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S U M M A R Y 

Deep boreholes represent a source of clean energy. Therefore, ef fecti ve calculations of potential
extraction of heat from boreholes for realistic models of the Earth’s crust with variable thermal
conducti vity and dif fusi vity are needed. We deal with heat extraction in a quasi-steady state
from coaxial boreholes where downward and upward flows of pumped fluid (water) are
separated by an inner pipe and connected only at the bottom. We first obtain theoretical
estimates of heat extraction for a thermally isolated inner pipe and a model of the ground
with constant thermal dif fusi vity and conducti vity. Then, we de velop a ne w anal ytical matrix
method for a general layered ground model that enables us to include depth-dependent ground
properties as well as heat exchange between the downward and upward flows of fluid in the
borehole. Our straightforward and fast approach is thus suitable for various parametric studies
or as a tool for benchmarks of numerical software. A key role in heat extraction from coaxial
boreholes is played by the inner-pipe thermal resistance. We apply our method to the parametric
study showing the dependence of pumped water temperature and total heat extraction from
the borehole on realistic borehole geometries under different amounts of water pumping. The
calculations are performed for a 3 km deep borehole as the representative of present deep
boreholes used for extraction of geothermal energy and for a 10 km deep borehole. Drilling
of such a superdeep borehole has just started in China and our results demonstrate potential
limits of geothermal energy extraction from such great depths. 

Key wor ds: Numerical appro ximations and analysis; Heat flow; Hydrothermal systems. 

 I N T RO D U C T I O N  

umerical estimates dealing with the potential extraction of heat from boreholes have a long tradition going back to the 80s of the last century
Eskilson 1987 ). For example, Claesson and Eskilson ( 1988 ) studied heat extraction from boreholes if the temperature at the borehole wall
s known (estimated); that is, only the heat flow conduction equation outside the borehole is (anal yticall y) solved for prescribed boundary
onditions. Ho wever , we need to couple heat conduction outside boreholes with heat convection due to the flowing fluid inside boreholes to
e able to study more general situations. 

In this study, we concentrate on coaxial heat exchangers, where cold fluids flow downward in an annular pipe, extracting heat from the
urrounding rock through the borehole wall and grout, change direction at the bottom of the borehole and flow upward in a central pipe, which
s mechanically isolated from the annular pipe. The straightforward approach to this problem is based on fully 2-D numerical modelling in
xial geometry, where the finite-element method (FEM), the finite-difference method (FDM), or the finite-volume method (FVM) can be
pplied. For example, the FEM was used to estimate the maximal potential heat extraction from the 2302 m deep borehole at Weggis in
witzerland (Kohl et al. 2002 ), and, similarly, for a 5 km deep borehole heat exchanger, where groundwater velocity was also taken into
ccount (Le Lous et al. 2015 ). Detailed methodological papers dealing with the FEM employing the FEFLOW–TRNSYS software were
ublished by Diersch et al. ( 2011a , b ). Popular FEM open software enabling to solve, inter alia, the problem of heat extraction from coaxial
eat exchangers, is OpenGeoSys (Cai et al. 2022 ; Brown et al. 2023a , b ). The FVM was, for example, employed by Iry and Rafee ( 2019 ) to
tudy the thermal and hydrodynamic performance of the coaxial borehole heat exchanger in transient regimes for different borehole diameters.
he advantage of fully numerical methods is that they can naturally deal with models of the ground that change with depth. Ho wever , such a

ull numerical approach is computationally demanding because the radial spatial resolution in a borehole and its vicinity must be very high
ompared to the depth extent of the model. 
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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Therefore, it is numerically advantageous to deal with the case where the interaction of a coaxial borehole with the surrounding ground
is studied under the assumption that the heat transfer in the circulating fluid is approximated by a 1-D energy balance equation. Recently,
new papers have appeared that study this problem. To solve this simplified coupled problem numericall y, the FDM w as used in Fang et al.
(2018 ), Song et al. ( 2018 ), Morchio and Fossa ( 2019 ) and Li et al. ( 2021 ), while the FVM was employed in He and Bu ( 2020 ) and Liu et al.
(2020 ). On the other hand, Pan et al. ( 2020 ) solved the problem by using the analytical approach in the Laplace transform domain, similarly as
Beier et al. ( 2014 ), followed by a numerical inverse Laplace transform algorithm to obtain the solution. An e xtensiv e re vie w of experimental,
numerical and analytical approaches to estimate the extraction of heat from the ground by employing coaxial heat exchangers can be found
in Ma et al. ( 2020 ). 

Ho wever , there are also attempts to develop (quasi-)analytical approaches in a time domain. Pan et al. ( 2019 ) anal yticall y solved ordinary
differential equations describing the thermal balance of the circulating fluid in the outer and inner pipes of a coaxial borehole under the
strong simplifying assumption of constant temperature at the borehole wall. Luo et al. ( 2019 , 2020 , 2022 ) combined a steady-state analytical
model for a flowing fluid with an analytical transient heat conduction model of the ground surrounding the borehole, which is based on a
segmented finite line source model. Similar approach was used also in a complex study by Jiao et al. ( 2021 ). Ma et al. ( 2020 ) analytically
expressed the heat conduction in the surrounding ground, where the heat flow or temperature at the borehole wall are unknown quantities
that are determined together with the temperature of the outflowing fluid. They propose iteration schemes, where either the total energy
balance or temperature smoothness criteria are used to stop the algorithm. Their approach is designed for a general layered model. Zhao et al.
( 2020 ) used similarly the analytical expression for heat conduction outside the borehole, but the energy balance for flowing fluid solved by
a finite-difference scheme. Their approach is also iterative, since the outflow temperature is found by minimizing error in the total energy
balance of the problem. The analytical approach for a layered model was published by Karabetoglu et al. ( 2021 ), also for the case, when the
temperature at the borehole wall is estimated a priori . 

The main moti v ation of this paper is to show that in a case of quasi-steady-state approximation, the problem of heat extraction from
coaxial boreholes in layered ground models can be fully solved analytically, and the only part of the solution that requires more (but still
fast) numerical calculations is the e v aluation of series of the Bessel functions that describe heat conduction in the ground outside a borehole.
Moreover, this part is solved independently and its results can be used repeatedly for several parametric studies. The software based on our
formulae is thus fast and efficient. The problem is solved for general lay ered models, w here all quantities characterizing the model (i.e. the
physical parameters of the ground, the geothermal gradient and the thermal resistances of the pipe and borehole walls) are constant in each
layer. Since the thickness of each layer is another free parameter, our approach enables us to deal with models that change with depth in
a general way. In each of the layers, the heat conduction outside the borehole is expressed similarly as in Ma et al. ( 2020 ) and Zhao et al.
( 2020 ), and coupled with a quasi-steady-state analytical solution for temperature changes of both the downward and upward flows of the fluid
inside the borehole. The analytical solutions within the layers are subsequently coupled by a matrix method that employs the continuity of the
fluid temperature at the layer interfaces. By adding appropriate boundary conditions, we finall y recei ve a complete analytical solution of the
prob lem, w here no additional iterations are needed. We present formulae for the cases, where input controlling parameter is the temperature
of inflowing water or the total heat extraction or the temperature of outflowing water. We also explicitly show that the problem is even
substantially simpler if the upward hot fluid can be considered as thermally isolated from the colder fluid flowing downward and the thermal
resistance between the downward flowing water and the ground is negligible. Such an approximation is suitable for maximum estimates of
potential heat extraction from a borehole. 

