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A B S T R A C T

The experimental as well as theoretical engineering literature on porous structures such as metal foams,
aerogels or bones often relies on the standard linearised elasticity theory, and, simultaneously, it frequently
introduces the concept of ‘‘density dependent Young modulus’’. We interpret the concept of ‘‘density dependent
Young modulus’’ literally, that is we consider the linearised elasticity theory with the generalised Young
modulus being a function of the current density, and we briefly summarise the existing literature on theoretical
justification of such models. Subsequently we numerically study the response of elastic materials with the
‘‘density dependent Young modulus’’ in several complex geometrical settings.

In particular, we study the extension of a right circular cylinder, the deflection of a thin plate, the bending
of a beam, and the compression of a cube subject to a surface load, and we quantify the impact of the density
dependent Young modulus on the mechanical response in the given setting. In some geometrical settings the
impact is almost nonexisting—the results based on the classical theory with the constant Young modulus are
nearly identical to the results obtained for the density dependent Young modulus. However, in some cases
such as the deflection of a thin plate, the results obtained with constant/density dependent Young modulus
differ considerably despite the fact that in both cases the infinitesimal strain condition is well satisfied.
1. Introduction

The engineering literature on porous structures such as metal foams,
Gibson (2000), Gibson and Ashby (1982), Roberts and Garboczi (2001),
aerogels, Chandrasekaran et al. (2017), Leventis et al. (2002) or bones,
Rice et al. (1988), often introduces the concept of ‘‘density depen-
dent Young modulus’’. For example, the Young modulus E is being
considered in the power-law form

E(𝜌) = Eref

(

𝜌
𝜌R

)𝑛
, (1)

where 𝜌 denotes the current material density, 𝜌R denotes the reference
material density, Eref denotes the Young modulus at the reference
density, and 𝑛 is a given exponent. The very notion of Young modulus
is however intimately related to the standard linearised elasticity, and
the concept of density dependent Young modulus leads to contradictory
statements.

On the one hand the basic premise of the standard linearised
elasticity theory is that the stress tensor can be expressed as a linear
function of the infinitesimal (linearised) strain tensor, wherein the
Young modulus plays the role of a constant coefficient. On the other
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hand the Young modulus in the given linear constitutive relation is
subsequently assumed to be a density-dependent quantity. But the
density-dependence of Young modulus implies—in virtue of the bal-
ance of mass—the dependence of Young modulus on the linearised
strain tensor, which in turn leads to a nonlinear stress–strain relation.
This contradicts the initial assumption on linearity of the constitutive
relation.

The contradiction can be remedied using the concept of implicit
constitutive relations, that allows one to transparently justify nonlinear
constitutive relations in the infinitesimal strain regime, see Rajagopal
and Saccomandi (2022) for a recent discussion thereof. (For further
discussion see also Rajagopal, 2014, 2018, 2021.) Despite the sound
theoretical justification of infinitesimal strain models with the density
dependent Young modulus, and their prospective importance in the
study of mechanical response of various materials, only few works have
been so far devoted to the quantification of effects due to the density depen-
dent Young modulus, see Murru and Rajagopal (2021b,a), Vajipeyajula
et al. (2022) or Průša et al. (2022) for examples thereof. In our current
contribution we aim at such quantification. In particular, we numer-
ically study the response of elastic materials with density dependent
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Young modulus in several geometrical settings—the extension of a right
circular cylinder, the deflection of a thin plate, the bending of a beam,
and the compression of a cube subject to a surface load.

2. Infinitesimal strain models for elastic bodies with density de-
pendent Young modulus

In the framework of the standard linearised elasticity the concept
of Young modulus is well defined. The standard linear constitutive
relation for isotropic elastic materials takes the form

› = 1
E
[(1 + 𝜈)fi − 𝜈(Tr fi)I] , (2)

here the Young modulus E and the Poisson ratio 𝜈 are constant
aterial parameters, and the symbols › and fi denote the infinitesimal

train tensor and the stress tensor respectively. The standard linearised
onstitutive relation (2) that holds for isotropic elastic materials in
he small strain regime is however also used with ‘‘density dependent
oung modulus’’, wherein the Young modulus is given, for example, by
he power-law formula (1). The density dependent Young modulus in
he form (1) can be interpreted in two different ways.

