
1. Introduction
Enceladus is a small icy moon with a global subsurface ocean. The ocean is likely to be maintained by tidal dissi-
pation but the data tell us little about how and where the dissipation takes place. The total internal power of Ence-
ladus is estimated to be between 10 and 50 GW (for a review, see Nimmo et al. (2018)). Analysis of the stability 
of the ice shell suggests that the viscosity of ice at the contact with the ocean is higher than 3 × 10 14 Pa s (Čadek 
et al., 2019b). If this estimate is correct, then the heating rate due to tidal dissipation in the ice shell is ∼1 GW 
(Souček et al., 2019), which is much less than the heat loss due to conduction (≈40 GW, Čadek et al., 2019b). 
This indicates that the heat necessary to maintain the ocean at the melting temperature is produced in the core or 
the ocean itself.

Since the interior of Enceladus is likely to have never been exposed to high temperatures and pressures, the core 
may be made of unconsolidated, easily deformable, porous rock (Roberts, 2015; Travis & Schubert, 2015). Tidal 
deformation of such a material is associated with rearrangements of rock fragments, producing frictional heat that 
may explain Enceladus' heat budget (Choblet et al., 2017; Rovira-Navarro et al., 2022).

The amount of tidal heat generated within the ocean is still debated. The prevailing view is that heating caused 
by ocean tides is negligible at present but may have been significant in the past when dissipation could have 
been enhanced by resonance effects and/or the thickness of the ocean was strongly reduced (e.g., Hay & 
Matsuyama, 2019; Matsuyama et al., 2018). In addition to tides, dissipation in the ocean can be caused by the 
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turbulent flow response to the longitudinal libration of the ice shell. Whether this mechanism can provide enough 
heat to explain Enceladus' heat production, as suggested by, for example, Lemasquerier et al. (2017) and Wilson 
and Kerswell (2018), will require further examination.

The first models of tidal dissipation in a subsurface ocean were based on the solution of the Laplace tidal equa-
tions (LTE). The studies pointed out the possible role of inertial waves in the thermal evolution of icy moons 
(Tyler, 2008, 2009, 2014, 2020) and provided the first estimates of the dissipative heat generated by oceans on 
Enceladus, Europa and other icy satellites (Chen et al., 2014; Hay & Matsuyama, 2017; Matsuyama, 2014). The 
limitation of this approach was that it was based on two simplifying assumptions: First, the thickness of the ocean, 
D, was assumed to be small compared to the outer radius of the ocean, Ri/o, and second, the upper surface of the 
ocean was assumed to be free to move. In reality, neither of these assumptions is true: The ocean on Enceladus is 
not shallow (D/Ri/o ≈ 0.15, see, e.g., Čadek et al. (2016), Beuthe et al. (2016) or Hemingway and Mittal (2019)) 
and its surface is covered with a 20–25 km thick layer of solid ice (Thomas et al., 2016). Beuthe (2016) showed 
that the ice shell has a strong stabilizing effect on the tidal flow in the ocean, leading to a significant reduction 
of tidal dissipation. In the years that followed, the approach based on the solution of LTE, but including the 
dampening effect of the ice shell, was used to obtain more accurate estimates of dissipative power generated by 
subsurface oceans (Hay et al., 2020; Matsuyama et al., 2018) and to study the impact of non-linear bottom drag 
and ocean thickness variations on tidal dissipation (Hay & Matsuyama, 2019; Rovira-Navarro et al., 2020).

To date, there are only two studies (Rekier et al., 2019; Rovira-Navarro et al., 2019) that have examined the tidal 
dissipation in a subsurface ocean by solving the three-dimensional Navier-Stokes equation (NSE). In both studies, 
the non-linear term in NSE (� ⋅∇� where 𝐴𝐴 𝒗𝒗 is the flow velocity) is neglected and the problem is transformed into 
the frequency domain. The deformation of the ice shell is assumed not to be affected by the flow of water and is 
imposed as a boundary condition at the surface of the ocean. The former study also takes into account the defor-
mation of the core and includes the effects of self-gravitation and libration. The studies carefully analyze the role 
of inertial modes and agree that the heat production in Enceladus' present-day ocean is much smaller than the heat 
flux observed by Cassini (Spencer et al., 2018).

This paper offers an alternative approach to modeling the tidal response of a planetary body with a subsurface 
ocean. The approach is different from that used by Rovira-Navarro et al. (2019) and Rekier et al. (2019) in two 
respects: First, the tidal response is evaluated not only in the ocean but also in the crust and the core. In our 
approach, the equations governing the deformation in different parts of the body are linked by the boundary 
conditions guaranteeing the continuity of the velocity and traction vectors. This allows us to assess the effect 
of mechanical and gravitational coupling between the layers on the tidal dissipation process and specifically to 
investigate the interaction between the ocean and Enceladus' weak core. Second, the problem of tidal deformation 
is solved directly in the time domain as an initial value problem, similarly as in the case of thermal convection 
(except that the buoyancy force is replaced by the tidal force, see, e.g., Appendix A in Kvorka and Čadek (2022)). 
Although this approach is computationally more demanding than the solution in the frequency domain, it makes 
it possible to assess, at least in principle, the relative importance of non-linear effects and resonant interactions. 
These effects cannot be investigated by standard frequency domain methods because the response of a non-linear 
system to a periodic loading is not necessarily periodic in time. Our approach is also more general than that of 
Beuthe (2016) and Matsuyama et al. (2018) who coupled the flow in the ocean with the deformation of the ice 
shell and the core but used the LTE to calculate the tidal response of the ocean.