2  M E T H O D  

The problem consists of the two parts that are solved separately. In the first part, we will deal with heat conduction outside a borehole and in
the second part, we will describe energy balance between heat conduction in the ground and water circulating in the borehole. 

2.1 Temperature and heat flow outside the borehole 

We consider the case where the heat conductivity k , density ρ and the heat capacity c p of the crust depend only on the depth z . Radial distance
from the centre of the borehole is denoted by r and its radius b y r a , respecti vel y. Groundw ater advection is neglected, and thus only heat
conduction is considered outside the borehole r > r a , that is, 

ρc p 
∂T 

∂t 
= ∇ · ( k∇T ) , (1) 

where T ( r , z , t ) is the temperature and t is the time. 
In the case of constant material properties , eq. ( 1 ) simplifies to 

∂T 

∂t 
= κ∇ 

2 T , (2) 

where κ ≡ k / ρc p is the thermal dif fusi vity and 

∇ 

2 ≡ 1 

r 

∂ 

∂r 

(
r 

∂ 

∂r 

)
+ 

∂ 2 

∂z 2 
, 
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s the Laplace operator expressed in the cylindrical coordinates r and z . Fur ther more, in the case of the fluid circulating in the borehole,
adial conduction dominates in its vicinity, that is, | ∂ T / ∂ z | � | ∂ T / ∂ r | , see also Ma et al. ( 2020 ) and Zhao et al. ( 2020 ). This assumption is
ell justified. For example, Cai et al. ( 2022 ) showed that the thermal influencing radius of the boreholes is only about 30 m for relati vel y

ong 15 yr of operation. The horizontal temperature gradients are thus of the order of several ◦C m 

−1 , whereas typical vertical temperature
radients far from the borehole are about two orders of magnitude smaller. Moreover, the vertical temperature gradient at the borehole wall
s even smaller due to the cooling of the wall by the do wnflo wing water. Eq. ( 2 ) thus attains the form 

∂T 

∂t 
= 

κ

r 

∂ 

∂r 

(
r 
∂T 

∂r 

)
. (3) 

e take into account the boundary conditions T = T a ( z ) if r = a and T = T b ( z ) if r = b , where b � a represents the boundary of the
omputational domain. Zhao et al . ( 2020 ) analysed in detail how the outside boundary radius b should be large to prevent false heat flow due
o the (artificial) external boundary condition. Substantial reduction of the computational domain up to tens of metres in radial direction is
dvantageous since the numerical evaluation of the series of Bessel functions solving the eq. ( 3 , see below) is then more efficient. The initial
ondition for t = 0 is T = T b . 

Solution of eq. ( 3 ) satisfying the considered boundary and initial conditions can be found by means of the formulae published in Carslaw
nd Jaeger ( 1959 ): 

If we express the temperature T in the form 

T = 

T a ln ( b/r ) + T b ln ( r/a) 

ln ( b/a) 
+ u ( r ) exp 

(−κα2 t 
)

, (4) 

he function u ( r ) must satisfy the boundary conditions u ( a ) = u ( b ) = 0 and the equation 

d 2 u 

dr 2 
+ 

1 

r 

du 

dr 
+ α2 u = 0 , (5) 

hich is the Bessel equation of order zero. The corresponding solutions are the Bessel functions of the first and second kind that will be
enoted by J 0 ( αr ) and Y 0 ( αr ). u ( r ) can be expressed as the combination of the Bessel functions 

 ( r ) = J 0 ( αr ) Y 0 ( αb) − J 0 ( αb) Y 0 ( αr ) ≡ U 0 ( αr ) , (6) 

he boundary condition u ( b ) = 0 is already fulfilled and the boundary condition u ( a ) = 0 is then satisfied for such αn that are the roots of the
quation 

J 0 ( αa) Y 0 ( αb) − J 0 ( αb) Y 0 ( αa) = 0 . (7) 

fter some algebra (Carslaw and Jaeger 1959 , pp. 206–207), one finally gets 

T = 

T a ln ( b/r ) + T b ln ( r/a) 

ln ( b/a) 
− π

∞ ∑ 

n = 1 

{ T b J 0 ( aαn ) − T a J 0 ( bαn ) } J 0 ( aαn ) U 0 ( rαn ) 

J 2 0 ( aαn ) − J 2 0 ( bαn ) 
exp 

(−κα2 
n t 

)

+ T b π
∞ ∑ 

n = 1 

J 0 ( aαn ) U 0 ( rαn ) 

J 0 ( aαn ) + J 0 ( bαn ) 
exp 

(−κα2 
n t 

)
, (8) 

here the first term is the stationary solution T s ( r ) of eq. ( 3 ) satisfying non-homogeneous boundary conditions T s ( a ) = T a , and T s ( b ) = T b ,
he second term solves eq. ( 3 ) with zero boundary conditions and initial condition T ( r , 0) = −T s ( r ). This second particular solution of the eq.
 3 ) then enables to obtain the solution with zero initial condition simultaneously satisfying the boundary conditions—it is represented by the
um of these two terms. Finally, the third term is the solution of eq. ( 3 ) with zero boundary conditions and initial condition T = T b and thus
he sum of these three terms satisfies eq. ( 3 ) together with the required boundary conditions. 

Rewrite now T = T a + � T . � T is again the solution of eq. ( 3 ), but with the boundary conditions � T ( a ) = 0 and � T ( b ) = T b − T a , that
s, using eq. ( 8 ) we can immediately write � T as 

T = ( T b − T a ) 
ln ( r/a) 

ln ( b/a) 
− π

∞ ∑ 

n = 1 

( T b − T a ) J 2 0 ( aαn ) U 0 ( rαn ) 

J 2 0 ( aαn ) − J 2 0 ( bαn ) 
exp 

(−κα2 
n t 

) + ( T b − T a ) π
∞ ∑ 

n = 1 

J 0 ( aαn ) U 0 ( rαn ) 

J 0 ( aαn ) + J 0 ( bαn ) 
exp 

(−κα2 
n t 

)
. (9) 

Close to the borehole, that is, for r � b and the small time t compared to the diffusion time ( b − a ) 2 / κ , the first two terms in relation ( 9 )
re negligible, and 

T ( r, z, t) → T a ( z) + ( T b ( z) − T a ( z)) π
∞ ∑ 

n = 1 

J 0 ( aαn ) U 0 ( rαn ) 

J 0 ( aαn ) + J 0 ( bαn ) 
exp 

(−κ( z ) α2 
n t 

)
. (10) 

he heat flow q = k ∂ T /∂ r (in W m 

−2 ) at the external boundary of the borehole r = a is, therefore, 

( a, z, t) = k( z)( T b ( z) − T a ( z)) π
∞ ∑ 

n = 1 

αn J 0 ( aαn ) U 

′ 
0 ( aαn ) 

J 0 ( aαn ) + J 0 ( bαn ) 
exp 

(−κ( z ) α2 
n t 

)
, (11) 

here U 

′ 
0 is the deri v ati ve of the function U defined in eq. ( 6 ). 
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Figure 1. Dimensionless quantity Q 

