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Given a relational database, a key is a set of attributes such that a value assignment to this 
set uniquely determines the values of all other attributes. The database uniquely defines 
a pure Horn function h, representing the functional dependencies. If the knowledge of the 
attribute values in set A determines the value for attribute v , then A → v is an implicate 
of h. If K is a key of the database, then K → v is an implicate of h for all attributes v .
Keys of small sizes play a crucial role in various problems. We present structural and 
complexity results on the set of minimal keys of pure Horn functions. We characterize 
Sperner hypergraphs for which there is a unique pure Horn function with the given 
hypergraph as the set of minimal keys. Furthermore, we show that recognizing such 
hypergraphs is co-NP-complete already when every hyperedge has size two. On the 
positive side, we identify several classes of graphs for which the recognition problem can 
be decided in polynomial time.
We also present an algorithm that generates the minimal keys of a pure Horn function 
with polynomial delay, improving on earlier results. By establishing a connection between 
keys and target sets, our approach can be used to generate all minimal target sets with 
polynomial delay when the thresholds are bounded by a constant. As a byproduct, our 
proof shows that the Minimum Key problem is at least as hard as the Minimum Target Set 
Selection problem with bounded thresholds.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Throughout the paper, we denote by V the set of n Boolean variables. We will refer to the members of V as positive 
literals and to their negations as negative literals, respectively. A Boolean function is a mapping f : {0, 1}V → {0, 1}. A conjunc-
tive normal form (CNF) is the conjunction of clauses, where each clause is a disjunction of literals. The CNF � = C1 ∧ · · · ∧ Cq

is also viewed as a set of clauses � = {C1, . . . , Cq}.
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A CNF � is called Horn if each of its clauses contains at most one positive literal, and pure Horn if every clause contains 
exactly one positive literal. A Boolean function h is called (pure) Horn if it has a (pure) Horn CNF representation. Note that 
every CNF defines a Boolean function, but a Boolean function may have many different CNF representations. For instance, 
given the pure Horn CNF � = (a ∨b) ∧ (b ∨a) ∧ (a ∨ c ∨d) ∧ (a ∨ c ∨e) on variable set V = {a, b, c, d, e}, we can also represent 
it by the pure Horn CNF � = (a ∨ b) ∧ (b ∨ a) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e). Note that a pure Horn clause can also be viewed as 
an implication. For instance, C = b ∨ c ∨ e is equivalent to the implication bc → e. Thus, we can view a pure Horn CNF as an 
implication system, e.g., we shall write � equivalently, as a → b, b → a, ac → de. For an implication A → v we call A the 
body and v the head. We say that A → v is an implicate of the Horn function h if any assignment x ∈ {0, 1}V that falsifies 
A → v also falsifies h. In particular, if h is represented by a pure Horn CNF then the clauses of this CNF are all implicates 
of h.

The concept of Horn functions has been widely studied under different names, such as directed hypergraphs in graph 
theory and combinatorics [1], as implication systems in machine learning [2,3], database theory [4,5], and as lattices and 
closure systems in algebra and concept lattice analysis [6,7]. Horn functions form a fundamental subclass of Boolean func-
tions endowed with interesting structural and computational properties. The satisfiability problem can be solved for Horn 
functions in linear time and the equivalence of such formulas can be decided in polynomial time [8]. Horn functions are 
strongly related to relational databases [4] and many interesting algorithmic problems arise from that context. Given a 
database, we associate the set V of Boolean variables to the set of attributes of the database. For A ⊆ V and v ∈ V we 
write A → v if the knowledge of the attribute values in A uniquely determines the value of v (in the database records). 
Such a relation is called a functional dependency in the database. The set of all functional dependencies define a unique 
pure Horn function associated to the given database [4,5]. One of the important notions that arise from databases is the 
concept of a key. A key in a relational database is a set of attributes the values of which determine uniquely the values of 
all other attributes. Accordingly, a subset K of the variables is a key of a Horn function h if K → v is an implicate of h for 
all v ∈ V \ K .

We call a pure Horn function key Horn if the body of any of its implicates is a key of the function. Key Horn functions 
generalize the well studied class of hydra functions introduced in [9], where all the bodies are of size 2. Finding a short-
est CNF representation of a given Horn function with respect to multiple relevant measures (number of clauses, number 
of literals, etc.) is a computationally hard problem [1,5,10]. For general pure Horn functions not even non-trivial approx-
imation algorithms are known. For hydra functions a 2-approximation algorithm was given in [9], while [11] proved that 
the minimization remains NP-hard even in this special case. In [12], the authors provided logarithmic factor approximation 
algorithms for general key Horn functions with respect to all of the above mentioned measures.