Modeling the coupled tidal deformation of an icy moon with a subsurface ocean and a plastic core is challenging 
and, therefore, several simplifying assumptions have been made to make the problem more amenable to solution. 
The most important one is the assumption that the lower boundary of the ice shell is spherical. This assump-
tion is motivated by numerical convenience and is widely used in studies of subsurface ocean dynamics that 
employ numerical tools based on the spectral decomposition of the governing equations. While the assumption 
of a constant ice shell thickness may be approximately satisfied in the case of large, slowly rotating icy moons, 
such as Titan, it is not valid for Enceladus where the thickness of ice varies laterally by tens of kilometers (e.g., 
Beuthe et  al.,  2016; Čadek et  al.,  2016, 2019b; Hemingway & Mittal,  2019; Hoolst et  al.,  2016). Although 
these variations are likely to affect the flow in the ocean (Kang et al., 2022; Rovira-Navarro et al., 2020, 2023; 
Soderlund et al., 2020), most studies addressing Enceladus' ocean dynamics do not include them because of 
the numerical difficulties arising from the implementation of irregular boundaries in spectral methods (e.g., 
Beuthe, 2016; Matsuyama et al., 2018; Rekier et al., 2019; Rovira-Navarro et al., 2019; Soderlund, 2019). One 
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way to solve problems with complex geometry is to use the finite element method. However, even though this 
method has proven to be effective in modeling the tidal deformation and viscous flow in Enceladus' ice shell 
(Běhounková et al., 2017; Berne et al., 2023; Čadek et al., 2019a, 2019b; Souček et al., 2016, 2019), its appli-
cation to the tides in the ocean is still prohibitively expensive due to the fact that the thickness of the boundary 
layers in the ocean is much smaller than the characteristic length scale in the ice shell and, therefore, simulations 
have to be performed with a spatial resolution that is significantly higher than that usually considered in the ice 
shell.

Another limitation of our approach is that the viscosity of water used in our model is likely to be higher than 
the effective viscosity in the real ocean. The lowest value of the dynamic viscosity, η, that can be achieved in 
our numerical simulations is 100 Pa s, which is five orders of magnitude more than the molecular viscosity of 
water. Time-domain simulations with η < 100 Pa s place extreme demands on the numerical resolution needed to 
represent the velocity field and will require algorithms that achieve a higher level of parallelization and memory 
management. The lowest viscosity used in the 3D frequency domain simulations by Rovira-Navarro et al. (2019) 
and Rekier et al. (2019) is about 70 and 0.2 Pa s, respectively. The effective viscosity of water may be signifi-
cantly higher than the molecular viscosity due to the effect of turbulence (e.g., Pope, 2000). On Enceladus, the 
turbulent flow may occur because of the convective heat transfer in the ocean driven by the tidal heating in the 
core. The effect of turbulence on the effective viscosity of the water may be further enhanced in the bottom 
boundary layer as a result of the hydrothermal circulation in the core (Choblet et al., 2017) and the friction at the 
interface. In any case, the effective viscosity is likely to vary in space and time depending on the flow conditions 
and the degree of turbulence. The model with a constant viscosity should therefore be viewed as a first-order 
approximation of the tidal flow in the ocean.

While, for the reasons outlined above, the values of the dissipation rate predicted by our simulations should be 
interpreted with caution, the trends inferred here are generally valid and provide context for further studies in this 
area. In particular, we focus on the following questions: How much is the dissipation in the ocean affected by the 
deformation of the core? Does the deformation of the core depend on the thickness and viscosity of the ocean? 
How does the velocity field in the ocean change as a function of model parameters? Is the radial component of 
the flow velocity significant? What are the validity limits of the LTE approach, which has been widely used to 
estimate heat production in subsurface oceans?

Based on the previous studies (e.g., Beuthe et al., 2016; Čadek et al., 2019b), we assume that the radius of 
Enceladus' core is about 190 km, and we vary the thickness of the ocean to investigate its role in different 
stages of Enceladus' evolution. Particular attention is paid to thin (≈1 km thick) ocean models that may be 
important for understanding the early stage of ocean formation. The results presented here may also help to 
clarify the role of tidal heating in the hypothetical oceans on Mimas (Tajeddine et al., 2014) and Dione (Beuthe 
et al., 2016; Zannoni et al., 2020) where the core may have material properties similar to those expected on 
Enceladus.

2. Method
We investigate the tidal deformation of an icy moon whose size and internal structure are similar to those of 
Enceladus. We assume that the moon consists of three layers: a solid ice shell, a liquid water ocean, and a solid 
core. The tidal deformation is solved simultaneously for all three layers, while the mechanical coupling between 
the layers is achieved by imposing continuity of traction and velocity at the boundaries. For simplicity, we assume 
that the boundaries are spherical, the material forming the moon is incompressible, and the tidal flow in the ocean 
is not affected by convective heat transport. The effect of tidal dissipation on material parameters is neglected. 
Under these conditions, the governing equations take the form

∇ ⋅ 𝒗𝒗 = 0, (1)

𝜌𝜌

(

𝜕𝜕𝒗𝒗

𝜕𝜕𝜕𝜕
+ 𝒗𝒗 ⋅ ∇𝒗𝒗

)

= ∇ ⋅ 𝝈𝝈 − 2𝜌𝜌𝝎𝝎 × 𝒗𝒗 − 𝜌𝜌(∇𝑉𝑉𝜕𝜕 + ∇𝑉𝑉𝑔𝑔). (2)

Here, 𝐴𝐴 𝒗𝒗 is the velocity, ρ is the density, t is time, σ is the incremental Cauchy stress tensor, ω is the angular veloc-
ity, and Vg is the gravitational potential due to tidal deformation (for details of the calculation, see Appendix A 
in Čadek et al. (2021)),
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𝑉𝑉𝑔𝑔(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) =

𝐺𝐺 ∫
𝑡𝑡′
∫
𝑡𝑡′

(

∫
𝑅𝑅𝑡𝑡+𝑢𝑢𝑡𝑡

𝑅𝑅𝑡𝑡

𝜌𝜌𝑖𝑖

|𝒓𝒓 − 𝒓𝒓
′
|

𝑡𝑡
′2
𝑑𝑑𝑡𝑡

′
+∫

𝑅𝑅𝑖𝑖∕𝑜𝑜+𝑢𝑢𝑖𝑖∕𝑜𝑜

𝑅𝑅𝑖𝑖∕𝑜𝑜

𝜌𝜌𝑜𝑜 − 𝜌𝜌𝑖𝑖

|𝒓𝒓 − 𝒓𝒓
′
|

𝑡𝑡
′2
𝑑𝑑𝑡𝑡

′

+∫
𝑅𝑅𝑜𝑜∕𝑐𝑐+𝑢𝑢𝑜𝑜∕𝑐𝑐

𝑅𝑅𝑜𝑜∕𝑐𝑐

𝜌𝜌𝑐𝑐 − 𝜌𝜌𝑜𝑜

|𝒓𝒓 − 𝒓𝒓
′
|

𝑡𝑡
′2
𝑑𝑑𝑡𝑡

′

)

sin 𝑡𝑡
′
𝑑𝑑𝑡𝑡

′
𝑑𝑑𝑡𝑡

′

 (3)

where G is the gravitational constant, r, ϑ, and φ are the spherical coordinates, 
Rt, Ri/o, and Ro/c are the radii of the density interfaces (see Figure 1) and ut, 
ui/o, and uo/c represent the shape changes of the boundaries. Finally, Vt is the 
eccentricity tidal potential valid to first order in eccentricity (Kaula, 1964),