∗( t ) ≡ Q 

′ ( t )/( k ( T b − T a )) for κ = 1.0, and 2.0 × 10 −6 m 

2 s −1 and the three values of the borehole radii 0.1, 0.15 and 0.2 m. 
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In the above equations, T a ( z ) is not dependent on time. Ho wever , we will deal with models, where the temperature T a starts from T b ( z ) at
the initial time t = 0, gradually decreases with time, and the quasi-steady-state approximation for e v aluation of the total heat flow Q 

′ passing
through 1 m of the borehole length, formally consistent with eq. ( 11 ), can be applied, that is, 

Q 

′ ( a, z, t) ̇= k( z)( T b ( z) − T a ( z, t)) Q 

∗( a, z, t) , (12) 

where 

Q 

∗( a, z, t) = 2 π 2 a 
∞ ∑ 

n = 1 

αn J 0 ( aαn ) U 

′ 
0 ( aαn ) 

J 0 ( aαn ) + J 0 ( bαn ) 
exp 

(−κ( z) α2 
n t 

)
. (13) 

Since the product a αn is dimensionless, Q 

∗ is also dimensionless. We see that Q 

′ is expressed in W m 

−1 , if k is expressed in W mK 

−1 and T b 

− T a in K, respecti vel y. Fig. 1 shows the numerically calculated dimensionless quantity Q 

∗ in days for several radii a of the borehole and two
thermal dif fusi vities. One can clearl y see that after several months Q 

∗ � 1, and the subsequent decrease with time is very slow. Emphasize
that the relation ( 12 ) is crucial for our method, since it will enable us to solve the problem anal yticall y in homo geneous layers, see the text in
Section 2.2 . 

Rough estimates of maximal heat extraction from deep boreholes can easily be done without additional calculations: if we consider
k to be about 3 W mK 

−1 , Q 

′ /( T b − T a ) ≡ kQ 

∗ is typically about 4 W mK 

−1 for a = 0.15 m, κ = 10 −6 m 

2 s −1 and times around one year.
Fur ther more, if the backg round temperature g radient d T b /d z is approximately 0.03 K m 

−1 and T a ( z ) is considered close to the averaged ground
surface temperature T 0 (which can be reached by sufficiently intensive pumping of a fluid of the same temperature T 0 into the borehole), we
get a rough estimate of the total heat extraction Q tot from the borehole in a quasi-steady-state case after several months (in W), 

Q tot ∼ 4 × (0 . 015 d) × d , (14) 

where d is the total depth of the borehole (in m) and 0.015 d is the average value of T b − T a (in K), since for linearly increasing temperature
with gradient β its average temperature between surface and the depth d is βd /2. Therefore, the maximum theoretical heat extraction from
the borehole is approximatel y quadraticall y increasing with depth d . For example, for the borehole reaching 2 km depth we get the estimate
Q tot ∼ 240 kW and for a very deep borehole reaching a depth of about 7 km, Q tot ∼ 3 MW according to eq. ( 14 ). It is clear that for a superdeep
borehole reaching the depth of about 10 km, the estimate of the background temperature gradient should decrease, but still several MW seems
to be the reasonable estimate of maximum heat extraction. 

These rough estimates are in a good agreement with those published in literature. For example, Fang et al. ( 2018 ) obtained for the
2 km deep borehole with the same values of k and the geother mal g radient similar estimate (300 kW) for the maximal heat extraction in
quasi-steady state. Ho wever , their model was based on full 3-D numerical modelling of coupled heat advection in circulating water with heat
conduction in the ambient crust. Similarly, Falcone et al. ( 2018 ) numerically estimated for the 7 km deep borehole with radius of 0,16 m a
heat extraction of 3 MW after 10 yr of w ater pumping. Howe ver, it should be emphasized that our estimates of maximum heat extraction from
the borehole can be made in such a simple way because we approximate the boundary condition by T a ( z ) → T 0 and, therefore, it is easy to
e v aluate the total heat flow from the crust to the borehole. 

2.2 Ener g y balance between circulating water in the borehole and the ambient ground 

In more general cases, where cooling of the outer wall of the borehole by the downward flow of water is not sufficiently intensive, we do not
have an estimate of the crust temperature close to the borehole and thus we must study the energy balance between the circulating water in
the borehole and the ambient crust. Following, for e xample, P an et al. ( 2019 ), Luo et al. ( 2020 ) and Zhao et al. ( 2020 ), we will deal with
quasi-steady states. The simplest analytical one-layer models will be presented first and the results will then be generalized to analytical
multilayer models that will approximate a general depth dependence of material parameters of either the crust or the borehole construction. 

art/ggad367_f1.eps
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.2.1 Ideal heat exchang er s 

o obtain the estimates of maximum possible heat extractions from a borehole, we start with the limiting case when the heat transfer between
he downward and upward flows as well as the temperature differences between the ground at r = a and the downward flow of water in the
adial direction are negligible. In such a case, there is only energy balance between the heat advection of the downward flow of water and the
eat conduction in the ground. This case is thus a model of an ideal borehole heat exchanger. 

odel with constant material parameters (one-layer model) 
The energy balance between the downward flow of water and the ambient ground can easily be expressed if we realize that the advection

f heat in the water is given by the product of the specific heat capacity of the water c w (in J kgK 

−1 ) with the amount of flowing water
˙  (in kg s −1 ) and the temperature T a . Therefore, the change of heat advection with depth in quasi-steady states is equal to c w ̇m ∂ T a /∂ z,
herefore, 

 w ̇m 

∂T a ( z, t) 

∂z 
= k Q 

∗( T b ( z) − T a ( z, t)) , (15) 

here the right-hand side is the heat flow passing through the borehole wall per its unit length. 
If the temperature T b far from the borehole increases linearly with depth, that is, T b = T 0 + βz , where T 0 is the surface temperature

f the ground that wil be considered as a known constant and β is the geothermal gradient, we obtain the solution of eq. ( 15 ) in the
orm, 

T a ( z, t) = T 0 + βz − β

λ( t) 
( 1 − exp ( −λ( t) z) ) + ( T a (0) − T 0 ) exp ( −λ( t) z) , λ( t) ≡ k Q 

∗

c w ̇m 

. (16) 

ere, we consider the temperature of inflow water T a (0) to be the known input parameter constant in time. If total depth of the borehole is d ,
he temperature T a ( d , t ) is then equal also to the temperature of the outflow of water, since the inner pipe is thermally isolated from the outer
ipe. T d is considered here as the ( a priori unknown) output that changes in time. 

The value of the parameter λ( t ) is controlled by the amount of water flow ṁ . Evidently, 

˙  → 0 ⇒ λ → ∞ ⇒ T a → T 0 + βz , 
˙  → ∞ ⇒ λ → 0 and exp ( −λz) =̇ 1 − λz ⇒ T a ( z, t) → T a (0) . 