Our results The present paper focuses on the structure of the set of minimal keys of a pure Horn function. In particular, we 
are interested in finding Sperner hypergraphs B that form the set of minimal keys of a unique pure Horn function hB . We 
call such a B a unique key hypergraph, and the corresponding Horn function hB a unique key Horn function.

Section 3 gives a characterization of unique key hypergraphs and unique key Horn functions. In particular, we show 
that cuts of a matroid form a unique key hypergraph. The special case when every hyperedge has size two is discussed 
in Section 4, where we show that recognizing unique key graphs is co-NP-complete. Subsequently, we identify several 
classes of graphs for which the recognition problem can be decided in polynomial time. Section 5 provides an algorithm 
that generates all minimal keys of a pure Horn function with polynomial delay. The algorithm can be used to generate all 
candidate keys of a relation improving on results in [13,14]. Furthermore, we show that the problems of finding a minimum 
key of a pure Horn function and of finding a minimum target set of a graph are closely related. Using this connection, our 
algorithm can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a 
constant.

2. Definitions and notation

We start with additional definitions and notation. We view the set of variables V as a ground set. A hypergraph B ⊆ 2V

is called a Sperner hypergraph if none of its hyperedges contains another one. Given a Sperner hypergraph B ⊆ 2V , we say 
that T ⊆ V is a transversal of B, if T ∩ B 	= ∅ for all B ∈ B. We say that S is an independent set of B if T = V \ S is a 
transversal of B. We denote by Bd the set of minimal transversversals of B, and by B∗ the family of its independent sets.

For a hypergraph B ⊆ 2V and subset S ⊆ V we denote by BS = {B ∈ B | B ⊆ S} the subhypergraph of B induced by S . 
In particular, if S ∈ B∗ then BS = ∅. Furthermore, we denote by BS = min’l {S ∩ B | B ∈ B} the projection of B to S where 
min’l {H} denotes the family consisting of the inclusionwise minimal members of H. Clearly, if S is not a transversal of B
then we have BS = {∅}. We will use the following well-known lemma.

Lemma 1 (Seymour [15]). For a Sperner hypergraph B ⊆ 2V and subset S ⊆ V we have (BS)
d = (Bd)S and (BS )d = (Bd)S .

For a Boolean function h, we denote by T (h) the set of true vectors of h, i.e., T (h) = {x ∈ {0, 1}V | h(x) = 1}. For two 
functions h and h′ we write h ≤ h′ if for all x ∈ {0, 1}V we have h(x) ≤ h′(x), in other words, if T (h) ⊆ T (h′). We say that 
a clause A → v = v ∨ ∨

a∈A ā is an implicate of h if (A → v)(x) ≥ h(x) for all x ∈ {0, 1}V . For a subset S ⊆ V we define the 
forward chaining closure of S by Fh(S) = {u ∈ V | S → u is an implicate of h}. It is a well known fact that if h is a pure Horn 
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function represented with a pure Horn CNF �, then the forward chaining closure Fh(S) of a given set of variables S can be 
computed in time linear in the length of � (see e.g. [16]). Note that if h′ ≤ h, then Fh′ (S) ⊇ Fh(S), since any implicate of h
is also an implicate of h′ . For a CNF � we use the same terminology and notation as it defines a unique Boolean function. 
For example, � ⊆ � implies � ≥ �.

Let us remark here that the mapping S → Fh(S) associates a so called closure system to every pure Horn function h, 
and such a closure system determines h uniquely. As we mentioned in the introduction, pure Horn functions appear to 
be the subjects of study not only in closure systems, but in fact in several areas, including the theories of directed hy-
pergraphs, relational databases, concept lattices, certain convex geometries, etc. The mathematical equivalence of some of 
these terminologies motivated e.g., the recent workshop [17]. It turns out that despite of this mathematical equivalence, the 
“natural” representation of the underlying system (input) may vary substantially from area to area. Accordingly, the related 
algorithmic problems arise in different contexts and may have very different complexities. For instance, numerous CNF-s of 
very different sizes can represent a pure Horn function in the context of Boolean functions/implication systems, and none of 
these may appear “natural” to represent the corresponding unique closure system. In our paper we focus on both structural 
and algorithmic problems, and thus decided to use the terminology and notation based on hypergraphs and implications.