��(�, �, �, �) = �2�2�
{3
2
� 0
2 (cos �) cos �� −

1
4
� 2
2 (cos �)[3 cos �� cos 2� + 4 sin �� sin 2�]

}

,
 (4)

where e is the eccentricity, and 𝐴𝐴 𝐴𝐴
0

2
 and 𝐴𝐴 𝐴𝐴

2

2
 are the associated Legendre func-

tions. The effect of obliquity tides on the deformation of Enceladus' ocean is 
likely to be small (Baland et al., 2016) and is neglected.

The dimensional analysis of Equation 2 shows that the Coriolis 𝐴𝐴 (2𝜌𝜌𝝎𝝎 × 𝒗𝒗) 
and inertial 𝐴𝐴 (𝜌𝜌𝜌𝜌𝒗𝒗∕𝜌𝜌𝜕𝜕 + 𝜌𝜌𝒗𝒗 ⋅ ∇𝒗𝒗) forces can be neglected in the ice shell and 
the core. In the ocean, Equation 2 can be simplified by neglecting the nonlin-
ear term 𝐴𝐴 (𝜌𝜌𝒗𝒗 ⋅ ∇𝒗𝒗) . The momentum equation is then linear in 𝐴𝐴 𝒗𝒗 , and since 
the tidal potential is periodic, the problem can be solved in the frequency 
domain (Rekier et  al.,  2019; Rovira-Navarro et  al.,  2019). The simplifica-
tion is usually justified by the long wavelength of the tidal forcing, or it is 
argued that the effect of turbulence can be included in the model by using the 

Figure 1. A sketch of the computational domain. Equations 1–5 are solved in a spherical domain made of three shells 
representing the solid ice crust, the liquid water ocean, and the solid silicate core. The radius of the core, Ro/c, is fixed at 
194.1 km and the thickness of the ocean, D, is varied from 10 m to 50 km. We assume that the ice shell behaves as an elastic 
solid, while three different constitutive models of the core are considered (A–rigid, B–elastic, and C–viscoelastic). For details 
regarding the material parameters and the boundary conditions, see Table 1 and Equations 6 and 7, respectively.

Symbol Parameter Value Unit

Rt Radius of the moon 252.1 km

Ri/o Radius of the ice/ocean interface 194.11–244.1 km

Ro/c Radius the ocean/core interface 194.1 km

e Eccentricity 0.0047

ω Angular velocity 5.31 × 10 −5 rad s −1

ρi Density of the ice shell 925 kg m −3

ρo Density of the ocean 1,000 kg m −3

ρc Density of the core 2,350–2,424 kg m −3

ηo Viscosity of the ocean 10 2–10 6 Pa s

ηc Viscosity of the core

Model A →∞

Model B →∞

Model C 6 × 10 11 Pa s

μi Shear modulus of the ice 3.3 × 10 9 Pa

μc Shear modulus of the core

Model A →∞

Model B 10 9 Pa

Model C 2 × 10 7 Pa

Table 1 
Parameters of the Model
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effective (eddy) viscosity. In the present study, the tidal deformation is modeled in the time domain, which will 
allow us to assess the relative importance of the nonlinear effects and quantify the error due to the linearization 
of the momentum equation.

The mechanical behavior of all three layers is described by a single constitutive equation (e.g., Čadek et al., 2017),

1

𝜇𝜇

𝜕𝜕𝝈𝝈
𝑑𝑑

𝜕𝜕𝜕𝜕
+

1

𝜂𝜂
𝝈𝝈
𝑑𝑑
= ∇𝒗𝒗 + (∇𝒗𝒗)

𝑇𝑇
, (5)

where σ d is the deviatoric part of tensor σ. Depending on the choice of the shear modulus μ and the viscosity η, 
Equation 5 describes either an elastic solid (η → ∞), a Newtonian fluid (μ → ∞) or a Maxwell viscoelastic body. 
Note that since the conservation laws, Equations 1 and 2, are formulated in terms of the velocity, Hooke's law, and 
the Maxwell constitutive equation must be expressed in terms of the strain-rate tensor.

Boundary conditions are imposed on the reference spheres of radius Rt, Ri/o, and Ro/c. Since the deformed surface 
of the moon is stress-free, the boundary condition at r = Rt can be expressed as follows (Souček et al., 2019):

𝝈𝝈 ⋅ 𝒆𝒆𝑟𝑟 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑔𝑔𝒆𝒆𝑟𝑟 = −𝜌𝜌𝑔𝑔𝒆𝒆𝑟𝑟 ∫
𝑡𝑡

0

𝑣𝑣𝑟𝑟𝑑𝑑𝑡𝑡
′
, (6)

where ur is the radial component of the displacement, 𝐴𝐴 𝐴𝐴𝑟𝑟 is the radial component of the velocity, g is the gravita-
tional acceleration, and 𝐴𝐴 𝒆𝒆𝑟𝑟 is the radial unit vector. At the internal interfaces, the velocity and traction vectors are 
required to be continuous:

[𝒗𝒗]
+

− = 𝟎𝟎,

[𝝈𝝈 ⋅ 𝒆𝒆𝑟𝑟]
+

− = Δ𝜌𝜌𝜌𝜌𝑟𝑟𝑔𝑔𝒆𝒆𝑟𝑟 = Δ𝜌𝜌𝑔𝑔𝒆𝒆𝑟𝑟 ∫
𝑡𝑡

0

𝑣𝑣𝑟𝑟𝑑𝑑𝑡𝑡
′
,

 (7)

where 𝐴𝐴 [⋅]
+
− represents the jump of the enclosed quantity across the interface and Δρ is the density difference 

(ρo − ρi or ρc − ρo).