The total heat extraction Q tot ( t ) from the borehole reaching the depth d is 

Q tot ( t) = c w ̇m ( T a ( d, t) − T a (0)) 

= 

k Q 

∗

λ( t) 

[
β

(
d + 

exp ( −λ( t) d) − 1 

λ( t) 

)
+ ( T a (0) − T 0 )( exp ( −λ( t) d) − 1) 

]
, (17) 

nd the limiting cases are 

˙  → 0 ⇒ λ → ∞ ⇒ Q tot → 0 , 

˙  → ∞ ⇒ λ → 0 and exp ( −λd) =̇ 1 − λd + ( λd) 2 / 2 ⇒ Q tot → k Q 

∗
(

βd 2 

2 
+ ( T 0 − T a (0)) d 

)
, 

hich is in agreement with the estimates in the previous section (eq. 14 ) that are based on averaging the temperature in the borehole over
epth. 

It is simple to inverse eqs ( 16 ) and ( 17 ) to obtain T a (0, t ) as the output for the inputs T a ( d ) or Q tot , respecti vel y, where the new inputs
ill now be constant to keep the quasi-steady approximation 

T a (0 , t) = T a ( d ) exp ( λ( t) d ) + T 0 (1 − exp ( λ( t) d)) − βz exp ( λ( t) d) + 

β

λ( t) 
( exp ( λ( t) d) − 1) , (18) 

T a (0 , t ) = 

1 

c w ̇m 

1 

exp ( −λ( t ) d) − 1 
Q tot + T 0 − β

(
d 

exp ( −λ( t) d) − 1 
+ 

1 

λ( t) 

)
. (19) 

inally, we can also express T a ( d , t ) as the output for the constant input Q tot as well as Q tot ( t ) as the output for the constant input T a ( d ), 

T a ( d, t ) = 

1 

c w ̇m 

exp ( −λ( t ) d) 

exp ( −λ( t ) d) − 1 
Q tot + T 0 − β

(
d 

exp ( −λ( t) d) − 1 
+ 

1 

λ( t) 

)
. (20) 

Q tot ( t) = c w ̇m 

exp ( −λ( t) d) − 1 

exp ( −λ( t) d) 

[
T a ( d) − T 0 + β

(
d 

exp ( −λ( t) d) − 1 
+ 

1 

λ( t) 

)]
. (21) 

he influence of ṁ on the temperature and the extraction of heat is illustrated in Figs 2 and 3 for Q 

∗ = 1.2, which roughly corresponds to
he borehole with radius 0,15 m after two years of constant water pumping (see also Fig. 1 ), k = 3W mK 

−1 , c w = 4,18 kJ kgK 

−1 and β =
0 K km 

−1 . One can clearly see that even a relatively small pumping of water with ṁ of the order of 1 kg s −1 can produce about 1 MW of
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Figure 2. Theoretical maximum increase of temperature in the borehole up to a depth of 10 km. The amount of pumped water ṁ is 1, 10 and 100 kg s −1 . 

Figure 3. Theoretical maximum extraction of heat from the borehole as a function of its depth. The amount of pumped water ṁ is 1, 10 and 100 kg s −1 . 
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energy in the case of a superdeep borehole of about 10 km depth. Emphasize again that these are maximal estimates since the exchange of
heat between the downward and upward flows is neglected and a decrease of β with depth is not taken into account. 

Multilayered model 
In the case of a more complex crust model, where the thermal conductivity k , the thermal dif fusi vity κ and the geothermal gradient

β are depth dependent, we can employ a layered model (with k , κ and β to be constant within each layer) to approximate such a situation.
Emphasize that we again do no take vertical (axial) heat flow into account not only inside the layers but also on the interfaces between the
layers. This is consistent, for example, with Karabetoglu et al. ( 2021 ), who demonstrated that interlayer heat transfer is almost completely
negligible. If T i a and T i b denote the values of the temperatures T a and T b on the upper interface z = z i of the i th layer, the temperature T a in
the i th layer is given by the relation 

T a ( z, t) = T i b + βi ( z − z i ) − βi 

λi ( t) 
( 1 − exp ( −λi ( t)( z − z i )) ) − ( T i b − T i a ( t )) exp ( −λi ( t )( z − z i )) , λi ( t ) ≡ k i Q 

∗
i 

c w ̇m 

. (22) 

Now we will consider the temperature of inflowing water T 1 a to be the known constant input quantity, moreover, T 1 b = T 0 for z = z 1 =
0, and thus it is easy to express the temperature of downward flow of water for any depth using eq. ( 22 ). For i > 1, it holds: 

T i b = T 1 b + 

i−1 ∑ 

j= 1 
β j ( z j+ 1 − z j ) , (23) 

T i a ( t) = M i−1 ( t ) 

[
. . . 

[
M 2 ( t ) 

[
M 1 ( t ) T 

1 
a + (1 − M 1 ( t ))( T 

1 
b −

β1 

λ1 ( t ) 
) + β1 ( z 2 − z 1 ) 

]

+ (1 − M 2 ( t))( T 
2 

b −
β2 

λ2 ( t) 
) + β2 ( z 3 − z 2 ) 

]
. . . 

]

+ (1 − M i−1 ( t))( T 
i−1 

b − βi−1 

λi−1 ( t) 
) + βi−1 ( z i − z i−1 ) , M i ( t) ≡ exp ( −λi ( t)( z i+ 1 − z i )) . (24) 

If we denote 

S i ( t) = (1 − M i ( t ))( T 
i 

b −
βi 

λi ( t ) 
) + βi ( z i+ 1 − z i ) , (25) 
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e can rewrite the formula ( 24 ) in a more compact form 

T i a ( t) = 

i−1 ∏ 

j= 1 
M i− j ( t) T 

1 
a + 

i−2 ∑ 

k= 1 

⎛ 

⎝ 

i−1 −k ∏ 

j= 1 
M i− j ( t) S k ( t) 

⎞ 

⎠ + S i−1 ( t) . (26) 

ote that if we need to e v aluate the temperature T a inside a layer, it is possible to formally add the interface to the depth of interest and use
gain eq. ( 26 ). 

In a model consisting of N layers the temperature of outflowing water T N+ 1 
a is, therefore, 

T N+ 1 
a ( t) = 

N ∏ 

j= 1 
M N+ 1 − j ( t) T 

1 
a + S ( t) , where S ( t) = 

N−1 ∑ 

k= 1 

⎛ 

⎝ 

N−k ∏ 

j= 1 
M N+ 1 − j ( t) S k ( t) 

⎞ 

⎠ + S N ( t) . (27) 

he heat extraction Q tot from the borehole is 

Q tot ( t) = c w ̇m ( T N+ 1 
a ( t) − T 1 a ) = c w ̇m 

⎡ 

⎣ 

⎛ 

⎝ 

N ∏ 

j= 1 
M N+ 1 − j ( t) − 1 

⎞ 

⎠ T 1 a + S( t) 

⎤ 

⎦ . (28) 

nversions of eqs ( 27 ) and ( 28 ) are 

T 1 a ( t ) = 

( T N+ 1 
a − S( t )) ∏ N 

j= 1 M N+ 1 − j ( t ) 
, (29) 

T 1 a ( t ) = 

Q tot − c w ̇m S( t ) 

c w ̇m 

(∏ N 
j= 1 M N+ 1 − j ( t ) − 1 

) . (30) 

inally, the analogy of eqs ( 20 ) and ( 21 ) is 

T N+ 1 
a ( t) = 

N ∏ 

j= 1 
M N+ 1 − j ( t) 

Q tot − c w ̇m S( t) 

c w ̇m 

(∏ N 
j= 1 M N+ 1 − j ( t) − 1 

) + S( t) , (31) 