Our study focuses on keys of a pure Horn function h, that is on subsets K ⊆ V for which Fh(K ) = V . Clearly, keys of 
a pure Horn function form an upward monotone system. We denote by K(h) the set of minimal keys of h. To a Sperner 
hypergraph B ⊆ 2V we associate the pure Horn CNF

�B =
∧

B∈B

∧

v∈V \B

(B → v).

Note that we have K(�B) = B. Let us observe that for a Sperner hypergraph B and pure Horn function h, B ⊆K(h) implies 
that h ≤ �B .

Definition 2. For a Sperner family B we call �B a key Horn CNF. A pure Horn function h is called key Horn if it has a key 
Horn CNF representation. Furthermore, we call h unique key Horn if it is the unique pure Horn function with K(h) as the set 
of minimal keys.

By definition, a unique key Horn function is key Horn.
Let us also note that there may be several pure Horn functions with the same family of keys. As an example, consider 

the hypergraph B = {{a, b}, {b, c}, {c, d}} over the ground set V = {a, b, c, d}, and the pure Horn CNFs �1 = �B ∧ (b → d), 
�2 = �B ∧ (c → a), and �3 = �B ∧ (b → d) ∧ (c → a). It is easy to verify now that the CNFs �B , and �i , i = 1, 2, 3 define 
four pairwise distinct pure Horn functions and each has B as its set of minimal keys.

3. Unique key Horn functions

The purpose of this section is to give an understanding of the structure of pure Horn functions that have the same set 
of keys and in particular the structure of unique key Horn functions.

Lemma 3. Let B ⊆ 2V be a Sperner hypergraph and h : {0, 1}V → {0, 1} be a pure Horn function such that h ≤ �B . Then K(h) 	= B if 
and only if there exists an implicate A → v of h and a minimal transversal T ∈ Bd such that T ∩ A = ∅ and v ∈ T .

Proof. Since h ≤ �B , any B ∈ B is a key of h. Thus K(h) ⊆ B implies K(h) = B because B is a Sperner hypergraph.
Assume first that K(h) 	= B, that is, there exists a minimal key K ∈ K(h) \ B. Since the sets of B are keys of h and K

is a minimal key of h, we must have K ∈ B∗ . Let W denote a maximal independent set which contains K as a subset. It 
follows that T = V \ W is a minimal transversal which is disjoint from K . Let v be an arbitrary node in T . Then K → v is 
an implicate of h because K is a key. Thus, choosing A = K proves one direction of our claim.

For the reverse direction, let us assume that there exists an implicate A → v of h and a minimal transversal T ∈ Bd such 
that T ∩ A = ∅ and v ∈ T . Since T is a minimal transversal of B, there exists B ∈ B such that T ∩ B = {v}. This implies that 
F(A→v)∧�B (V \ T ) = V . Because we have h ≤ (A → v) ∧ �B by our assumptions, Fh(V \ T ) = V follows. Therefore, there 
exists a minimal key K ⊆ V \ T of h. Finally, V \ T ∈ B∗ implies K ∈ B∗ , from which K ∈K(h) \B follows as claimed. �

We introduce the notation ∪B = ⋃
B∈B B to denote the union of the hyperedges of B.

Lemma 4. Let B ⊆ 2V be a Sperner hypergraph and h : {0, 1}V → {0, 1} be a pure Horn function such that h ≤ �B . Then K(h) = B if 
and only if for all implicates A → v of h with A ∈B∗ we have v ∈ (V \ A) \ (∪BV \A).

Proof. Let us first note that for any subset A ⊆ V that has a disjoint minimal transversal T ∈ Bd we must have A ∈ B∗ . 
Thus, by Lemma 3, we have K(h) = B if and only if for all implicates A → v of h for which A ∈ B∗ and for all minimal 
transversals T ∈ Bd with T ∩ A = ∅ we have v /∈ T . By Lemma 1, we have (BV \A)d = (Bd)V \A . Furthermore, the equality 
∪H = ∪Hd holds for all Sperner hypergraphs H. Hence, we have ∪(Bd)V \A = ∪BV \A , implying the claim. �
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Lemma 5. Let B ⊆ 2V be a Sperner hypergraph and define � = {A → v | A ∈ B∗, v /∈ ∪BV \A}. Let ϕ be a set of clauses of the form 
A → v that are not implicates of �B . Then K(ϕ ∧ �B) = B if and only if ϕ ⊆ �.

