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Abstract
Enhanced green fluorescence protein (EGFP) is a fluorescent tag commonly used in cellular and
biomedical applications. Surprisingly, some interesting photochemical properties of EGFPhave
remained unexplored.Herewe report on two-photon-induced photoconversion of EGFP, which can
be permanently converted by intense IR irradiation to a formwith a shortfluorescence lifetime and
spectrally conserved emission. Photoconverted EGFP thus can be distinguished from the unconverted
tag by the time-resolved detection. Nonlinear dependence of the two-photon photoconversion
efficiency on the light intensity allows for an accurate 3D localization of the photoconverted volume
within cellular structures, which is especially useful for kinetic FLIM applications. For illustration, we
used the two photon photoconversion of EGFP formeasurements of redistribution kinetics of
nucleophosmin and histoneH2B in nuclei of live cells.Measurements revealed highmobility of
fluorescently tagged histoneH2B in the nucleoplasm and their redistribution between spatially
separated nucleoli.

Abbreviations

EGFP_NPM nucleophosmin tagged
by EGFP

FLIM fluorescence lifetime
imaging

FP fluorescent protein

FRAP fluorescence recovery
after photobleaching

NPM nucleophosmin

TPE two-photon excitation

TPPc two-photon-induced
photoconversion

TPPc-EGFP EGFP photoconverted
using two-photon
absorption

TPPc-EGFP_NPM nucleophosmin tagged by
TPPc-EGFP

wtGFP wild-typeGFP

1. Introduction

Fluorescent proteins (FPs) are widely used for imaging
of dynamic cellular processes, monitoring of gene
expression, protein tracking, and localization [1, 2].
FPs frequently exhibit complex photochemical beha-
vior. Emission properties of a number of them can be
light-shifted between various emitting states [3–5].
Photoactivatable fluorescent proteins can be photo-
converted from dark to bright emitting state, photo-
switchable FPs permanently shift fromone fluorescent
state to another, and reversibly switchable FPs can be
repeatedly light-toggled between spectrally distinct
fluorescent states by proper illumination [5]. New
photo-manipulable variants of FPs have often opened
new application fields ranging from cellular protein
tracking and rapid cellular dynamics tomulticolor and
superresolution imaging [5–7].

Fast proliferation of FPmutants and their applica-
tions often cause a lag between their usage and thor-
ough physical and photochemical characterization [8].
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For this reason, users of such molecules should rather
cautiously interpret their data. Sometimes even notor-
iously known FPs like EGFP can reveal overlooked
properties that, unrecognized, can seriously bias
experimental data. It could be e.g. unwanted spectral
photoconversion during photobleaching known as
redding [9, 10], greening [11], or lifetime-based pho-
toconversion [12]. However, with proper knowledge,
these drawbacks can be turned to advantages in new
applications [12].

EGFP is an extensively used fluorescent tag. It
exhibits good quantum yield, large extinction coeffi-
cient and absorption and emission compatible with
common excitation sources andmicroscopes, efficient
folding, low oligomerization, and high photostability
[13, 14]. EGFP can be also efficiently excited by the
two-photon excitation (TPE)with the cross section σ2
close to 40 GM [15]. All these features are desirable for
quantitative microscopy. Over the years, EGFP has
been well characterized [e.g. 13, 16–22] and validated
for use in the cell research [12, 23]. The tag is widely
spread, easily available, and remains the green FP of
choice for many researchers [24]. Recently we have
revealed that EGFP can be permanently photo-
converted to a form with a shorter fluorescence life-
time. While under gentle illumination EGFP has been
found fairly photostable and resistant to photo-
destruction [1, 25, 26], strong blue illumination to the
first singlet absorption band causes a lasting reduction
of its excited state lifetime without noticeable spectral
shifts [12]. Though there are number of FPs photo-
convertible between spectrally distinct forms
[2, 27, 28], the emission rates can be light-manipulated
only for a few of them. In addition to EGFP, this prop-
erty has also been reported for ECFP and Cerulean
[29]. This group of lifetime-convertible FPs is extre-
mely desirable and useful for fluorescence lifetime
imaging (FLIM) [30].