Q tot ( t) = c w ̇m 

[ ∏ N 
j= 1 M N+ 1 − j ( t) − 1 ∏ N 

j= 1 M N+ 1 − j ( t) 
( T N+ 1 

a − S( t)) + S( t) 

] 

. (32) 

.2.2 Realistic heat exchang er s 

ere, we will deal with realistic heat exchangers, where neither the heat flow between the inner and outer pipes nor the thermal resistance of
he external borehole wall and the grout can be neglected. 

odel with constant material parameters (one-layer model) 
In what follows, we will distinguish between the temperature T a on the side of the borehole wall and the temperature T d of the water

o wing do wnw ard; T u will denote the temperature of the w ater flowing upw ard. The symbol R e will be used to indicate the total thermal
esistance of the external borehole wall together with the grout and R i will denote the thermal resistance of the internal wall that separates the
ownward and upward flows of water, see Fig. 4 . The energy balance is expressed by the following three equations: 

 w ̇m 

∂T d 
∂z 

= 

T a ( z) − T d ( z) 

R e 
+ 

T u ( z) − T d ( z) 

R i 
, (33) 

hat is, the water flowing downward is heated by the heat flow passing through both the external wall (and the grout) and the internal wall.
he heat flow that passes through the external wall is equal to the heat flow from the crust, that is, 

T a ( z) − T d ( z) 

R e 
= k Q 

∗( T b ( z) − T a ( z)) . (34) 

inally, the water flowing upward is cooled by the heat flow passing through the internal wall, which can be expressed as 

 w ̇m 

∂T u 
∂( −z) 

= − T u ( z) − T d ( z) 

R i 
, or c w ̇m 

∂T u 
∂z 

= 

T u ( z) − T d ( z) 

R i 
. (35) 

he three unknown quantities in eqs ( 33 )–( 35 ) are T a ( z ), T d ( z ) and T u ( z ). The question arises how to describe them in an analytical way. 
It is straightforward to express T a ( z ) from eq. ( 34 ), 

T a ( z) = 

R e k Q 

∗T b + T d 
1 + R e k Q 

∗ . (36) 

ubsequently, after putting T a ( z ) to eq. ( 33 ), we get a system of two equations of the first order for the temperatures of water T d and T u : 

∂T d 
∂z 

= μ( t) T d + νT u + η( t) T b , (37) 
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Figure 4. Borehole cross-section. 
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∂T u 
∂z 

= −νT d + νT u , (38) 

where 

μ( t) = 

1 

c w ̇m 

(
1 

R e (1 + R e k Q 

∗) 
− 1 

R e 
− 1 

R i 

)
= 

1 

c w ̇m 

( −k Q 

∗

1 + R e k Q 

∗ − 1 

R i 

)
, (39) 

ν = 

1 

c w ̇m R i 
, (40) 

η( t) = 

k Q 

∗

c w ̇m (1 + R e k Q 

∗) 
. (41) 

Note that μ( t ) + ν + η( t ) = 0. Moreover, μ( t ) → −λ, ν → 0 and η( t ) → λ if R e → 0 and R i → ∞ , which corresponds to the model studied
in the previous Section 2.2.1. 

Introduce the vector T ( z, t) and the matrix A by 

T ( z, t) ≡
( 

T d ( z, t) 
T u ( z, t) 

) 

, A ( t) ≡
( 

μ( t) ν
−ν ν

) 

. (42) 

The solution of system eqs ( 37 ) and ( 38 ) can then be written in the form 

T ( z, t) = ( exp ( A ( t) z)) C ( t) + 

( 

T 0 + βz 
T 0 + βz + β/ν

) 

, (43) 

where 

C ( t) = 

( 

C 1 

C 2 ( t) 

) 

= 

( 

T d (0) − T 0 
T u (0 , t) − T 0 − β/ν

) 

is the vector of integration constants, where we used that exp ( A z) is the identity matrix for z = 0. 
At z = d , where d is the thickness of the layer, we clearly have the boundary condition T d ( d , t ) = T u ( d , t ), that is, 

( exp ( A ( t) d)) 11 C 1 + ( exp ( A ( t ) d)) 12 C 2 ( t ) + T 0 + βd 

= ( exp ( A ( t) d)) 21 C 1 + ( exp ( A ( t ) d)) 22 C 2 ( t ) + T 0 + βd + β/ν , (44) 

and thus 

T u (0 , t) = M( t) T d (0) + S( t) , (45) 

where 

M( t ) = 

( exp ( A ( t ) d)) 21 − ( exp ( A ( t ) d)) 11 

( exp ( A ( t ) d)) 12 − ( exp ( A ( t ) d)) 22 
, 
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S( t) = (1 − M( t)) T 0 + 

(
1 + 

1 

( exp ( A ( t) d)) 12 − ( exp ( A ( t) d)) 22 

)
β/ν , 

nd we will continue similarly as in the previous sections, that is, 

Q tot ( t) = c w ̇m (( M( t) − 1) T d (0) + S( t)) , (46) 

T d (0 , t) = 

T u (0) − S( t) 

M( t) 
, (47) 

T d (0 , t ) = 

Q tot − c w ̇m S( t ) 

c w ̇m ( M( t ) − 1) 
, (48) 

nd finally 

T u (0 , t ) = 

M( t )( Q tot − c w ̇m S( t )) 

c w ̇m ( M( t ) − 1) 
+ S( t ) , (49) 

Q tot ( t) = c w ̇m 

(
M( t) − 1 

M( t) 
( T u (0) − S( t)) + S( t) 

)
. (50) 

pecial case: 
If R i → ∞ then ν = 0 and μ( t ) = −η( t ). Therefore, the formulae written above cannot be used due to the fraction β/ ν. The results of

ection 2.2 for the do wnflo w temperature T d can be used if λ is replaced by η( t ). The upflow temperature T u is then constant and equal to
 d ( d ). 

ultilayered model 
We consider a model consisting of N layers. Each layer is characterized by the values of the geothermal gradient of an unperturbed crust

i and the values of the property matrix A 

i . Denote the T 

i ( t) and T i b values of T ( t) and T b on the upper interface of the i th layer z = z i . The
olution ( 43 ) in the i th layer can be rewritten to the form 

T ( z, t) = ( exp ( A 

i ( t)( z − z i ))) C 

i ( t) + 

( 

T i b + βi ( z − z i ) 
T i b + βi ( z − z i ) + βi /νi 

) 

. (51) 

herefore, 

C 

i ( t) = T 

i ( t) −
( 

T i b 

T i b + βi /νi 

) 

. (52) 

he vector T and the unperturbed temperature T b can thus be expressed on the next interface z i + 1 simply by means of the scheme 

T 

i+ 1 ( t) = M 

i ( t) T 

i ( t) + S i ( t) , T i+ 1 b = T i b + βi ( z i+ 1 − z i ) , T 1 b ≡ T 0 , (53) 

here 

M 

i ( t) = exp ( A 

i ( t)( z i+ 1 − z i )) (54) 

nd 

S i ( t) = 

( 

T i b + βi ( z i+ 1 − z i ) 
T i b + βi ( z i+ 1 − z i ) + βi /νi 

) 

− M 

i ( t ) 