Proof. The claim follows by Lemma 4. �
Now we are ready to characterize unique key hypergraphs.

Theorem 6. For a Sperner hypergraph B ⊆ 2V , the pure Horn function h = �B is unique key Horn if and only if for all T ∈ Bd and 
v /∈ T there exists T ′ ∈ Bd such that T ′ 	= T and T ′ ⊆ T ∪ {v}.

Proof. For any pure Horn function h with K(h) = B we have h ≤ �B .
For the only if direction, take an arbitrary T ∈ Bd and v /∈ T , and let A = V \ (T ∪ {v}). By definition of A, we have that 

∪BV \A ⊆ T ∪ {v}. Since T is a transversal, we have that T ⊆ ∪BV \A and that A → v is not an implicate of h. If v /∈ BV \A , 
then by Lemma 5 we have K(�B ∧ (A → v)) = B which is a contradiction with the assumption that h is the only Horn 
function with this property. It follows that v ∈ ∪BV \A and altogether we get that T ∪ {v} = ∪BV \A . In particular, this means 
that there exists a B ∈ B with B \ A being minimal and v ∈ B . Since T is a transversal of B, we have B ∩ T 	= ∅. Consider 
an element u ∈ B ∩ T . By the minimality of B \ A, for every B ′ ∈ B different from B either B ′ ∩ (T \ {u}) 	= ∅ or v ∈ B ′ . This 
means that T ′ = (T \ {u}) ∪ {v} is a transversal of B.

For the opposite direction, take an arbitrary A ∈ B∗ and v /∈ ∪BV \A . Then A ∪ {v} ∈ B∗ , hence there exists T ∈ Bd

disjoint from A ∪ {v}. By the assumption, there exists u ∈ T such that T ′ = (T \ {u}) ∪ {v} is also a minimal transversal of 
B. Therefore, there exists B ∈ B for which B ∩ T ′ = {v}. As v /∈ ∪BV \A , there exists B ′ ∈ B such that B ′ \ A � B \ A and 
v /∈ B ′ \ A. This implies B ′ ∩ T ′ = ∅, contradicting T ′ being a transversal. This shows that the set � in Lemma 5 is empty, 
proving the uniqueness of h. �

We assume that the reader is familiar with the notion of a matroid [18,19].

Corollary 7. The cuts of a loopless matroid form a unique key hypergraph.

Proof. If B is the set of cuts of a matroid, then Bd is the set of bases. If the matroid is loopless, then ∪Bd = V . The basis 
exchange axiom implies the necessary and sufficient condition of Theorem 6. �

The following example shows that not all unique key hypergraphs are related to matroids. Let B = {{1, 2}, {1, 3}, {1, 4},
{2, 3, 4}}, where V = {1, 2, 3, 4}. Then Bd = B and satisfies the conditions of Theorem 6, hence B is unique key. Clearly, Bd

is not the set of bases of a matroid.

Remark 8. The conditions of Theorem 6 can be checked in polynomial time if Bd can be generated from B in time polyno-
mial in the length of the input. For example, if B is 2-monotonic or forms the set of bases of a matroid. For a 2-monotonic 
system B it was shown e.g., in [20–22] that |Bd| ≤ |V | · |B| and that Bd can be generated with polynomial delay. These two 
facts imply that Bd can be generated in time polynomial in the length of the input when B is given as input. For the dual 
of the bases of a matroid B it is well-known and easy to check that the sets in Bd are complements of the hyperplanes of 
the matroid and |Bd| ≤ rank(V ) · |B|. Consequently, a result of Seymour [23] implies that in fact Bd can be generated from 
B in time polynomial in the length of the input.

4. Unique key graphs

Let us now consider Sperner hypergraphs B ⊆ 2V such that |B| = 2 for all B ∈ B (i.e., graphs). For the sake of simplicity, 
we use G = (V , E) to denote such a hypergraph B = E . We say that G is a unique key graph if B = E is a unique key hyper-
graph. Following standard notation in graph theory, we denote by N(u) = {v ∈ V | (u, v) ∈ E} the set of neighbors of vertex 
u ∈ V . We consider simple graphs throughout, hence u /∈ N(u). For a subset S ⊆ V we denote by N(S) = (⋃

u∈S N(u)
) \ S

the set of neighbors of S .