First, the concept of ‘‘density dependent Young modulus’’ can serve
s a very simple description of the material inner structure (porous
tructure). In this case, the relative material density is a simple tool for
haracterisation of number/volume of voids in the material of interest,
nd the Young modulus is a constant for the given material structure. It

is not interpreted as a function of the current density of the material—
even if the current density of the material might change due to the
deformation of the material.

Second, the concept of ‘‘density dependent Young modulus’’ can
be taken literally. In this case the Young modulus is interpreted as a
function of the current density, and its value must be updated whenever
the material undergoes a deformation. Consequently, it would be more
appropriate to talk about a generalised Young modulus, since we are
replacing a constant material parameter by a material function. (In
principle, the situation is the same as in theory of non-Newtonian
fluids, wherein one introduces the apparent/effective viscosity instead
of constant viscosity for the standard Navier–Stokes fluid.) In our cur-
rent contribution we follow this interpretation of ‘‘density dependent
(generalised) Young modulus’’. The constitutive relation can be then
obtained by the simple substitution of formula of type (1) into (2),

› = 1
E(𝜌)

[

(1 + 𝜈ref )fi − 𝜈ref (Tr fi)I
]

, (3)

where the reference Young modulus Eref and the reference Poisson ratio
𝜈ref are related to the reference configuration, and they are constant
material parameters. As we have already noted, this ad hoc model is
however not consistent with the basic principles of standard linearised
elasticity that admits only linear relation between the stress and in-
finitesimal strain tensors. But models of this type can be justified by
a linearisation (infinitesimal strain) of implicit constitutive relation in
the nonlinear elasticity theory, see Rajagopal and Saccomandi (2022)
and also remarks in Průša et al. (2020).

In general, the density equation reads 𝜌R = 𝜌 det F, where F denotes
the deformation gradient. Under the infinitesimal strain assumption,
the density equation is approximated by 𝜌R ≈ 𝜌(1 + Tr ›), and upon
linearisation of (1) with respect to › we obtain

E(𝜌) ≈ Eref (1 − 𝑛Tr ›) . (4)

Consequently, the ad hoc constitutive relation takes the form

› =
1 + 𝜈ref

Eref (1 − 𝑛Tr ›)
fi −

𝜈ref
Eref (1 − 𝑛Tr ›)

(Tr fi)I, (5)

which under the infinitesimal strain assumption and in virtue of ap-
proximation 1

1−𝑥 ≈ 1 + 𝑥 further reduces to

› = 1 (1 + 𝑛Tr ›)
[

(1 + 𝜈ref )fi − 𝜈ref (Tr fi)I
]

. (6)
2

Eref
f

We see that the basic assumption of implicit type constitutive theory
for nonlinear elastic bodies is essential in this manipulation. Unlike
the standard nonlinear elasticity theory that starts with the assumption
T = f(B), the implicit theory starts with the constitutive relation in
the form f(T,B) = O. (See Rajagopal (2003), Muliana et al. (2018)
and Bustamante and Rajagopal (2020, 2021) for a discussion of this
seemingly minor change in the fundamental constitutive assumption,
and its impact on the modelling of nonlinear elastic response of solids.)
In the former case of the standard nonlinear elasticity theory the
linearisation B ≈ 1 + 2› can only lead to a linear constitutive relation
fi = g(›), where g is a linear function. The implicit relation f(T,B) = O
however linearises to g(fi, ›) = O, where g is a bilinear function of ›
and fi—an example thereof is (6), see Rajagopal (2018) for further
discussion. If needed the constitutive relation (6) can be manipulated
into the form

fi = 𝛼ref (1 − 𝑛Tr ›) (Tr ›) I + 2𝛽ref (1 − 𝑛Tr ›)›, (7)

where we denote

𝛼ref =def
𝜈refEref

(1 + 𝜈ref )(1 − 2𝜈ref )
, 𝛽ref =def

Eref
2(1 + 𝜈ref )

. (8)