( 

T i b 

T i b + βi /νi 

) 

. (55) 

he relationship between T e v aluated at the bottom of the borehole and at the surface is then given by a final scheme 

T 

N+ 1 ( t) = M 

N ( t )( M 

N−1 ( t )( . . . M 

2 ( t )( M 

1 ( t ) T 

1 ( t ) + S 1 ( t)) + S 2 ( t)) + . . . ) + S N−1 ( t)) + S N ( t) 

= 

N ∏ 

i= 1 
M 

N+ 1 −i ( t ) T 

1 ( t ) + 

N−1 ∑ 

j= 1 

( 

N− j ∏ 

i= 1 
M 

N+ 1 −i ( t ) S j ( t ) 

) 

+ S N ( t) ≡ M tot ( t) T 

1 ( t) + S tot ( t) . (56) 

oundary conditions: 
The boundary condition at z = z 1 is simply 

 T 

1 ) 1 = T d ( z 1 ) , (57) 

nd the boundary condition at z = z N + 1 , 

T d ( z N+ 1 , t) = T u ( z N+ 1 , t) (58) 

an be written as 

 M tot ( t)) 11 T d ( z 1 ) + ( M tot ( t )) 12 T u ( z 1 , t ) + ( S tot ( t )) 1 = ( M tot ( t )) 21 T d ( z 1 ) + ( M tot ( t )) 22 T u ( z 1 , t ) + ( S tot ( t)) 2 . 
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This means that 

( T 

1 ) 2 ≡ T u ( z 1 , t) = 

( M tot ( t)) 21 − ( M tot ( t)) 11 

( M tot ( t)) 12 − ( M tot ( t)) 22 
T d ( z 1 ) + 

( S tot ( t)) 2 − ( S tot ( t)) 1 
( M tot ( t)) 12 − ( M tot ) 22 ( t) 

. (59) 

After denoting 

M( t ) = 

( M tot ) 21 ( t ) − ( M tot ( t)) 11 

( M tot ( t )) 12 − ( M tot ( t )) 22 
, S( t ) = 

( S tot ( t )) 2 − ( S tot ( t )) 1 
( M tot ( t )) 12 − ( M tot ) 22 ( t ) 

(60) 

temperature of the upward flow of water at the surface T u ( z 1 ) and the total heat exctraction Q tot from the borehole can be again expressed as 

T u ( z 1 , t) = M( t) T d ( z 1 ) + S( t) , Q tot ( t) = c w ̇m (( M( t) − 1) T d ( z 1 ) + S( t)) . (61) 

If the total heat extraction Q tot (or the temperature of the outflow of water from the borehole T u ( z 1 )) were considered as the constant input
quantity, we could again use rele v ant formulae ( 47 )–( 50 ), because the formulae ( 61 ) are formally the same as eqs ( 45 ) and ( 46 ). 

(De)coupling of the problems for downward and upward flows 
Expressing T u from eq. ( 37 ), ( T d z from eq. 38 ), we get after putting T u in eq. ( 38 ), ( T d in eq. 37 ) two independent equations of the

second order, 

1 

ν

∂ 2 T d 
∂z 2 

− (1 + 

μ( t) 

ν
) 
∂T d 
∂z 

+ ( μ( t) + ν) T d = 

η( t) 

ν

∂T b 
∂z 

− η( t) T b , (62) 

1 

ν

∂ 2 T u 
∂z 2 

− (1 + 

μ( t) 

ν
) 
∂T u 
∂z 

+ ( μ( t) + ν) T u = −η( t) T b . (63) 

If we multiply both equations by ν and use the relation ν + μ( t ) = −η( t ), the systems ( 62 ) and ( 63 ) attain the form 

∂ 2 T d 
∂z 2 

+ η( t) 
∂T d 
∂z 

− νη( t ) T d = η( t ) 
∂T b 
∂z 

− νη( t ) T b , (64) 

∂ 2 T u 
∂z 2 

+ η( t) 
∂T u 
∂z 

− νη( t) T u = −νη( t) T b . (65) 

These equations must be supplemented by suitable boundary conditions on the surface z = 0 and at the bottom of the borehole z = d . We
again assume that the temperature of the pumped water at the surface is equal to the surface temperature of the crust, therefore, 

T d (0) = T a (0) = T b (0) ≡ T 0 . (66) 

Consequently, using eqs ( 33 ) and ( 35 ) we arrive at the following, 

∂T d 
∂z 

(0) = 

∂T u 
∂z 

(0) = 

T u (0) − T 0 
c w ̇m R i 

≡ ( T u (0) − T 0 ) ν . (67) 

At the bottom of the borehole, the temperature of the water flowing downward is equal to the temperature of the water flowing upward, 

T d ( d) = T u ( d) , (68) 

and thus the deri v ati ves of these temperatures (see eqs 33 , 36 and 41 ) are 

∂T d 
∂z 

( d) = 

1 

c w ̇m R e 
( T a ( d) − T d ( d)) 

= 

1 

c w ̇m R e 

(
R e k Q 

∗T b ( d) + T d ( d) 

1 + R e k Q 

∗ − T d ( d) 

)
= η( t)( T b ( d) − T d ( d)) , (69) 

∂T u 
∂z 

( d) = 0 . (70) 

Eq. ( 64 ) can be supplemented by the boundary conditions ( 66 ) ( T d (0) = T 0 ) and ( 69 ), while the boundary conditions ( 67 ) (d T u /d z (0) = ( T u (0)
− T 0 ) ν) and ( 70 ) can be added to eq. ( 65 ). Formally, the problems for T d and T u are thus decoupled and can be solved independentl y. Howe ver,
there is a physical coupling hidden in the fact that the surface temperature of the do wnward flo w T d is used also in the surface value of the
upward flow gradient d T u /d z . 

The homogeneous parts of eqs ( 64 ) and ( 65 ) are identical; their solution is 

T h d,u ( z) = A d,u exp ( ω 1 z) + B d,u exp ( ω 2 z) , (71) 

where A d , u and B d , u are integration constants and ω 1, 2 are the roots of the characteristic equation, 

ω 1 , 2 = 

−η( t) ± √ 

η( t) 2 + 4 νη( t) 

2 
= 

ν + μ( t) ± √ 

( ν + μ( t)) 2 − 4 ν( μ( t) + ν) 

2 
. (72) 

Taking into account T b ( z ) in the form T b ( z ) = T 0 + βz , the particular solution of eq. ( 64 ) is 

T p d ( z) = T 0 + βz ≡ T b ( z) , (73) 
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hereas the particular solution of eq. ( 65 ) is 

T p u ( z) = T 0 + 

β

ν
+ βz ≡ T b ( z) + 

β

ν
. (74) 

e thus have arrived at 

T d ( z) = A d exp ( ω 1 z) + B d exp ( ω 2 z) + T 0 + βz , (75) 

T u ( z) = A u exp ( ω 1 z) + B u exp ( ω 2 z) + T 0 + 

β

ν
+ βz , (76) 

nd after employing the boundary conditions mentioned above we get the following, 

A d = 

−β

( ω 1 + η( t)) exp ( ω 1 d) − ( ω 2 + η( t)) exp ( ω 2 d) 
= −B d , 

A u = 

−β( ω 2 − ν) 

ω 1 ( ω 2 − ν) exp ( ω 1 d) − ω 2 ( ω 1 − ν) exp ( ω 2 d) 
= −ω 2 − ν

ω 1 − ν
B u . 