4.1. Complexity of recognizing unique key graphs

Given a graph G = (V , E) and a maximal independent set I ⊆ V we say that u /∈ I is an individual neighbor of v ∈ I if 
N(u) ∩ I = {v}.

Theorem 9. A graph G = (V , E) is a unique key graph if and only if for every maximal independent set I ⊆ V and vertex v ∈ I there 
exists a vertex u /∈ I that is an individual neighbor of v.
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Fig. 1. The graph G� corresponding to CNF formula � = (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x̄2 ∨ x̄3 ∨ x̄4). Grey vertices form a maximal independent set 
corresponding to a satisfying truth assignment. Note that z has no individual neighbor.

Proof. The minimal transversals of E are exactly the complements of the maximal independent sets of G , that is the 
minimal vertex covers of G . For a maximal independent set I with v ∈ I and u /∈ I , the set (I \ {v}) ∪ {u} is an independent 
set if and only if u is an individual neighbor of v . If this is the case, then (I \ {v}) ∪ {u} can be extended to a maximal 
independent set I ′ of G not containing v . Thus the statement follows from Theorem 6. �

Our next goal is to show that recognizing if B is the set of minimal keys of a unique key function is difficult already 
for hypergraphs of dimension two. Let us consider a CNF � = C1 ∧ · · · ∧ Cm over Boolean variables xi , i = 1, ..., n. Let us 
associate a graph G� to � as follows. The set of vertices is V (G�) = {xi, ̄xi, yi | i = 1, ..., n} ∪ {C j | j = 1, ..., m} ∪ {z}. The 
edges are defined as follows: vertices xi , x̄i and yi form a triangle for all i = 1, ..., n. Vertices C j , j = 1, ..., m and z form a 
clique. Finally, all vertices C j are connected to the literals they include (see Fig. 1).

Theorem 10. A CNF � is not satisfiable if and only if the graph G� is unique key.

Proof. We derive this claim using Theorem 9.
Let us note first that every maximal independent set I ⊆ V (G�) has exactly n + 1 points, one from each of the following 

cliques: Ti = {xi, ̄xi, yi}, i = 1, ..., n, and K = {C j | j = 1, ..., m} ∪{z}. This is because an independent set I can contain at most 
one vertex from each of these cliques, and if it is disjoint from Ti , then I ∪ {yi} is also independent. Similarly, if I ∩ K = ∅, 
then I ∪ {z} is also independent. We now verify the conditions of Theorem 9.

Let I be a maximal independent set, and assume that v = xi ∈ I or v = x̄i ∈ I . In both cases u = yi is an individual 
neighbor of v . Note next that the sets N(xi) ∩ K and N(x̄i) ∩ K are disjoint, and therefore any independent set is disjoint 
from at least one of these sets. Thus, if v = yi ∈ I , then either u = xi or u = x̄i (or both) is an individual neighbor of v . If 
v = C j ∈ I , then u = z is an individual neighbor of v .

Thus, the only claim left to show is that � is satisfiable if and only if there exists a maximal independent set I of G
containing vertex z such that z does not have an individual neighbor. To see this let us first assume that � is satisfiable. 
Consider the set I that contains the literals that are true in a satisfying assignment and vertex z. Since every clause C j is 
satisfied, it has a neighbor in I other than z, and thus z does not have an individual neighbor. For the other direction let 
us assume that I is a maximal independent set, containing z such that z does not have an individual neighbor. Therefore, 
every clause C j must have a neighbor in I , which must be a literal. Since (xi, ̄xi) is an edge of G for all i = 1, ..., n, I cannot 
contain a complementary pair of literals, and thus the literals in I can be set to true simultaneously, satisfying �. �
Corollary 11. Deciding if a hypergraph is unique key is co-NP-complete already for hypergraphs of dimension 2.

Proof. It is easy to see that the problem belongs to co-NP, and thus the statement follows by Theorem 10. �
4.2. Bipartite graphs

Theorem 12. A bipartite graph G = (V , E) without isolated vertices is unique key if and only if E is a perfect matching.

Proof. If E forms a perfect matching on V , then every maximal independent set I contains exactly one end vertex of every 
edge in E . For any vertex v ∈ I , the other end vertex u of the matching edge incident to v is an individual neighbor of v , 
thus G is a unique key graph by Theorem 9.