Note that this form requires one to do another linearisation with respect
to ›, see again Rajagopal (2018) for a detailed discussion of subtleties
of linearisation of constitutive relations in nonlinear elasticity theory,
especially in the context of implicit constitutive relations. Clearly, if
𝑛 = 0, then the formula (7) for the stress tensor fi reduces to the
standard form used in the standard linearised elasticity theory

fi = 𝜆 (Tr ›) I + 2𝜇›, (9)

where 𝜆 and 𝜇 are the standard Lamé parameters.
In what follows we investigate the quantitative behaviour of the

model (3) in the infinitesimal strain regime, that is we work with (6),
and we compare the predictions based on (6) with the predictions
based on the standard linearised elasticity model (9). In particular,
using the finite element method we implement numerical solvers for
both models, we solve several static boundary value problems, and we
compare the predictions obtained by the models. The objective is to
quantify the impact of the parameter 𝑛 to the predicted deformation.
(Recall that the value 𝑛 = 0 corresponds to the standard linearised
elasticity.) In this regard we recall that the values of 𝑛 known in the
literature are in the order of units, see Průša et al. (2022). The specific
problems of interest are the extension of a right circular cylinder,
see Section 3.1, the deflection of a thin plate, see Section 3.2, the
compression of a cube, see Section 3.3 and the bending of a rectangular
prismatic beam, see Section 3.4.

To use the finite element method we reformulate boundary value
problems in the weak (variational) form. The static boundary value
problem in domain 𝛺 with the boundary 𝜕𝛺 = 𝛤𝐷 ∪ 𝛤𝑁 reads

div fi(𝒖) + 𝒇 = 𝟎, in 𝛺, (10a)

𝒖|𝛤𝐷 = 𝒖𝐷, on 𝛤𝐷, (10b)

fi𝒏|𝛤𝑁 = 𝒈, on 𝛤𝑁 , (10c)

where 𝒖 denotes the displacement field, 𝒇 denotes the given body force,
𝒖𝐷 denotes the given displacement boundary condition, and 𝒈 denotes
the given traction. The weak formulation (10) is then obtained by that
standard manipulation. We multiply (10a) by a test function 𝒗 ∈ 𝑉
satisfying the Dirichlet boundary conditions on 𝛤𝐷, we integrate over
the domain 𝛺, and then we integrate by parts. The weak formulation
then requires one to find the displacement field 𝒖 such that the equation

∫𝛺
fi(𝒖) ∶ ›(𝒗) d𝑥 − ∫𝛺

𝒇 ∙ 𝒗 d𝑥 − ∫𝛤𝑁
𝒈 ∙ 𝒗 d𝑠 = 0, (11)

holds for all 𝒗 ∈ 𝑉 , wherein we use the notation A ∶ B =def Tr
(

AB⊤)
or the dot product on the space of matrices, and the notation ›(𝒗) =def
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Fig. 1. Boundary value problems. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
1
2

(

∇𝒗 + (∇𝒗)⊤
)

and similarly for fi. (This notation allows us to distin-
guish whether we are dealing with the symmetric gradient/linearised
strain tensor associated to 𝒗 or 𝒖.) Note that in the weak formulation
of the governing Eqs. (11) we use the formula (7) for the stress tensor,
which effectively gives us the stress fi as a nonlinear function of the
linearised strain tensor ›.

The numerical solver based on the finite element method is imple-
mented using the FEniCS computing platform, see Logg et al. (2012),
Alnæs et al. (2015). For the spatial discretisation of the weak formu-
lation (11), we use the finite dimensional space based on the second
order Lagrange element (CG2) for the displacement. The computational
meshes are shown in Fig. 1, the dimension of discrete finite element
spaces is shown in Table 1. The nonlinear problem (11) is solved
directly in FEniCS by its default nonlinear solver based on the Newton
method.
3

3. Solution of boundary value problems

We consider elastic solids whose mechanical response is specified
either by the linear constitutive relation (2) or by the nonlinear consti-
tutive relation (7) with a chosen power-law exponent 𝑛. In both cases
we use the infinitesimal strain approximation with all its benefits such
as the straightforward specification of the boundary conditions in the
reference configuration and so forth. In all numerical computations
we monitor the maximum value (over the nodal points of the compu-
tational mesh) of the norm of the linearised strain tensor ‖›‖∞ =def
max𝒙∈𝛺ℎ

|›(𝒖(𝒙))|, see Table 1. (The linearised strain › is obtained from
the computed displacement field 𝒖 via the projection to discontinuous
Lagrange elements DG0.) Later this allows us to evaluate the validity
of the infinitesimal strain approximation.
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Fig. 2. Extension of the right circular cylinder, parameters given by Table 1.
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In what follows we use subscripts (⋅)non and (⋅)lin to distinguish
between the predictions based on the models with the density depen-
dent Young modulus and the standard linearised elasticity. For each
boundary value problem we choose a representative scalar quantity 𝑥
that characterises the deformation. This quantity can be the elongation
of the cylinder, the deflection of the centre of the plate and so forth, see
below for detailed specification. Using the quantity 𝑥 we then compute
the relative difference between the prediction based on the model with
the density dependent generalised Young modulus and the standard
linearised elasticity model,

𝑥dif f =def
|

|

|

|

𝑥lin − 𝑥non
𝑥lin

|

|

|

|

.