In the case of the N -layered model, we will write in each layer 

T i d ( z) = A 

i 
d exp ( ω 1 z) + B 

i 
d exp ( ω 2 z) + T i b + βi z , (77) 

T i u ( z) = A 

i 
u exp ( ω 1 z) + B 

i 
u exp ( ω 2 z) + T i b + 

βi 

νi 
+ βi z . (78) 

here are 4 N unknown integration constants A 

i 
d,u , B 

i 
d,u , but we can employ four boundary conditions on the surface and bottom of the

orehole, and, moreover, the temperature must be continuous on each internal interface, that is, 

T i d ( z i+ 1 ) − T i+ 1 d ( z i+ 1 ) = 0 , T i u ( z i+ 1 ) − T i+ 1 u ( z i+ 1 ) = 0 , i = 1 , 2 , . . . , N − 1 . (79) 

o complete a system of required equations for the integration constants, we need to write other 2 N −2 conditions on internal boundaries. 
First, we write conditions for the deri v ati ves τ d ( z ) ≡ d T d ( z )/d z and τ u ≡ d T u ( z )/d z . It is clear from eqs ( 37 ) and ( 38 ) that these deri v ati ves

re not continuous on internal boundaries due to jumps of the material coefficients μ( t ), ν and η( t ) on the internal layer interfaces. Since the
ontinuity of temperature eq. ( 79 ) holds, we may write for i = 1, 2,. . . , N − 1 

i+ 1 
d ( z i+ 1 ) − τ i 

d ( z i+ 1 ) = ( μi+ 1 ( t) − μi ( t)) T 
i 

d ( z i+ 1 ) + ( νi+ 1 − νi ) T 
i 

u ( z i+ 1 ) + ( ηi+ 1 ( t) − ηi ( t)) T 
i 

b ( z i+ 1 ) (80) 

nd 

i+ 1 
u ( z i+ 1 ) − τ i 

u ( z i+ 1 ) = −( νi+ 1 − νi ) T 
i 

d ( z i+ 1 ) + ( νi+ 1 − νi ) T 
i 

u ( z i+ 1 ) . (81) 

he consequence of the material coefficient jumps is, therefore, that calculations of downward and upward flow temperatures employing the
onditions ( 80 ) and ( 81 ) are coupled. 

In order to decouple the interface conditions, we go back to the relations ( 64 ), ( 65 ), ( 71 ), ( 75 ) and ( 76 ). Since T d , T u and T β are continuous
n internal layer interfaces, it is also clear that 

T h d ≡ 1 

νη( t) 

∂ 2 T h d 

∂z 2 
+ 

1 

ν

∂T h d 

∂z 
(82) 

nd 

T h u + βν ≡ 1 

νη( t) 

∂ 2 T h u 

∂z 2 
+ 

1 

ν

∂T h u 

∂z 
+ βν (83) 

ust be continuous. Therefore, the continuity of the right-hand sides of eqs ( 82 ) and ( 83 ) can replace the conditions ( 80 ) and ( 81 ). 

 VA L I DAT I O N  O F  T H E  M E T H O D  A N D  PA R A M E T R I C  S T U D I E S  

irst, the thermal resistance from the borehole wall to the fluid in the outer pipe R e and the thermal resistance between the outer and the inner
ipes fluid R i must be determined. We use their magnitude calculated from the relations 

R e = 

1 

2 πk g 
ln 

(
r a 
r 1 o 

)
+ 

1 

2 πk p1 
ln 

(
r 1 o 
r 1 i 

)
+ 

1 

2 πr 1 i h 1 
, (84) 

R i = 

1 

2 πk p2 
ln 

(
r 2 o 
r 2 i 

)
+ 

1 

2 πr 2 o h 1 
+ 

1 

2 πr 2 i h 2 
, (85) 

here r a , r 1 o , r 1 i , r 2 o and r 2 i denote the outer radius of the grout, the outer and inner radii of the outer pipe and the outer and inner radii of the
nner pipe, respecti vel y, see Fig. 4 . The symbols k g , k p 1 and k p 2 are the ther mal conductivities of the g rout, the outer and inner pipes. Finally,
 1 and h 2 are the conv ectiv e heat transfer coefficients for the outer and inner pipes. Following Pan et al. ( 2019 ), we calculate them employing
he formula 

 = 

k f 
d 

(
( f/ 8)( Re − 1000) P r 

1 + 12 . 7( f/ 8) 1 / 2 ( P r 2 / 3 − 1) 

)
, f = (0 . 79 ln ( Re) − 1 . 64) −2 , (86) 
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Figure 5. Temperatures of water outflowing from the 100 m deep borehole for Q tot = 5 kW and ṁ = 8.33 kg s −1 . 

Figure 6. Temperature distribution of do wnflo wing and upflowing water T d and T u , respecti vel y, after 6.5 d (right-hand curves) and 33 d (left-hand curves) 
after the start of heating. Depth of the borehole is 100 m, Q tot = 5 kW and ṁ = 8.33 kg s −1 . 
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where k f is the thermal conductivity of the circulating fluid, Re is the Reynolds number and Pr is the Prandtl number. Hydraulic diameter d
= 2( r 1 i − r 2 o ) in calculating h 1 , and d = 2 r 2 i in expressing h 2 , respecti vel y. 

We tested our method against free software calculating temperatures in do wnflo wing and upflowing water for a priori prescribed
heat extraction. The software is based on analytical formulae in the Laplace domain (Beier et al. 2014 ). Fig. 5 shows the temperature of
water outflowing from a 100 m deep borehole and entering into a heat pump for up to 130 d. Heat extraction of 5 kW and water flow of
8.33 kg s −1 were constant, other parameters of the borehole can be found in https://www.opengeosys.org/docs/benchmarks/heat-transport- 
bhe/3d coaxial deep bhe/ . Fig. 6 then demonstrates the temperature distribution of do wnflo wing and upflowing water T d and T u , respectively,
after 6.5 and 33 d after the start of heating. We also benchmarked our formulae with numerical calculations of Cai et al. ( 2022 ) for 2.2, 2.4,
2.6, 2.8 and 3 km deep boreholes, respecti vel y, in the four -lay ers ground model. Constant temperature of inflow is 4 ◦C, surface temperature
of the ground T 0 is 14.8 ◦C and the flow rate is 10 litres s −1 . Cai et al . ( 2022 ) reported the outflow temperatures after the end of heating
season (120 d) for these boreholes to be 11.15, 12.51, 13.95, 15.47 and 17.06 ◦C, respecti vel y. Our v alues are 10.65, 11.88, 13.18, 14.53 and
15.93 ◦C, respecti vel y. 

It is clear that in both tests we obtained slightly lower values of temperatures. This is the error of quasi-steady-state approximation.
The formula ( 12 ) is precise if the temperature T a is constant in time. Ho wever , in numerical experiments described in this paragraph, T a 

slowly decreases, which causes an additional heat flow that is not taken into account in the quasi-steady-state approximation. Nevertheless,
this error of several per cents is still sufficiently small (and probably below the errors caused, e.g. by uncertainties of the ground parameters)
and thus we can conclude that our straightforward semi-analytical method provides reasonable fast estimates of water temperatures or heat
extractions. 