For the other direction, let A and B denote the color classes of G , that is, V = A ∪ B . By the assumption that there are 
no isolated vertices in G , both A and B are maximal independent sets. By Theorem 9, every vertex v ∈ V has an individual 
neighbor in the opposite color class, that is, a neighbor of degree exactly one. This implies that E is a matching as stated. �
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4.3. Bounded treewidth graphs

Theorem 13. For graphs of bounded treewidth, it is possible to decide in linear time if a graph is a unique key graph.

Proof. We will formulate the problem in monadic second order logic (MSO), the result then follows by Courcelle’s theo-
rem [24]. Assume that a graph G = (V , E) is described with a set of vertices V and an adjacency relation adj(u, v) which 
represents the set of edges. The unique key property can then be described as the predicate

UniqKey(G) = (∀I ⊆ V )(∀v ∈ I)(∃u ∈ V )[IndSet(I) → IndNeigh(I, v, u)]
where IndSet(I) is a predicate satisfied if I is an independent set of G and IndNeigh(I, v, u) is satisfied if v ∈ I and u is its 
individual neighbor. These predicates can be defined in the following way.

IndSet(I) = (∀u ∈ I)(∀v ∈ I)[¬adj(u, v)]
IndNeigh(I, v, u) = (∀w ∈ I)[adj(w, u) → w = v]

This concludes the proof. �
Since the formulation of UniqKey(G) uses only quantification over a set of vertices I and not over any set of edges, we 

can use it to show the following corollary.

Corollary 14. For graphs of bounded clique-width, it is possible to decide in linear time if a graph is a unique key graph.

Proof. Follows by using a version of Courcelle’s theorem for clique-width [25] on the formulation of predicate UniqKey(G)

in the proof of Theorem 13. �
4.4. Graphs with small induced matchings

Theorem 15. Let G = (V , E) be a graph, and assume that the size of the largest induced matching of G is bounded by a constant. Then 
there is an efficient algorithm to decide if G is a unique key graph.

Proof. If B = E then Bd is the family of minimal vertex covers that are exactly the complements of maximal independent 
sets. It is known that if the largest induced matching in G has size at most p, then it has at most n2p maximal independent 
sets [26]. Thus if p is a constant, then all of them can be generated in polynomial time [27]. This in turn implies that the 
conditions of Theorem 9 can be checked in polynomial time. �
5. Generating minimal keys

We shift the focus from unique key hypergraphs to the problem of generating all possible minimal keys of a given pure 
Horn function. The proposed approach can be applied for various problems, for example for generating all minimal target sets
of a graph. Note that the number of minimal keys can be exponential in the size of the input CNF, hence the efficiency of 
generating them is measured by the time spent between outputting two of them. A generation algorithm outputs the objects 
in question one by one without repetition. Such a procedure is called polynomial delay if the computing time between any 
two consecutive outputs is bounded by a polynomial of the input size.

For the generation of minimal keys of a pure Horn function we employ the technique based on supergraphs. A supergraph 
is a directed graph in which the vertices are the objects to be generated, and arcs represent a neighborhood relation such 
that (i) the out-neighborhood of any vertex can be generated in time polynomial in the length of the input, and (ii) the 
supergraph is strongly connected. Then, a carefully executed breadth-first search in this graph, starting from an arbitrary 
vertex, will reach and output all vertices with polynomial delay; see e.g., [28,29]. We provide a detailed description below. 
Let us remark that this approach is also very similar to the methods used in [30,31] for generating all prime implicates and 
all abductive explanations of a Horn CNF.