Compared to the conventional single-photon-
excited laser scanning FLIM, its two-photon variant
exhibits a number of advantages in biomedical and
cellular research [31–33]. A quadratic dependence of
the two-photon absorption rate on the light intensity
causes excitation only at the focal point where the pho-
ton flux is large enough to induce fluorescence [34].
This implies an inherent sectioning capability permit-
ting elimination of the photon-wasting confocal pin-
hole in the detection light path and improved photon
efficiency [33]. Since the absorption occurs only at the
small femtoliter-sized volume, the overall photo-
damage of the sample is reduced, which is highly desir-
able in experiments requiring prolonged sample
illumination [15]. Infrared excitation better penetrates
the scattering samples and allows for deep tissue ima-
ging [35, 36]. Due to the antistokes emission, scatter-
ing and autofluorescence of the sample can be
efficiently suppressed.

An intriguing task of cellular biophysics is an eva-
luation of the diffusion and redistribution of

macromolecules in live cells [37], especially between
tiny cellular compartments [38, 39]. A conical single-
photon excitation beam results in a photodamage,
photoactivation or photoconversion along the whole
excitation light path and subsequent loss of the ability
to accurately 3D-position the photoconverted
volume. Importantly, due to the nonlinear intensity
dependence, the two-photon excited or photo-
converted spot can be well localized within the 3D
sample and allows for more accurate targeting of the
subcellular structures. Two-photon-induced photo-
conversion (TPPc) is therefore well suited for the
investigation of 3D-diffusion and transport processes
on the subcellular scale [32]. Unlike FRAP, TPPc does
not require complete photodestruction of fluor-
ophores in the activated area. As a consequence, mix-
ing of signals from the unconverted and
photoconverted protein can be followed in time.

Here we present a two-photon photoconversion of
EGFP resulting in a fluorescent EGFP form with
reduced fluorescence lifetime and spectrally conserved
emission. The photoconverted protein is easily separ-
able from the unconverted form by lifetime imaging
and serves as a suitable light-inducible lifetime high-
lighter for FLIM. We show that unlike the single-pho-
ton conversion, the strong dependence of the two-
photon photoconversion on the light intensity allows
for accurate 3D localization of the photoconverted
volumewithin the cell. This is especially useful for kin-
etic FLIM applications, e.g. for exploration of cellular
diffusion, protein redistribution, etc [40]. Impor-
tantly, only a single spectral channel is needed for the
detection while the other ones stay free for multi-
spectral imaging. Moreover, the inherently ratio-
metric nature of emission lifetimes allows for
elimination of artifacts commonly accompanying any
intensity-based measurements. As an application
example of the TPPc-FLIM technique, we present
visualization of the redistribution of EGFP-tagged
nucleophosmin (EGFP_NPM) between nucleoli of
live HEK-293T cells. The second application example
shows TPPc-FLIM measurement of redistribution
kinetics of EGFP-labeled histoneH2B (EGFP_H2B) in
the nucleus of live HeLa cells, which documents diffu-
sive communication between separated nucleoli and
rapid exchange ofH2B between them.

2.Materials andmethods

2.1. Cell cultivation and transfections
Adherent HEK-293T and HeLa cells were cultured at
37 °C under standard cultivation conditions in
DMEM (Gibco) or RPMI (Sigma), respectively. The
cell cultures were supplemented with 10% FBS
(Biochrom) and 5%CO2 atmosphere. Live-cell experi-
ments were performed at 37 °C after sealing the
glass-bottomed Petri dish (Cellvis) with parafilm to
prevent CO2 leakage. Plasmids coding for free EGFP
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(peGFP-C2, Clontech), EGFP_NPM (NPM subcloned
to peGFP-C2) [41], andEGFP_H2B (Addgene plasmid
#11680; http://n2t.net/addgene:11680; RRID:
Addgene_11680 [42], a gift from G. Wahl) were
handled as described elsewhere [12].

Specifically, the plasmids were amplified in E. coli
and purified with PureYield PlasmidMiniprep System
(Promega). The cells were seeded to 1.5 × 105 ml−1

cell density, incubated for 24 h and transfected using
jetPrime transfection reagent (Polyplus Transfection)
according to the manufacturer’s protocol. The trans-
fected cells were further grown for 20–40 h prior to
experiment.

2.2. Cellfixation
EGFP-producing cells grown on a glass-bottom Petri
dish were fixed with 4% paraformaldehyde and
permeabilized by 0.5% Triton X-100 as described
earlier [12]. The permeabilization was used merely for
compatibility with the original protocol that ensures
faster equilibration of the fixed cells. Finally, the cells
were submerged in the sterile PBS and stored in 4 °C.
Experiments with fixed cells were done at room
temperature.