The total heat production of the moon is calculated using the following formula (e.g., Tobie et al., 2008):

𝐻𝐻 =
1

𝑃𝑃 ∫
𝑡𝑡0+𝑃𝑃

𝑡𝑡0
∫
𝑉𝑉

𝝈𝝈
𝑑𝑑
∶ 𝝈𝝈

𝑑𝑑

2𝜂𝜂
𝑑𝑑𝑉𝑉 𝑑𝑑𝑡𝑡 =

1

𝑃𝑃 ∫
𝑡𝑡0+𝑃𝑃

𝑡𝑡0
∫
𝑉𝑉

2𝜂𝜂 �̇�𝒆 ∶ �̇�𝒆 𝑑𝑑𝑉𝑉 𝑑𝑑𝑡𝑡𝑑 (8)

where P is the rotation period (P  =  2π/ω), t0 is an arbitrary time, and V is the volume of the moon and 
𝐴𝐴 �̇�𝒆 =

1

2

(

∇𝒗𝒗 + (∇𝒗𝒗)
𝑇𝑇
)

 . In Section 3, the lateral variations of tidal dissipation in the ocean are characterized by the 
heat production integrated over the radius (Souček et al., 2019):

𝑞𝑞(𝜗𝜗𝜗 𝜗𝜗) =
1

𝑃𝑃 ∫
𝑡𝑡0+𝑃𝑃

𝑡𝑡0

1

𝑅𝑅
2

𝑖𝑖∕𝑜𝑜
∫

𝑅𝑅𝑖𝑖∕𝑜𝑜

𝑅𝑅𝑜𝑜∕𝑐𝑐

𝝈𝝈
𝑑𝑑
∶ 𝝈𝝈

𝑑𝑑

2𝜂𝜂
𝑟𝑟
2
𝑑𝑑𝑟𝑟 𝑑𝑑𝑡𝑡𝑑 (9)

Data collected by the Cassini spacecraft suggest that the ocean is at a depth of about 20 km below the surface 
on average (Hoolst et al., 2016; Thomas et al., 2016) and that the mean ocean thickness is about 40 km (Beuthe 
et al., 2016; Čadek et al., 2016, 2019b). It is likely, however, that the thickness of the ocean has changed in the past 
and will change in the future. In order to understand the role of ocean tidal dissipation in Enceladus' evolution, 
we vary the thickness of the ocean from 10 m to 50 km. The lower bound of the interval corresponds to the case 
where the ocean is almost completely frozen but it is mechanically decoupled from the core by a thin layer of 
liquid water or partially molten ice. In all simulations, we assume that the radius of the core is 194.1 km (Čadek 
et al., 2019b) and we change the thickness of the ocean by changing the radius of the ice/ocean interface.

We assume that the ice shell behaves as an elastic solid. As shown by Souček et al. (2019) and Berne et al. (2023), 
the effect of viscosity on tidal deformation of Enceladus' ice shell is minor and can be neglected in the first 
approximation. Unfortunately, there are presently no observations to constrain the material parameters of Ence-
ladus' core. In most of the previous studies on the ocean tides, the core was assumed to be rigid and its effect 
on the flow in the ocean was neglected. However, if the core has never been exposed to high temperatures and 
pressures, the core material may still be in an unconsolidated, fragmented state and may effectively behave as a 
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low rigidity, low viscosity viscoelastic body (Choblet et al., 2017; Roberts, 2015; Rovira-Navarro et al., 2022; 
Travis & Schubert, 2015). If this is the case, the tidal deformation of the core may affect the flow in the ocean 
in a similar way as the tidal deformation of the ice shell. Here we consider three models of the core: A–the rigid 
core, B–the elastic core with μc = 10 9 Pa (cf. Roberts, 2015), and C–the viscoelastic core with μc = 2 × 10 7 Pa and 
ηc = 6 × 10 11 Pa s. The parameters of model C are chosen so that the total heat production of the core is roughly 
25 GW (cf. Figure 1a in Choblet et al. (2017)). The parameters of models A–C are summarized in Table 1.

Equations 1–7 are solved in the time domain using a pseudo-spectral method similar to that used by Kvorka 
and Čadek  (2022). The unknown functions 𝐴𝐴 𝒗𝒗 and σ are represented in terms of the generalized spherical 
harmonic expansions (e.g., Golle et al., 2012), truncated at degree ℓmax. The cut-off degree ℓmax is chosen so that 

𝐴𝐴 𝐴𝐴 (𝓁𝓁max)⁄𝐴𝐴 (2) < 10
−4 , where 𝐴𝐴 𝐴𝐴 (𝓁𝓁)  denotes the 𝐴𝐴 𝐴𝐴2 norm of the velocity field at degree ℓ, and ranges from 10 to 220 

depending on the thickness and viscosity of the ocean. The coefficients in the harmonic series are discretized in 
the radial direction on an uneven grid consisting of 800 Chebyshev nodes (for an example of the radial resolution, 
see Figure S1 in Supporting Information S1). The radial resolution varies from 1 m in the ocean boundary layers 
to 1.5 km in the ice shell and the core. The time derivatives in Equations 2 and 5 are discretized using the implicit 
Euler method, while the explicit second-order Adams-Bashforth method is applied to the Coriolis and non-linear 
terms. Each simulation is started from the initial condition 𝐴𝐴 𝒗𝒗 = 𝟎𝟎 , and the equations are integrated in time until a 
periodic solution is reached (cf. Běhounková et al., 2010; Tobie et al., 2008). At each time step, the accuracy of 
the method is assessed by evaluating the energy balance (Patočka et al., 2017). The numerical method was coded 
in Fortran 90 and tested against the results by Beuthe (2016) and Rekier et al. (2019), see Section 5 and Figure 
S2 in Supporting Information S1.

3. Tidal Dissipation in the Ocean and the Core
Figure 2 shows the tidal dissipation in the ocean (Figures 2a–2c) and the core (Figure 2d) as a function of ocean 
thickness for different values of ocean viscosity. Comparison of Figures 2a–2c reveals two general trends: (a) The 
maximum heat production in the ocean is independent of the viscosity of the ocean but depends on the material 
properties of the core (H = 4 GW for model A but 20 GW for model C). The value of D at which the maximum 
is reached in less than 2 km and decreases with decreasing viscosity. (b) When the ocean thickness is larger than 
5 km, the curves are similar in shape to those obtained by Rekier et al. (2019) and Rovira-Navarro et al. (2019). 
The curves are characterized by several resonance peaks whose amplitudes increase with decreasing viscosity. 
The dissipation in the ocean is less than 0.1 GW and thus insufficient to explain the heat output (>10 GW) of 
present-day Enceladus (D = 38 km).