In the parametric studies presented in this section, we deal with a deep borehole reaching the depth of 3 km and a superdeep borehole of
a depth of 10 km. Although there is no such superdeeep borehole employing geothermal energy yet, note that the depth of 10 km should be
reached by recently started drilling in China. Presenting the results for such a borehole thus point to potential limits of heat extraction from
a single superdeep borehole. To work with a realistic model of the crust, we divide its upper 10 km into five layers of the same thicknesses.
Based on the background temperature profile T b , we use thermal dif fusi vity and conductivity dependencies on temperature for an average
crust (Whittington et al. 2009 ) to obtain their depth dependencies. Calculations of Q 

∗ are made for the fixed borehole radius r a = 0.15 m,
the thermal dif fusi vities in Table 1 and t = 500 d. As shown in Table 1 , Q 

∗ increases with depth from about 1.17 to 1.26. All calculations
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Table 1. Parameters of the crust model based on the thermal dif fusi vity profiles 
by Whittington et al. ( 2009 ). 

Depth (km) β (K km 

−1 ) k (W mK 

−1 ) κ (mm 

2 s −1 ) Q 

∗

0–2 29 3.8 2.00 1.17 
2–4 27 3.6 1.75 1.19 
4–6 25 3.4 1.50 1.22 
6–8 23 3.2 1.25 1.24 
8–10 21 3.0 1.00 1.26 

Figure 7. Temperatures T u − T 0 at the borehole bottom and at the surface for the three thicknesses of the inner pipe wall. The boreholes are 10 km deep 
(left-hand panel) or 3 km deep (right-hand panel). Inner radius of the inner pipe r 2 i is 5.5 cm. 

Figure 8. Total heat extraction from the 10 km deep borehole (left-hand panel) and the 3 km deep borehole (right-hand panel) for the three thicknesses of the 
inner pipe wall. Inner radius of the inner pipe r 2 i is 5.5 cm. 
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resented in the following are based on formulae from the second subpart of Section 2.2.2. We use r a = 0.15 m, r 1 o = 0.1 m, r 1 i = 0.095 m, k g
 1.5 W mk −1 , k p 1 = 41 W mk −1 and k p 2 = 0.4 W mk −1 . Since the e v aluation of explicit analytical formulae ( 56 )–( 61 ) is extremely fast, we

an easily perform various parametric studies. Fig. 7 shows changes of temperature at the bottom of the borehole and the surface temperature
f the outflowing water T u (0) with the change of the water flow ṁ in cases, where r 2 i = 0.055 m is fixed, but r 2 o = 0.075, 0.065 and 0.06 m,
especti vel y. We can see that the corresponding changes of the thermal resistance R i (eq. 85 ) result in substantial changes of the temperatures
hown. One can clearly see that T u (0) can reach only several tens of ◦C, and it is interesting that maximal outflow temperatures are reached
or water flows of the order of 10 kg s −1 for the superdeep borehole but only several kg s −1 for the 3 km deep borehole. Ho wever , total heat
xtraction Q tot increases with increasing ṁ as shown in Fig. 8 and there is a saturation approximately at a level of 4 and 0.45 MW for the two
tudied borehole depths. 

The thermal resistance R i depends not only on the thickness of the inner pipe but also on its radius. Figs 9 and 10 show changes of
emperature and total heat extraction with changes of r 2 i for a water flow of 10 kg s −1 . One can see that the temperature T u at the bottom
ncreases with increasing r 2 i but at the surface T u decreases with increasing r 2 i and thus Q tot also decreases. This result can be explained
y the fact that speed of water in the inner pipe decreases with increasing pipe radius and, therefore, the water flowing upward is more
ooled during its journey from the bottom to the top of the borehole. The depth dependence of the temperature for r 2 i = 5.5 cm is shown in
ig. 11 . 

We also tested the sensitivity of heat flow extraction on changes of R e , but it is very small. For example, if we replace the thermal
onductivity of the grout k g by the thermal conductivity of the steel k p 1 , the temperature at the bottom of the borehole increases only by
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Figure 9. Temperatures T u − T 0 at the borehole bottom and at the surface for the three thicknesses of the inner pipe wall and changing inner radius r 2 i of the 
inner pipe. The boreholes are 10 km deep (left-hand panel) or 3 km deep (right-hand panel). Water flow ṁ is 10 kg s −1 . 

Figure 10. Total heat extraction from the 10 km deep borehole (left-hand panel) and the 3 km deep borehole (right-hand panel) for the three thicknesses of the 
inner pipe wall and changing inner radius r 2 i of the inner pipe. Water flow ṁ is 10 kg s −1 . 

Figure 11. Depth dependencies of temperatures T d − T 0 and T u − T 0 for the two thicknesses of the inner pipe wall. The boreholes are 10 km deep (left-hand 
panel) or 3 km deep (right-hand panel). Inner radius of the inner pipe r 2 i is 5.5 cm and water flow ṁ is 10 kg s −1 . 
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sev eral de grees and a change of Q tot is negligible. The physical reason is based on the fact that the heat flow from the crust to the borehole is
proportional to T b − T a ; changes of R e influence T a , but changes of the difference T b − T a remain relati vel y small. 

4  C O N C LU S I O N S  

We present a new method that enables us to calculate quasi-static heat extraction from coaxial boreholes in realistic layered crust models.
Potentially changing thermal resistivities of the borehole wall and the inner pipe were also included. Our approach consists of the two
independent steps. First, we deal with the heat conduction equation in axial symmetry outside a borehole and introduce the dimensionless
quantity Q 

∗ which is a function of the crustal thermal dif fusi vity, borehole radius and time. Then, the heat flow from the Earth’s crust
to the borehole is simply expressed by the multiplication of Q 

∗ with the thermal conductivity of the crust and the difference between the
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ackground temperature and that at the borehole wall. This quantity then enters the second step, where we analytically solve an energy-balance
quation between the heat flow from the crust and changes of the temperature of the do wnflo wing and upflo wing fluids in the borehole. The
atrix method is used to propagate the solution between the top and bottom of each layer and, subsequently, between the surface and borehole

ottom. This enables us to incorporate boundary conditions and express the solution in any depth by means of a matrix multiplication. 
We then performed parametric studies focused on the temperature of the water flow and, especially, the total heat extraction calculations

rom coaxial boreholes of the depths 3 and 10 km. The free parameters under study were the amount of water flow and thermal resistance of
he inner pipe that separates the do wnflo wing and upflowing pumped water. For an ideally insulating inner pipe, which is characterized by an
nfinite thermal resistance, the temperature of flow decreases but the total heat extraction increases with increasing amount of the water flow.
o wever , in realistic models with finite thermal resistance controlled by the geometry of the pipe, the behaviour of flow temperature is more

omplicated. Total heat extraction is still increasing with increasing amount of flow but it is saturated for high flow amounts. The important
arameter is the inner radius of the inner pipe. The smaller the radius is, the higher is the speed of upflowing w ater and, consequentl y, its
emperature and total heat extraction. We also discuss changes of total heat extraction from the borehole due to changes of the insulation
uality of the inner pipe when amount of pumped water is fixed. 
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