2.3. Fluorescence lifetime imaging
FLIM measurements were performed on the appara-
tus described in detail elsewhere [12]. Briefly, we used
an inverted IX83 microscope equipped with a FV1200
confocal scanner (Olympus, Hamburg, Germany), a
cultivation chamber, and FLIM add-ons from Pico-
Quant (Berlin, Germany). Single photon emission was
excited by the LDH-DC-485 pulsed laser emitting at
482 nm with 20MHz repetition rate (PicoQuant,
Berlin, Germany). Laser output coupled to the micro-
scope by a single-mode optical fiber was reflected to
the sample by the 488 nm long-pass dichroic mirror
(Olympus). Emission was collected through the 520/
34 bandpass filter (Semrock, NewYork,USA).

Two-photon imaging was done on the same
microscope using a free-space-coupled IR beam from
the Ti:Saphire laser (Chameleon Ultra2, Coherent,
Santa Clara, California) running at 80 MHz. The
group-delay dispersion was pre-compensated by a
pulse compressor (Thorlabs, Dachau, Germany) and
the IR light was reflected to the sample by the RDM
690 dichroic mirror (Olympus). Depending on the
experiment, fluorescence was directed to the cooled
GaAsP hybrid PMTs (PicoQuant) either through a
liquid light guidemounted on the non-descanned port
or via a multimode optical fiber mounted on the des-
canned port. EGFP fluorescence was spectrally iso-
lated using the 520/34 bandpass filter (Semrock) and
the residual IR excitation was blocked by the 680/SP
filter (Semrock). Time-resolved data were acquired by
the TimeHarp 260-PICO TCSPC card and processed
by the SymPhoTime64 software (PicoQuant). To
minimize pile-up artifacts [43], the data collection rate

for the brightest pixels was kept below 5% of the exci-
tation frequency. Typically, we used UPLSAPO60XW
water immersion objective (NA 1.2) or UPLSA-
PO30XS silicone oil immersion objective (NA 1.05)
(Olympus). Experiments with fixed and live cells were
done at 25 °Cand 37 °C, respectively.

For the rapid FLIM imaging, the end of photo-
conversion was synchronized with the start of the
FLIM acquisition. A series of several hundreds of
FLIM images was immediately collected with the
FLIM frame rate of 2 frames/s. The obtained multi-
frame FLIM stack allowed for construction of the life-
time evolution in any selectedROI of the image.

2.4. Two-photon photoconversion
Photoconversion was performed by scanning a
selected ROI with live monitoring of the emission
intensity. Depending on the excitation wavelength,
type of the experiment and a particular sample, the
mean power of the IR laser was set between 10–40mW
at the focal point of the objective. Typically, we
finished the photoconversion when the emission
intensity of EGFP decreased to about 20%–30% of its
initial value. For time-undemanding experiments the
TPPc was done gradually with standard scanning and
lower light power within 2–4 min. For the rapid FLIM
experiments the photoconverted area and the photo-
conversion light intensity was adjusted to complete
TPPc within few seconds using the ‘turbo bleach’
mode of themicroscope.

2.5.Data processing
As described earlier [12], FLIM images were con-
structed by the ‘fast-FLIM’ approach using the Sym-
PhoTime64 software. Briefly, pixel lifetimes were
determined by themethod ofmoments [44]when τavg
is a difference between the barycentre of the emission
decay and the time-offset of the steepest growth of the
decay, toffset:

( )å åt = -I t I t 1avg
i

ii
i

i offset

where Ii stands for the decay intensity at time ti. FLIM
data were further processed and visualized in the Fiji
software [45]. More accurate analyses of the cumula-
tive decays from larger ROIs were done by the least-
squares reconvolution. Fluorescence was assumed to
decaymultiexponentially according to the formula:

/( ) ( ) ( )å åa t a= ⋅ - =I t texp , 1 2
i

i i
i

i

where τi and αi are the fluorescence lifetime compo-
nents and corresponding amplitudes, respectively.
Typically, two decay components were sufficient for
acceptable fits with χ2 below 1.3. The intensity-
weightedmeanfluorescence lifetimewas calculated as:

/ ( )å å åt t a t a t= =f 3mean
i

i i
i

i i
i

i i
2

where fi are the fractional intensities of the i-th lifetime
component:
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The deconvolution was performed either using the
SymphoTime or the FluoFit software (PicoQuant,
Berlin, Germany). Both packages allow for the so-
called ‘cyclic excitation correction’, which corrects for
the incomplete emission decay between two successive
excitation pulses [46, 47]. We used the correction for
the deconvolution of TPE decays excited at 80MHz
when excitation pulse separation of ∼12.5 ns did not
allow for a sufficient decay of EGFP with ∼2.5 ns
lifetime. As a result, unbiased fluorescence lifetimes
were extracted from the incomplete decays collected
with high repetition rate excitation, which is typical for
the two-photon imaging.