The maximum heat production obtained for model A (stiff core) is twice as high as for model B (elastic core). 
This somewhat counterintuitive result is due to the fact that, in the elastic case, the upper and lower boundaries 
move in phase, and consequently, the radial deformation of the fluid layer is smaller than in the case of the rigid 
core. The parameters of model C are chosen such that the deformation of the ocean/core boundary is significantly 
larger than that of the elastic shell. The Deborah number of the core (τM/P where τM = ηc/μc is the Maxwell time 
and P is the rotation period) is about 0.25, implying that the tidal response of the core is dominated by viscous 
flow. This, together with the fact that the response of the core to the tidal force is delayed, results in an enhance-
ment of the heat production in the ocean (Figure 2c). The maximum heat production is about 20 GW and is 
attained for a slightly larger value of D than in models A and B (70 m–2.5 km, depending on ηo). This suggests 
that tidal dissipation in a thin ocean may be sufficiently high to prevent the ocean from freezing.

The thickness of the ocean influences not only the dissipation in the ocean itself but also in the viscoelastic core 
(Figure 2d). When the thickness of the ocean drops below a critical value, Dcrit, the heat production in the core 
starts to decrease rapidly. The thickness of the ocean at which the drop occurs roughly corresponds to the thick-
ness at which the dissipation in the ocean reaches a maximum value (cf. Figures 2c and 2d). Note that the  heat 
production in the core for D > Dcrit is the same as the maximum heat production in the ocean, suggesting that at 
D ≈ Dcrit, the role of the core as the main producer of heat is taken over by the ocean. When the ocean thickness 
is further decreased, the heat production in the ocean goes to zero, and the total tidal heat production of the 
moon approaches a value of 0.25 GW, corresponding to dissipation in a viscoelastic core surrounded by a shell 
of elastic  ice.

As already mentioned in Section 2, our approach is different from the one used by Rekier et al. (2019) in that the 
deformation equations are solved simultaneously in the whole domain (including the solid parts) while Rekier 
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et al. (2019) first calculate the deformation of the ice shell and the core and then use it as a boundary condition 
to compute the flow in the ocean. Comparison of the solid and dashed lines in Figures 2a–2c shows that the two 
approaches give the same heating rates for D > Dcrit, implying that the flow in the ocean has little impact on the 
deformation of the ice shell and the core if the ocean thickness is larger than about 2 km. However, the approach 
where the deformation of the solid parts is not self-consistently included grossly overestimates the tidal dissipa-
tion in the ocean for D < Dcrit. It is likely that Rekier et al. (2019) anticipated this behavior and therefore only 
considered models where Ro/c/Ri/o < 0.98 (corresponding to D ≈ 4 km). The large discrepancy between the two 
solutions suggests that the assumption that the deformation of the ice shell and the core is independent of the tidal 
flow in the ocean is not valid for D < Dcrit. This implies that the mechanical coupling between the ocean and the 
solid parts of the moon must be considered when evaluating dissipation in a thin ocean.

The flow induced by eccentricity tides in Enceladus' ocean yields a wide variety of heating patterns depending 
on the thickness of the ocean and its viscosity (Figures 3 and 4). For some combinations of parameters ηo and D, 
the heat flux distribution is similar to those obtained using the shallow water approximation (see Figure 4 in Tyler 
et al. (2015) or Figure 7 in Matsuyama et al. (2018)). In most cases, however, the heat flux distribution is rather 
complex, indicating that dissipation in the ocean is strongly influenced by three-dimensional flow effects. The heat 
flux distribution obtained for D = 47 km and ηo ≤ 10 4 Pa s, characterized by a system of concentric circular fringes, 
is compatible with the presence of inertial waves discussed by Rovira-Navarro et al. (2019) and Rekier et al. (2019).

The spatial distribution of the tidal heat produced in the core is independent of the viscosity and thickness of the 
ocean and only differs by magnitude. Similar to the results of Roberts (2015, Figure 3b) and Choblet et al. (2017, 

Figure 2. Heat production in (a–c) Enceladus' ocean and (d) core as a function of ocean thickness evaluated for different values of viscosity ηo. Heat production in 
the core is shown only for model C since the core in models A and B is treated as non-dissipative (ηc → ∞). The solid lines represent models where the deformation 
equations are solved in the whole domain (including the solid parts, see Section 2), while the colored dashed lines correspond to models where the flow is solved only 
in the ocean and the deformation of the ice shell the core is implemented through boundary conditions (Rekier et al., 2019). The vertical black dashed lines indicate the 
current thickness of Enceladus' ocean.
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Figure 1c), the maximum heat flux is concentrated over the polar regions, reaching the value of about 70 mW/m 2 
for 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 0.66 mW/m 2 when D → 0 (see also Figure S3 in Supporting Information S1).

4. Velocity Field in the Ocean
A number of studies of ocean tides have been based on the assumption that the horizontal scale of flow is much 
larger than the depth of the ocean. Under this assumption, the trajectories of water parcels are nearly horizontal, 
the radial velocity is small compared to the horizontal velocity and the Navier-Stokes equations can be reduced 
to a two-dimensional form, called the Laplace tidal (or shallow water) equations, in which the horizontal velocity 
is a function of only ϑ and φ. The equations do not contain the radial component of velocity and the effect of 
radial flow on the viscous, inertial, and Coriolis force is neglected (Tyler, 2008). In this section, we will address 
the limitations of this approach and demonstrate the complex structure of the tidal flow in Enceladus' ocean. We 
will follow up on the studies by Rovira-Navarro et al. (2019) and Rekier et al. (2019) that have investigated the 
tidal response of a subsurface ocean by solving the three-dimensional Navier-Stokes equations. However, unlike 
these studies, we will present the flow field distribution not in the frequency domain but in the time domain, and 
we will examine the importance of the non-linear term in the momentum equation, which has been neglected in 
previous research.