Given a pure Horn CNF �, we associate to it a directed graph D� = (K(�), E) as follows. For a minimal key K ∈ K(�), 
an arbitrary variable v ∈ K , and a clause A → v ∈ �, we define the set S = (K − v) ∪ A. Note that S is a key of �, hence 
there exists K ′ ∈K(�) with K ′ ⊆ S . We find such a K ′ using a greedy procedure by dropping variables from S one-by-one, 
in some order, and checking at each step if the remaining set is a key by using forward chaining with respect to �. We 
include a directed edge (K , K ′) into E for all possible choices v ∈ K and A → v ∈ �. For some v ∈ K we might not have a 
clause A → v in which case we do not generate the corresponding K ′ . Note that every vertex in D� has at most m outgoing 
edges, where m denotes the number of clauses in �. Let us remark that the final graph D� is not uniquely defined as its 
edge set depends on the choices of the K ′ sets in the above procedure. (We could make this definition unique by always 
using the same order of the elements of V when dropping them one-by-one from S .)
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Fig. 2. Illustration of Theorem 18. The CNF associated to G is �G = (b → a) ∧ (e → a) ∧ (d → a) ∧ (a → b) ∧ (c → b) ∧ (b → c) ∧ (d → c) ∧ (e → c) ∧ (a →
d) ∧ (c → d) ∧ (e → d) ∧ ({a, c} → e) ∧ ({a, d} → e) ∧ ({c, d} → e).

Lemma 16. D� is strongly connected.

Proof. First we introduce a measure between minimal keys. Let K1, K2 ∈ K(�) be two minimal keys. We know that the 
forward chaining closure of K2 is equal to V . Let us partition V into layers L0, L1, . . . , Lt where L0 := K2, define Li+1 := {v ∈
V \ Li | there exists A → v ∈ � s.t. A ⊆ ⋃i

j=0 L j}, and t is the largest index such that Lt 	= ∅. Let �(K1, K2) := (�0, �1, . . . , �t)

where �i = |Li ∩ K1| for i = 0, . . . , t .
We claim that there exists an out-neighbor K3 of K1 in D� such that �(K3, K2) is strictly smaller in the reverse lex-

icographic order than �(K1, K2). To see this, let i be the largest index such that �i 	= 0, and let v be in K1 ∩ Li . Since 
v ∈ Li , there exists an A → v ∈ � such that A ⊆ ⋃i−1

j=0 L j . For the set S = (K1 − v) ∪ A we have that |Li ∩ S| < |Li ∩ K1| and 
|L j ∩ S| = 0 for j > i. Thus the out-neighbor K3 ⊆ S satisfies the claim. By induction in the reverse lexicographic order of 
the possible � vectors, there exists a directed path in D� from K3 to K2. As K1 K3 ∈ E , the same holds for K1, thus finishing 
the proof of the lemma. �
Theorem 17. Given a pure Horn CNF �, we can generate all minimal keys of � with polynomial delay.

Proof. Consider the directed graph D� . Our algorithm will perform a breadth-first search on D� . As D� is strongly con-
nected according to Lemma 16, all minimal keys are visited (and hence generated) in this way.

We start with a minimal key which we generate by greedily leaving out elements one by one from V . In this process we 
store the generated minimal keys both in a first-in-first-out (FIFO) queue and in a binary tree. Note that insertion/deletion 
takes O (1) time in the queue, insertion into the binary tree takes O (n) time, and checking if a set is already in the binary 
tree also can be done in O (n) time.

In a general step we take the first element K of the queue, and generate all its O (m) out-neighbors in D� , as described 
above. For each out-neighbor we test first if it is in the binary tree of already generated minimal keys, and if not, we 
insert it there and add it to the end of the queue. Once we processed all out-neighbors of K , we delete it from the queue, 
and output it. According to the above, all these can be done in O (poly(n, m)) time. Thus, this procedure has a polynomial 
delay. �
5.1. Minimum target set selection

In the Minimum Target Set Selection problem, we are given an undirected graph G = (V , E) and a threshold function 
t : V → Z+ . As a starting step, we can activate a subset S ⊆ V of vertices. In every subsequent round, a vertex v becomes 
activated if at least t(v) of its neighbors are already active. The goal is to find a minimum sized initial set S of active nodes 
(called a target set) so that the activation spreads to the entire graph.

Finding a minimum sized target set is rather difficult. Chen [32] showed that the problem is difficult to approximate 
within a O (poly log(n)) factor even when all thresholds are 2 and the graph has a constant degree. Charikar et al. [33]
proved that, assuming that the Planted Dense Subgraph conjecture is true, Minimum Target Set Selection is in fact difficult 
to approximate within a factor of O (n1/2−ε) for every ε > 0 even for constant thresholds.

The aim of this section is to show that the problems of finding a minimum target set in a graph (Min-TSS) and of finding 
a minimum key of a pure Horn function (Min-Key) are closely related.

Theorem 18. The Min-TSS problem with constant thresholds is polynomial-time reducible to the Min-Key problem.