This quantity allows us to quantify the difference between the model
predictions by the means of a single representative scalar quantity.
Furthermore, in all subsequent plots of 𝑥dif f versus the power-law
exponent 𝑛 and plots of 𝑥dif f versus the load we use the same scale on
the vertical axis. The objective is again to allow one to quickly assess
the impact of ‘‘density dependent Young modulus’’ in various settings.

The specific boundary value problems considered in the present
work are the extension of a right circular cylinder, deflection of a
thin plate, the compression of a cube and the bending of a beam by
an end load. For each problem we compute the solution for various
integer values of the power-law exponent 𝑛, 𝑛 ∈

{

𝑛min,… , 𝑛max
}

, see
able 1. The value 𝑛max is typically chosen as the maximum value of 𝑛
or which our straightforward implementation of the Newton method
n our finite element method converged to a solution. For fixed 𝑛 = 4
e also compute the solution for various loads/external pressures from
4

given interval, see Table 1. e
.1. Extension of a right circular cylinder

We consider a right circular cylinder with the radius 𝑅 and the
eight 𝑙, see Fig. 1(a). On both bases we apply a uniformly distributed
onstant force 𝑭 that acts in the direction perpendicular to the base
nd that is pointing out of the cylinder. (The magnitude of the force

divided by the base area is reported in Table 1 as the load.) The
ateral surface is traction free. The values of all relevant parameters
re summarised in Table 1.

The pair of forces 𝑭 stretches the cylinder to the new length 𝑙 + 𝛥𝑙.
he computed quantity 𝑥dif f is the relative difference in the extension
f the cylinder, that is the relative difference between 𝛥𝑙lin predicted
y the linear model (2) and 𝛥𝑙non predicted by the nonlinear model (7).
umerical results are shown in Fig. 2.

.2. Deflection of a thin plate

We consider a block with spatial dimensions 𝑎, 𝑏 and 𝑐 whose top
ase is loaded, see Fig. 1(c). The block thickness 𝑐 is substantially
maller than the remaining block dimensions, hence we refer to this
eometry as the plate geometry. An external load is acting on the top
ase, and it is uniformly distributed in the square with the side length

2
5𝑎 that is located at the centre of the top base. The bottom base of
he plate is fixed—we prescribe the zero displacement here—and all
ateral faces are traction free. The values of all relevant parameters are
ummarised in Table 1.

The computed quantity 𝑥dif f is the relative difference between the
eflection of the centre of top plate surface as predicted by the lin-

ar model (2) and by the nonlinear model (7). In other words the
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Fig. 3. Deflection of a thin plate, parameters given by Table 1.
Table 1
Parameter values for computations reported in Section 3. Cylinder with radius 𝑅 and length 𝑙; cube, plate and beam with spatial dimensions 𝑎, 𝑏 and 𝑐 and length 𝑙 respectively,
dimension of finite element function space, generalised Young modulus at reference configuration Eref , Poisson ratio at reference configuration 𝜈ref , power-law exponent 𝑛 in the
ormula for the generalised Young modulus (1), load applied on objects. Computed maximal value of the linearised strain tensor at nodal points of computational mesh, ‖

‖

εlin
‖

‖∞
and ‖

‖

εnon
‖

‖∞.

Problem Geometry [mm] Degrees of freedom Eref [Pa] 𝜈ref 𝑛min 𝑛max Loadmin [Pa] Loadmax [Pa] ‖