In Figure 5, we show the velocity field at time t = 0 for models with ηo = 100 Pa s and D ranging from 0.1 to 
47 km. Note that for clarity, the thickness of the ocean in the visualization is fixed at D = 0.25Ro/c ≈ 50 km. 
Inspection of the figure shows that the assumption of shallow water is well satisfied for D ≲ 1 km but breaks 
down when D ≳ 5 km. When D = 38 km (corresponding to the average ocean thickness at present), the radial and 
tangential components are the same size, and the horizontal scale of the flow is comparable with the thickness of 
the ocean, suggesting that the shallow water approach is not suitable for modeling Enceladus' ocean tides.

Figure 3. Surface distribution of ocean tidal heating averaged over the tidal cycle, Equation 9, for different thicknesses (columns) and viscosities (rows) of the ocean. 
All heat flux maps are computed for model C and shown in the Mollweide projection with the sub-Saturnian point at the center. For the sake of comparison of the 
heating patterns, each map is scaled to its own maximum (indicated above the map in mW/m 2).
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Figure 6 shows the same flow models as Figure 5 but in North pole stereographic projection. The velocity fields 
represented by surface streamlines are shown at a depth of D/10 below the ice/ocean boundary. A long-wavelength 
flow pattern typical of shallow water models is found only for D ≤ 5 km. For larger values of D, the velocity field 
is dominated by small-scale concentric flow loops rotating in the azimuthal direction that cannot be obtained 
using the standard shallow water approach.

Previous studies of tidal flow in subsurface oceans have assumed that the non-linear term in the momentum equa-
tion 𝐴𝐴 (𝜌𝜌𝒗𝒗 ⋅ ∇𝒗𝒗) can be neglected or its effect can be simulated by a global increase in viscosity (i.e., by using the 
eddy viscosity instead of the molecular viscosity). The problem of tidal flow is then linear in 𝐴𝐴 𝒗𝒗 , and its solution 
shows a marked resonant behavior characterized by a significant increase in the kinetic energy of the flow (e.g., 

Figure 4. As in Figure 3 but in North pole stereographic projection.
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Tyler, 2008). The question arises as to how much this behavior would be affected by the non-linear term and, in 
general, what role turbulence plays in tidal dissipation. One way to assess whether the flow is turbulent or not is 
to evaluate the Reynolds number, 𝐴𝐴 Re = 𝜌𝜌0|𝒗𝒗|𝐷𝐷⁄𝜂𝜂0 , where 𝐴𝐴 |𝒗𝒗| is the L2 norm of the velocity field. The Reynolds 
number is a dimensionless quantity that is used to predict the transition from laminar to turbulent flow. Turbu-
lent flow occurs when Re > Rec where Rec is the critical Reynolds number (Rec = 10 3–10 4, depending on the 
geometry of the system). As shown in Figure 7a, all models presented in this study (ηo ≥ 100 Pa s, D ≤ 50 km) 
are characterized by low Reynolds numbers (Re ≲ 1,000), suggesting the dominant role of laminar flow. This 
conclusion is supported by a direct comparison of the terms in the NSE, which is obtained by substituting σ from 
Equation 5 into Equation 2 and setting μ −1 = 0,

𝜌𝜌

(

𝜕𝜕𝒗𝒗

𝜕𝜕𝜕𝜕
+ 𝒗𝒗 ⋅ ∇𝒗𝒗

)

= −∇𝑝𝑝 + 𝜂𝜂∇ ⋅ ∇𝒗𝒗 − 2𝜌𝜌𝝎𝝎 × 𝒗𝒗 − 𝜌𝜌(∇𝑉𝑉𝜕𝜕 + ∇𝑉𝑉𝑔𝑔), (10)

where p is the pressure. Figure 7b shows that the non-linear term 𝐴𝐴 (𝜌𝜌𝒗𝒗 ⋅ ∇𝒗𝒗) , which is responsible for turbulence, 
is small compared to other terms in Equation 10. Extrapolation of the results shown in Figure 7a indicates that 
the transition from laminar to turbulent flow occurs when the viscosity ηo drops to about 10 Pa s, presumably 
leading to an increase of the Reynolds number to 10 3–10 4. We are currently unable to perform time domain 
simulations for ηo ≪ 100 Pa s because they place extreme demands on the numerical resolution required to 
represent the velocity fields. The problem of whether the turbulent flow can influence the resonant states 
predicted by the linearized model thus remains unresolved and will require further improvements of the numer-
ical method.

Figure 5. Velocity fields (components r, ϑ, and φ) at time t = 0 obtained for ηo = 100 Pa s and D ranging from 0.1 to 47 km. The fields are normalized to 1 and plotted 
on a meridional cross-section at longitude φ = 0. The maximum values in mm/s are given on the left-hand side of each cross-section. While the ratio D/Ro/c varies from 
5.2 × 10 −4 in panel (a) to 0.24 in panel (f), the thickness of the ocean in the visualization is fixed at D/Ro/c = 0.25 for clarity.
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5. Comparison With the LTE Approach
In this section, we compare our approach with that of Beuthe (2016). To couple the flow in the ocean with the 
deformation of the ice shell, Beuthe (2016) formulated the LTE as follows:

𝜕𝜕𝒖𝒖

𝜕𝜕𝜕𝜕
= −

1

𝜌𝜌𝑜𝑜
∇𝑠𝑠𝑝𝑝 − 2𝝎𝝎 × 𝒖𝒖 + 𝑭𝑭 (𝒖𝒖), (11)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+𝐷𝐷∇𝑠𝑠 ⋅ 𝒖𝒖 = 0, (12)

𝑝𝑝 = Δ𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝑜𝑜(𝑉𝑉𝑡𝑡 + 𝑉𝑉𝜌𝜌) − 𝜎𝜎𝑟𝑟𝑟𝑟. (13)

Here, 𝐴𝐴 𝒖𝒖 = 𝒖𝒖(𝜗𝜗𝜗 𝜗𝜗) is the depth-averaged velocity, ∇s is the surface gradient, h is the radial displacement at the 
boundary between the ice shell and the ocean, σrr is the radial component of the traction vector at the base of the 
ice shell, and 𝐴𝐴 𝑭𝑭 (𝒖𝒖) represents the dissipative stress

𝑭𝑭 (𝒖𝒖) =
𝜂𝜂𝑜𝑜

𝜌𝜌𝑜𝑜
Δ𝑠𝑠𝒖𝒖 − 𝛼𝛼𝒖𝒖, (14)

where α is the linear drag coefficient and Δs is the horizontal Laplace operator. Unlike the previous studies 
(e.g., Chen et al., 2014; Matsuyama, 2014; Tyler, 2014), the approach by Beuthe (2016) includes the stabilizing 
effect of the overlying shell, which damps the ocean tides and reduces the tidal heating in the ocean (see also 
Matsuyama et al. (2018)). In the following, Equations 11–14 are referred to as the modified LTE.