3. Results

EGFP undergoes photoconversion to a spectrally
indistinguishable form with shorter fluorescence life-
time upon intense illumination to the first singlet
absorption band [12]. Here we tested whether the
similar effect can be achieved with the two-photon
excitation and utilize its better 3D-localization for
kinetic and protein-tracking experiments using two-
photonfluorescencemicroscopy.

Figure 1 demonstrates the TPPc experiment on
HEK-293T cells producing free EGFP. To prevent
EGFP diffusive mixing of the photoconverted and
unconverted molecules, we fixed the sample by paraf-
ormaldehyde, which immobilized the fluorophore
and allowed for better visualization of the photo-
converted volume. TPE fluorescence intensity and
FLIM images are presented in the first and the second
column, respectively. The first row shows the sample
before the TPPc. From the intensity images we clearly
recognize cytoplasm and nuclei of the stained cells. As
expected, the mean EGFP fluorescence lifetime τmean

= 2.52 ns is mostly homogeneous across the cells both
in the XY- and XZ-planes (panel B and H, respec-
tively). Then the area marked by the white rectangle
was scanned by strong 920 nm light. In order to
increase illuminated volume in the Z-direction, five
confocal scanswith the focal plane shifted by 0.2μm in
the Z-direction were sequentially performed. The pro-
cess was repeated until fluorescence from the irra-
diated area decreased to about 30% of the initial value,
panel C. The TPE-FLIM image acquired immediately
after the photoconversion is shown in figure 1(D). We
can clearly distinguish the photoconverted area in the
lifetime image where τmean of EGFP decreased from
2.52 ns to 2.32 ns upon the irradiation. Confocal X-Z
sections corresponding to panels A-D are shown in
panels G-J. The position of the X-Z section is marked
by the red line. We can see spatially well-localized
volume of photoconverted EGFP. To evaluate reversi-
bility of TPPc, the sample was stored at dark in 4 °C
and reimaged 24 h later. Figures 1(E), (F) document
that the photoconverted area is still distinguishable

with only insignificant drift in lifetimes. The corresp-
onding X-Z sections are shown in figures 1(K), (L).
Intensity and lifetime profiles across the photo-
converted nucleus before and after TPPc are presented
in figures 1(M), (N). The drop in the lifetime profile is
clearly visible and correlates with change of the inten-
sity profile. Figure 2 shows differences between the
spatial localization of the single- and two-photon pho-
toconversion performed side-by-side on two nucleoli
of a fixed cell with EGFP-tagged nucleolar protein
nucleophosmin. Compared to figure 1, we aimed at
much smaller objects, since nucleoli are sub-nuclear
structures. The X-Z FLIM-sections of the nucleoli
reveal that the focused single- and two-photon light-
beams targeted into the nucleoli make different
imprints in the Z-direction of the originally uniform
lifetime distribution. As seen from the lifetime profiles
in figure 2(E), the single-photon process induces pho-
toconversion that extends almost across the whole
nucleolus (FWHM 3.4 μm) compared to the better
axially localized TPPc (FWHM 1.6 μm). This TPPc
property allows for photoconversion of smaller
volumes and targeting smaller cellular structures.

Further we investigated the two-photon excitation
efficiency of the photoconverted EGFP for different
excitation wavelengths. Figure 3 shows TPE confocal
images of the fixed sample where EGFP in the right cell
was subjected to TPPc (white rectangle). The left cell
served as a control. Visual inspection of panels A and B
reveals stronger TPE emission of TPPc-EGFPwhen it is
excited by 1050 nm compared to the 850 nm excitation.
Intensity profiles across the converted and control cells
shown in figure 3(C) document that the two-photon
excitation efficiency of TPPc-EGFP increases at longer
excitation wavelength. This is further supported by the
ratio of emission intensities of the photoconverted and
unconverted EGFP (ITPPc-EGFP/IEGFP) shown in
figure 3(D) and overlaid with the two-photon absorp-
tion spectrum of EGFP [15]. The ITPPc-EGFP/IEGFP ratio
exhibits a minimum close to the two-photon absorp-
tion peak of EGFP and increases toward longer wave-
lengths. Data indicate that the TPE spectrum of TPPc-
EGFP is likely red-shifted compared to the one of the
unconvertedprotein.