‖

εlin
‖

‖∞
‖

‖

εnon
‖

‖∞

Cylinder 𝑅 = 1.0, 𝑙 = 5.0 406 092 2e+07 0.33 1 24 500 000 500 000 0.026 0.037
Cylinder 𝑅 = 1.0, 𝑙 = 5.0 406 848 2e+07 0.33 4 4 100 000 1e+06 0.051 0.056
Cube 𝑎 = 5.0, 𝑏 = 5.0, 𝑐 = 5.0 680 943 2e+07 0.33 1 40 1e+06 1e+06 0.005 0.005
Cube 𝑎 = 5.0, 𝑏 = 5.0, 𝑐 = 5.0 680 943 2e+07 0.33 4 4 100 000 1.4e+06 0.009 0.009
Plate 𝑎 = 100.0, 𝑏 = 100.0, 𝑐 = 0.7 680 943 2e+07 0.33 1 34 1.7e+06 1.7e+06 0.064 0.061
Plate 𝑎 = 100.0, 𝑏 = 100.0, 𝑐 = 0.7 680 943 2e+07 0.33 4 4 100 000 2e+06 0.076 0.062
Beam 𝑎 = 1.0, 𝑏 = 1.0, 𝑐 = 10.0 521 637 2e+07 0.33 1 6 20 000 20 000 0.019 0.019
Beam 𝑎 = 1.0, 𝑏 = 1.0, 𝑐 = 10.0 521 637 2e+07 0.33 4 4 1000 30 000 0.028 0.028
w

d
c
n

3

c
a
d
f
T
s

𝑧-component of the displacement vector 𝒖 at the point (0, 0, 𝑐) is com-
ared between the models, u𝑧lin(0, 0, 𝑐) for the linear model (2) and
𝑧
non(0, 0, 𝑐) for the nonlinear model (7). Numerical results are shown

n Fig. 3.

.3. Compression of a cube

The setting is the same as the previous setting of deflection of a thin
late. However, the dimensions 𝑎, 𝑏 and 𝑐 are now chosen differently—
ee Table 1 for details—the dimensions are identical hence we talk
bout a cube instead of a plate. In this case the dimensions of the
ube and the Young modulus values are chosen in such a way that
hey roughly correspond to the values reported in Chandrasekaran et al.
2017); fit of Chandrasekaran et al. (2017, Figure 3; silica aerogel, blue
rosses) as reported by Průša et al. (2022).

A part of the top base of the cube is again uniformly loaded, see
5

ig. 1(d). In particular, the load is uniformly distributed in the square T
ith the side length 𝑎
5 that located at the centre of the top base. The

bottom base is fixed, and the lateral faces are traction free.
The computed quantity 𝑥dif f is the same as in the case of thin plate

eflection, 𝑥dif f is the relative difference between the deflection of the
entre of top base as predicted by the linear model (2) and by the
onlinear model (7). Numerical results are shown in Fig. 4.

.4. Bending of a beam

We consider a rectangular prismatic beam with the length 𝑙 and the
ross-section dimensions 𝑎 and 𝑏. The left face of the beam is fixed,
nd a uniformly distributed force 𝑭 acts at the right beam face. The
irection of the force is parallel to this face. (The magnitude of the
orce 𝑭 divided by the face area is reported in Table 1 as the load.)
he lateral faces are traction free. For overall sketch of the geometry
ee Fig. 1(e). The values of all relevant parameters are summarised in

able 1.
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Fig. 4. Compression of a cube, parameters given by Table 1.
The computed quantity 𝑥dif f is the relative difference between the
isplacement of the centre of right beam face as predicted by the linear
odel (2) and by the nonlinear model (7). In other words the absolute

alue of 𝑥-component of the displacement vector at the point (0, 0, 𝑙) is
compared between the models. Numerical results are shown in Fig. 5.

4. Discussion

The strain values obtained via the solution of corresponding bound-
ary problems always remain in the range commonly accepted as the
infinitesimal strain range, see Table 1. The maximum value of lin-
earised strain tensor has been reached in the ‘‘plate’’ setting, but even
in this case the pointwise values of linearised strain are bounded by
‖

‖

›non‖‖∞ = 0.076. Consequently, we can claim that the infinitesimal
strain approximation behind the models is well justified.

The numerical experiments show that the differences between the
predictions based on the standard linearised elasticity model (2) and
the nonlinear model (7) with the ‘‘density dependent Young modulus’’
can be quite large depending on the value of the power-law exponent 𝑛.
This is not surprising. However, even for moderate values of the power-
law exponent 𝑛 that are within the range of values reported in the literature,
see Průša et al. (2022), that is for 𝑛 ∼ 4, the difference between the
eformation predicted by the standard linearised elasticity model, and
he model with the ‘‘density dependent Young modulus’’ can be still large
epending on the particular problem setting.