The modified LTE approach differs from our approach, Equations 1–7, in two ways. First, as already mentioned 
above, the modified LTE approach does not include the radial component of velocity and assumes that the hori-
zontal velocity is a function of only ϑ and φ (i.e., ∂u/∂r  =  0). Second, the modified LTE approach guaran-
tees that the radial components of the displacement and traction do not change across the ice/ocean boundary 
(Equation 13), but, for understandable reasons, it imposes no restriction on the horizontal components (in other 

Figure 6. Horizontal component of the flow velocity, 𝐴𝐴 𝒗𝒗 − (𝒗𝒗 ⋅ 𝒆𝒆𝑟𝑟)𝒆𝒆𝑟𝑟 , at a depth of D/10 below the ocean surface computed in different orbital phases (t = 0, 0.2, and 
0.4 P) for the same models as in Figure 5. The horizontal velocity is represented by streamlines with colors representing the flow speed. All maps are shown in the Noth 
pole stereographic projection.
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words,  the boundary is free-slip). In contrast, in our approach, we assume that the boundary is no-slip and both 
radial and horizontal components of the displacement and traction are continuous (Equation 7).

To facilitate the comparison of the methods, we replace the no-slip boundary condition in our model with the 
free-slip one and omit the last term in Equation 14 because the drag coefficient α is not included in our 3D model. 
The modified LTE method has been coded in Fortran 90 and tested against the results of Beuthe (2016). Unlike 
the original method (Beuthe, 2016) where the layer overlying the ocean is treated as a thin shell, the stress and 
displacement in the ice are obtained by solving the standard equations for thick shells (cf. Matsuyama et al., 2018). 
The total heat production of the 3D model can be calculated from Equation 8. For the sake of comparison with the 
modified LTE approach, we replace the velocity 𝐴𝐴 𝒗𝒗 in Equation 8 by the depth-averaged velocity, 𝐴𝐴 𝒗𝒗 :

𝐻𝐻 =
2𝜂𝜂 𝜂𝜂

𝑃𝑃 ∫
𝑡𝑡0+𝑃𝑃

𝑡𝑡0
∫
𝑆𝑆

�̇�𝒆 ∶ �̇�𝒆 𝑑𝑑𝑆𝑆 𝑑𝑑𝑡𝑡𝑑 (15)

where S is the surface of the sphere of radius Ri/o and 𝐴𝐴 �̇�𝒆 =
1

2

(

∇𝑠𝑠𝒗𝒗 +
(

∇𝑠𝑠𝒗𝒗
)𝑇𝑇
)

 . Note that 𝐴𝐴 𝒗𝒗 = 𝒖𝒖 in the case of the 
modified LTE method.

The heat production obtained for the two methods is compared in Figure 8a. The calculations are performed 
only for model A (i.e., the model with a rigid core). Inspection of the figure shows that the level of agreement 
between the methods depends not only on the thickness of the ocean but also on the viscosity of water and on 
how the dissipation rate of the 3D model is calculated. Our results indicate that for the low values of the viscosity 

Figure 7. (a) The Reynolds number as a function of ocean thickness evaluated for different values of viscosity ηo. (b) 
Comparison of the terms in the Navier-Stokes Equation 10 near the top and bottom boundaries and in the middle of the ocean 
for the model with D = 38 km and ηo = 100 Pa s. The numbers above the plots indicate the maximum values in N/m 3.
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(η ≲ 100 Pa s), the modified LTE method is only applicable to models with very thin ocean (D ≲ 2 km). On the 
other hand, when the viscosity is high (η = 10 6 Pa s), the modified LTE method and the 3D method show good 
agreement over the whole range of ocean thickness.

The agreement between the LTE and 3D solutions is generally better when the heat production of the 3D model 
is calculated from Equation 15. When depth variations in velocity are included, that is, when H is calculated from 
Equation 8, the heat production increases and the difference between the modified LTE solution and 3D solution 
is significant even for ocean thicknesses as small as 10 m. The difference is more pronounced for models with 
a low viscosity ocean, ranging from a factor of 2 at D ≤ 100 m to a factor of 10 5 at D = 50 km for η = 100 Pa s. 
This indicates that depth variations in velocity play an important role in calculating the tidal heat production 
even when D/Ri/o ≪ 1 (see Figure S4 in Supporting Information S1). These variations are inherently absent in 
the modified LTE solution, casting doubt on the applicability of the LTE method for determining the dissipation 
rate in the ocean. It is also worth noting that the dissipation curves computed for 3D models where the internal 
interfaces are treated as free-slip boundaries are significantly different from those computed for 3D models with 
no-slip boundaries. To allow for a better comparison between the free-slip and no-slip solutions, the two sets of 
curves are shown together in Figure 8b.

No-slip is usually considered to be the appropriate boundary condition for a viscous fluid in contact with a solid 
impermeable surface. More generally, the boundary condition can be expressed as a weighted combination of 
no-slip and free-slip boundary conditions:

𝑣𝑣𝑟𝑟 = 0, (16)

(𝝈𝝈 ⋅ 𝒆𝒆𝑟𝑟)𝜏𝜏 = −𝛼𝛼𝒗𝒗, (17)

where the subscripts r and τ denote the radial and tangential components, respectively, and α is the drag coeffi-
cient, which may depend on the velocity. The boundary condition 17 reduces to no-slip boundary condition for 
α → ∞ and to the free-slip boundary condition for α = 0. No-slip and free-slip can therefore be considered as 
extreme cases.