Proof. Let G = (V , E), t : V → Z+ be an instance of the Min-TSS problem. For a vertex v ∈ V , we denote the set of its 
neighbors by N(v) ⊆ V . We construct a Horn CNF as follows (see Fig. 2):
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K. Bérczi, E. Boros, O. Čepek et al. Theoretical Computer Science 922 (2022) 170–178
Fig. 3. Illustration of Theorem 19. Note that the size of the graph G is polynomial in the length of the input.

�G :=
∧

v∈V

∧

A⊆N(v)
|A|=t(v)

A → v.

Note that �G can be determined in polynomial time as the thresholds are assumed to be constants. By the definition of 
�G , the activation process in G is equivalent to the forward chaining process in �G . This means that K ⊆ V is a target set 
of G if and only if it is a key of �G , concluding the proof of the theorem. �

The reduction in the proof of Theorem 18, together with the hardness result of [33] implies that Min-Key is difficult to 
approximate within a factor of O (n1/2−ε) for every ε > 0, assuming that the Planted Dense Subgraph conjecture holds.

Based on a construction previously used in [33] for establishing a connection between the directed and undirected 
variants of the target set selection problem, we show that Min-TSS includes Min-Key as a special case.

Theorem 19. The Min-Key problem is polynomial-time reducible to the Min-TSS problem.

Proof. Let � be a pure Horn CNF on variables V . We construct a graph G = (V ′, E) together with a threshold function 
t : V → Z+ such that every key of � is a target set of G , while every target set of G can be transformed to a key of �
without increasing the size of the set.

We add the set of variables V to the vertices of G , and define t(v) = 1 for v ∈ V . For every clause C = A → v of �, we 
construct a gadget as follows. We add a vertex pC that corresponds to the clause and set t(pC ) = |A|. For every variable 
a ∈ A, we add four new vertices xC

a , yC
a , zC

a and wC
a with thresholds t(xC

a ) = t(yC
a ) = t(zC

a ) = 1 and t(wC
a ) = 2, together with 

the edges axC
a , xC

a yC
a , xC

a zC
a , yC

a wC
a , zC

a wC
a and wC

a pC . Finally, we add four new vertices xC
v , yC

v , zC
v and wC

v with thresholds 
t(xC

v ) = t(yC
v ) = t(zC

v ) = 1 and t(wC
v ) = 2, together with the edges pC xC

v , xC
v yC

v , xC
v zC

v , yC
v wC

v , zC
v wC

v and wC
v v (see Fig. 3).

If K ⊆ V is a key of �, then the same set of vertices in G form a target set. Indeed, when the forward chaining 
procedure uses a clause C = A → v to reach a variable v , then this step corresponds to the activation of v through the 
gadget associated to C in G .

Now assume that S is a target set of G . We cannot directly say that S is a key of � as S might contain vertices from 
V ′ \ V . However, it is not difficult to see that

K := (V ∩ S)

∪ {v ∈ V | there exists C ∈ � with v ∈ C, S ∩ {xC
v , yC

v , zC
v , wC

v } 	= ∅}
∪ {v ∈ V | there exists C = A → v ∈ � with pC ∈ S}

is a key of � with |K | ≤ |S|, concluding the proof of the theorem. �
We have seen that finding a minimum sized target set is difficult already for constant thresholds. However, by combining 

the reductions in the proofs of Theorems 17 and 18, we get the following result.

Corollary 20. Given a graph G = (V , E) and constant thresholds t : V → Z+ , we can generate all minimal target sets of G with 
polynomial delay.

6. Conclusions

In this paper we defined unique key hypergraphs as Sperner hypergraphs that form the set of minimal keys of a unique 
pure Horn function. We gave a characterization of such hypergraphs, and showed that cuts of a matroid form a natural 
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example. As a negative result, we proved that the recognition of unique key hypergraphs is co-NP-complete already when 
every hyperedge has size two. On the positive side, we identified several classes of graphs for which the recognition problem 
can be decided in polynomial time.

We also gave an algorithm for generating all minimal keys of a pure Horn function with polynomial delay. By showing 
that the problems of finding a minimum key of a pure Horn function and of finding a minimum target set of a graph are 
closely related, we applied our algorithm to generate all minimal target sets of a graph with polynomial delay when the 
thresholds are bounded by a constant. It remains an open question whether all minimal target sets can be generated with 
polynomial delay when the thresholds are unbounded.
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