If the given boundary problem leads—using the standard linearised
odel (2)—to the negligible density variations, then the differences

etween the predictions based on the two models are also negligible,
n our case within a few percent. This holds especially for the bending
6

roblem, see Section 3.4 and the results shown in Fig. 5. Here, the
relative difference between the predictions of both models is less than
one percent even for large values of 𝑛, see Figs. 5(a) and 5(b).

Larger sensitivity of the results to the choice of the model is ob-
served for the extension of a right circular cylinder and for the com-
pression of a cube, where the differences between the predictions based
on both models become evident, see Figs. 2 and 4. In these cases, the
relative difference between the predictions can raise up to 20%.

The extreme difference between the predictions based on the two
models is observed for the deflection of a thin plate. As one might
expect the surface load of a thin plate attached to a fixed foundation
leads to substantial density changes directly beneath the loaded part
of the surface. Consequently, the deformation prediction based on the
model with the ‘‘density dependent Young modulus’’ might be expected
to differ substantially from the prediction based on the standard lin-
earised elasticity model. This is indeed the case. The quantity of interest
is in this case the relative difference between the 𝑧–components of
the displacement of the centre of the top (loaded) surface, 𝑥dif f =
|u𝑧 lin(0,0,𝑐)−u𝑧non(0,0,𝑐)|

|u𝑧 lin(0,0,𝑐)|
, and the value of 𝑥dif f raises up to 50% for 𝑛 = 34,

see Fig. 3(a). More importantly, for 𝑛 = 4, which is a realistic value of
the power-law exponent, the value of 𝑥dif f is well above 15%, which is
still a substantial difference.

Furthermore, the model with the ‘‘density dependent Young modu-
lus’’ predicts in this case an interesting qualitative change in the mechan-
ical response. The standard linearised elasticity model (2) predicts that
the deflection of the top surface increases proportionally to the applied
load, see Fig. 3(d). However, the model with the ‘‘density dependent
Young modulus’’ (7) predicts the deflection to grow slower with the
applied load than one might expect based on the standard linearised
elasticity model, see Fig. 3. In other words, the material described by
the model with the ‘‘density dependent Young modulus’’ behaves, in
this case, as if it is getting stiffer with the applied load.
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Fig. 5. Bending of the beam, parameters given by Table 1.
5. Conclusion

We have investigated the mechanical response of materials de-
scribed by the standard isotropic linearised elasticity and that of ma-
terials with a generalised Young modulus, namely with the ‘‘density
dependent Young modulus’’. In particular, we have numerically studied
the extension of a right circular cylinder, the deflection of a thin plate,
the bending of a beam, and the compression of a cube subject to a sur-
face load, and we have quantified the impact of the ‘‘density dependent
Young modulus’’ on the mechanical response in the given setting. In all
the cases we have used the infinitesimal strain assumption, and we have
a posteriori checked that this assumption is satisfied.

In some geometrical settings the impact of the ‘‘density dependent
Young modulus’’ is almost nonexisting—the results based on the stan-
dard linearised elasticity theory with the constant Young modulus are
nearly identical to the results obtained for the density dependent Young
modulus. However, in some cases such as the deflection of a thin plate,
the results obtained with constant/density dependent Young modulus
differ considerably. This observation shows that if the experimental
data indicate that there is a need to work with the ‘‘density dependent
Young modulus’’, then the mathematical model used for the interpreta-
tion of the data must be changed accordingly. The ‘‘density dependent
Young modulus’’ should be interpreted as a function of the current
spatially varying density, which in turn leads to a nonlinear model even
under the infinitesimal strain assumption. This applies especially to
porous materials such as metal foams, aerogels or bones wherein the
concept of ‘‘density dependent Young modulus’’ is frequently used.

Having quantified the difference between the predictions based on
the standard linearised elasticity model and the generalised model with
7

‘‘density dependent Young modulus’’ in the infinitesimal strain regime,
it would be worthwhile to repeat the same study in the finite strain
regime. The finite strain models that under the infinitesimal strain
assumption lead to the ‘‘density dependent Young modulus’’ have been
already proposed, see for example Průša et al. (2020) or Rajagopal
and Saccomandi (2022), hence a good starting point for such a study
already exists. In the ideal case one should be able to conclude that
the infinitesimal strain approximation works as expected—in the in-
finitesimal strain regime the material response is well captured by the
simplified models obtained via the strain linearisation.
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