Unlike the free-slip model, the no-slip model is characterized by the presence of velocity boundary layers, the thin 
layers of fluid in the vicinity of the boundaries where the flow velocity monotonically increases with the distance 
from the boundary (Figure 9a). Although the velocity far from the boundary may not be affected by the type of 
the boundary condition (i.e., by the presence or absence of the boundary layer), the dissipation, which depends on 
the gradient of velocity, is usually higher for no-slip models compared to free-slip models. Nearly all of the tidal 
dissipation in the no-slip models is concentrated in the boundary layers (Figure 9b) and even though the thickness 

Figure 8. (a) Dissipation as a function of the ocean thickness computed using the modified Laplace tidal equations approach 
by Beuthe (2016, thick solid lines) and the 3D approach (this study) in which the no–slip boundary conditions were replaced 
by the free-slip ones (dashed and dash-dotted lines). Dissipation in the 3D models is obtained using either Equation 8 or 
Equation 15. The violet, blue, and red colors represent different values of viscosity ηo. (b) Comparison of 3D free-slip 
(dash-dotted lines) and 3D no-slip solutions (thin solid lines) obtained for model A (see Table 1). Colors are the same as in 
panel (a). All the calculations are performed for model A.
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of the boundary layers is small, the total heat production can be up to six orders of magnitude higher than in the 
corresponding free-slip models.

6. Conclusion
In this study, we have presented a novel approach to modeling the tidal response of icy moons with subsurface 
oceans. The problem of tidal deformation is solved in the time domain and the flow in the ocean is calcu-
lated simultaneously with the deformation of the core and the ice shell. The main advantage of this approach 
is that it makes it possible, at least in principle, to investigate the non-linear effects associated with turbulent 
flow. However, this advantage is also its biggest limitation: Since the time required to reach a stable periodic or 
quasi-periodic solution is rather long (∼100–1,000 P), the calculations are time-consuming and at present are 
only feasible for viscosities that are several orders of magnitude higher than the molecular viscosity of water.

The method developed here is used to study the tidal flow in the ocean of Enceladus. In particular, we focus on 
the role of a highly deformable and dissipative core in ocean dynamics and investigate the mechanical coupling 
between the core and the ocean. We show that the amount of tidal heat generated in the core and the ocean 
strongly depends on the thickness of the ocean layer. If the ocean thickness is significantly greater than 1 km, 
heat production is dominated by tidal dissipation in the core and the amount of heat produced in the ocean 
is negligible. In this case, tidal deformation of the core and crust is unaffected by tidal currents in the ocean, 
implying that tidal flow in the ocean can be investigated using the approach by Rekier et al. (2019) where the 
deformations of the crust and core are computed beforehand and imposed as boundary conditions. In contrast, 
when the ocean  thickness is less than about 1 km, tidal heating in the core diminishes and dissipation in the ocean 
increases, leaving the total heat production unchanged. The maximum heat production in the ocean depends only 
on the material properties of the core and may exceed 20 GW if the core is highly deformable.

We demonstrate that the flow pattern and the distribution of tidal dissipation strongly depend on the thickness of 
the ocean. The radial component of the velocity is found to be negligible only if the ocean thickness is less than 
about 5 km, implying that the shallow water approximation (Tyler, 2009, 2020) is not applicable to present-day 
Enceladus. The amount of small–scale content in the velocity field increases with decreasing viscosity and 
increasing ocean thickness, leading to complex patterns of heat flux at the surface of the ocean.

Comparison of our results with those obtained using the LTE approach by Beuthe  (2016) suggests that the 
shallow water equations corrected for the dampening effect of the ice shell give a reasonable estimate of the 
horizontal flow velocity but they fail to predict the correct values of the dissipation rate. The reason for this is that 
the solution of these equations cannot, in principle, provide information about the radial changes of the velocity 
vector. We show that these changes play an important role in calculating the dissipation and may be significant 
even in the case of a thin ocean.

Extrapolation of our results to realistic (low viscosity) conditions indicates that the heat production in Enceladus' 
present-day ocean is likely to be less than 0.1 GW, corresponding to 0.25% of Enceladus' total heat loss. This 

Figure 9. Radial variation of the (a) mean flow velocity and (b) heat production in the ocean for D = 100 m, ηo = 100 Pa s, 
and t = 0. The violet and green lines represent the 3D models with the free-slip and no-slip conditions, respectively. The 
mean velocity is calculated as 𝐴𝐴

√

∫
𝑆𝑆
|𝒗𝒗(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟)|2 𝑑𝑑𝑆𝑆 while the mean heat production is given by 𝐴𝐴 2𝜂𝜂𝑜𝑜𝑆𝑆

−1 ∫
𝑆𝑆
�̇�𝒆 ∶ �̇�𝒆 𝑑𝑑𝑆𝑆 .
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suggests that the tidal dissipation in the ocean plays a minor role in Enceladus' heat budget, which is in agreement 
with most of the recent studies, except the one by Tyler (2020). It is unclear, however, whether such an extrapo-
lation is justified because the models of ocean tides presented here are characterized by laminar flow (Reynolds 
number ≲ 10 3) while the flow in the real ocean is likely to be turbulent. Based on our results, we estimate that 
the onset of turbulence occurs when the model viscosity drops below 10 Pa s, that is, at a value that is still rather 
high compared to the molecular viscosity of water. The reader should be aware that the results presented here may 
be affected by the fact that our model does not include the effect of ocean thickness variations and stratification, 
which can significantly enhance the dissipative processes in the ocean.

The question of to what extent the non-linear effects and possible resonant interactions can influence tidal dissi-
pation in the ocean has not been addressed in previous studies. Some of these studies (e.g., Matsuyama, 2014; 
Rekier et al., 2019; Rovira-Navarro et al., 2019; Tyler, 2014) have demonstrated that the solution of the linearized 
NSE exhibits strong resonance peaks occurring when the system is able to store the tidal energy and transfer it 
into kinetic energy. However, the increase in the kinetic energy would likely to result in the onset of turbulence, 
violating the assumption of linearity, enhancing the damping properties of the system, and possibly reducing the 
amplitude of flow oscillations. Understanding these effects will require a thorough analysis of tidal flow at small 
spatial scales. This goal can hardly be achieved without the development of new numerical tools that will make 
it possible to perform high resolution simulations in the time domain. We believe this study is a first step toward 
this goal.

Data Availability Statement
The data regarding the figures and the code that computes the three-dimensional tidal dissipation are available in 
the Zenodo repository (Aygün & Čadek, 2023).
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