (21.3%) and none of them had travelled to Asia. On the
other hand, contact with livestock significantly increased the
odds to acquire colistin-resistant strains. This is not unexpected
as livestock is probably the main source of colistin-resistant
strains to people because of the extensive usage of colistin in
the veterinary sector [51].

In this study, the mcr-1, -9 and -10 genes were detected,
which is in concordance with other studies as the mcr-1 and
mcr-9 are the most disseminated mcr genes in the world [52].
Unfortunately, only two mcr-10-positive E. roggenkampii were
cultivated as these isolates are often susceptible to colistin and
other antimicrobials making their isolation problematic [51].
Other mcr genes from 2 to 8 are isolated mainly from the
environment, food, and animals, and their detection among
people is also scarce in other studies [16,17,53,54].

Inmcr-negative isolates, amino acid substitutions related to
colistin resistance were found. There are several studies
describing polymorphism in E. coli and K. pneumoniae isolates,
mainly in PmrABCD, PmrK, MgrB, and PhoPQ proteins
(Supplementary Table S28). Also, for other strains including
K. oxytoca, E. hermannii, Enterobacter spp. and Pseudomonas
aeruginosa, some putative amino acid changes leading to col-
istin resistance were suggested, as knowledge about the
mechanism of colistin resistance in these isolates is insufficient
(Supplementary Table S28). Interestingly, in colistin-resistant
E. hermannii, only one SNP in the whole genome was identi-
fied, leading to amino acid substitution in MgrB regulator
(Q22L) which was previously related to colistin resistance in
K. pneumoniae [55].

Tigecycline resistance was detected in three isolates.
However, these samples represent more incidental inter-
ceptions rather than a reflection of prevalence because of the
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unavailability of selective media for screening. Tigecycline
belongs to the bacteriostatic agents with various breakpoints
for different strains (EUCAST v11), making screening of tige-
cycline resistance problematic [56].

Unfortunately, the mechanism of resistance remained
unclear in cultured tigecycline-resistant isolates. Some types
of nucleotide mutations in transcriptional regulators such as
ramR or acrR can lead to overexpression of the efflux system
[57]. However, amino acid substitutions detected in AcrR in this
study were found also in tigecycline-susceptible strains. Some
other mutations in MATE, MFS and RND family efflux pumps
were detected only in tigecycline-resistant isolates when
compared to tigecycline-susceptible isolates in this study.
However, there is still insufficient knowledge about the sig-
nificance of these mutations.

Surprisingly, the prevalence of colonization with MDR strains
did not differ significantly between first- and final-year stu-
dents. The level of student involvement in patient care
increases over the course of their medical studies and includes
months of compulsory individual clinical practice at different
hospital wards, especially in their final year of study. Never-
theless, the finding did not support our original hypothesis that
the final-year students were at considerable risk of acquisition
of hospital-associated MDR strains upon six years of their
attendance at the university hospital. It is apparent that the
result of such observations depends on the local epidemio-
logical situation in the hospital and the level of student
involvement in patient care, and therefore may differ between
medical student groups from different universities and over
time.

Although the colonization rates in this study were generally
low, some clinically relevant pathogens including colistin-
resistant bacteria (mcr-1-positive), ESBL producers, or MRSA
were detected. The students in the study were young healthy
carriers, so their colonization by MDR strains poses a risk of
transmission of these pathogens while working with patients
and moving around the hospital environment rather than
developing the disease associated with MDR strain carriage
[58,59].

Limitations of our single-centre study included a relatively
small sample size, which does not allow generalization of
associations found between lifestyle factors and carriage of
resistant pathogens; and the fact that only CHROMagar KPC and
ESBL were used to detect carbapenem-resistant Gram-negative
bacteria and ESBL producers. This posed a risk of not detecting
cephalosporin-susceptible OXA-48 producers with only
decreased susceptibility to carbapenems [60].

In conclusion, medical students may be colonized by drug-
resistant bacteria with no difference between first- and final-
year students. The participation of students in self-screening
increases their awareness of possible colonization by resist-
ant strains and their potential transmission due to poor hand
hygiene.
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