3.1. Exchange ofNPMbetweennuclear structures
We examined suitability of TPPc for investigation of
diffusive kinetic processes in live cells.Nucleophosmin
(NPM) is an abundantly expressed multifunctional
nucleolar phosphoprotein participating e.g. in cellular
stress response via complex interaction network [48].
In healthy cells NPM exhibits nucleolar localization
[49, 50], which may be altered by drugs or pathogenic
mutations [51, 52]. Diverse NPM roles and cellular
interactions require free trafficking of NPM in the
nucleus and cytoplasm. Nevertheless, not much is
known about NPM mobility and dynamics [53, 54].
Figure 4 shows typical redistribution of EGFP_NPM
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in live HEK-293T cell upon perturbation of its
equilibrium by localized TPPc. The shorter τmean of
TPPc-EGFP allows its tracking by FLIM. Figures 4(A),
(B) show the equilibrium intensity and FLIM images
of EGFP_NPM before photoconversion. As expected,
EGFP_NPM is localized preferentially in spatially
separated nucleoli, the NPM level in the nucleoplasm
outside nucleoli is dramatically lower, and fluores-
cence from the cytoplasm is undetectable, figure 4(A).
For the convenience, the nuclear area of one cell is
marked by the yellow dashed line. The FLIM image in
figure 4(B) reveals τmean being 2.26 ns in the nucleoli.
The slight lifetime difference between the nucleoli and
the nucleoplasm results from different local environ-
ments of EGFP [55], e.g. from the different local

refraction index [12, 56, 57]. The localized TPPc was
done by a brief illumination of a small nucleolar
volume by intense IR light and after few minutes the
sample was reimaged, figures 4(D)–(F). From the
FLIM image we can see that TPPc-EGFP_NPM with
shorter τmean spreads from the illuminated spot over
thewhole nucleus and appears in all spatially separated
nucleoli of the photoconverted cell. The separation
can be seen from the X-Z section images shown in
figures 4(G), (I). TPPc-FLIM data suggest rapid
exchange of TPPc-EGFP_NPM among all nucleoli of
the treated cell, as documented by the decreased τmean

in the whole volume of the untreated nucleoli caused
by mixing of the converted and unconverted protein.

Figure 1.Two-photon-induced photoconversion of EGFP. Two-photon intensity and FLIM images (the 1st and the 2nd column,
respectively) of free EGFP in fixedHEK-293T cells before TPPc (A), (B), (G), (H), just after TPPc (T= 0h, (C), (D), (I), (J) and 24 h
later (T= 24h, (E), (F), (K), (L). Panels A-F represent scans in the X-Y image plane, panels G-L are perpendicular X-Z sections.
Position of theX-Z section is indicated by the red line in (A), (B). The photoconverted area ismarked by thewhite rectangle. TPPcwas
performed by 920 nm light in 5 focal planes shifted by 0.2μmin the axial Z-direction (thewhite rectangle in (G), (I), (K). Then the
samplewas kept for 24h at 4 °Cand re-imaged. (M), (N) - Fluorescence intensity and lifetime profiles in the Z-direction before (M)
and after (N)TPPc. The direction of the profiles ismarked by the red arrow in (G). Bar 10μm,TPPc laser power 15mWat the focal
point of theUPLSAPO30XS objective.
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All NPM redistribution was completed within
minutes.

3.2. Rapid nuclear dynamics of histoneH2B
Nucleosomes are dynamic structures carrying diverse
regulatory functions including gene expression, epige-
netic silencing, packaging and condensing the gen-
ome, see e.g. [58, 59] for review. Histone H2B is a part
of this disk-shaped structure formed by the hetero-
octameric complex assembled from two H2A-H2B
and H3-H4 histone hetero dimers wrapped by 146
base pairs of DNA [60]. Due to the tight association of
histone H2B/H2A with chromatin-bound nucleo-
somes, their mobility is reduced and their redistribu-
tion kinetics can be followed by time-lapse FLIM
experiments.

Figure 5 presents rapid TPPc-induced redistribu-
tion kinetics of EGFP-labeled H2B (EGFP_H2B) in
the nucleus of a single live HeLa cell. In the intensity
image we can see the nucleus with several nucleoli

accumulating EGFP_H2B, which exhibit uniform
emission lifetime in all nucleoli. The fractional volume
positioned at the equatorial plane of the largest
nucleolus was briefly photoconverted by 870 nm light
and amulti-frame series of FLIM images synchronized
with the photoconversion pulse was immediately
acquired. From figure 5(C)we can notice time-depen-
dent mixing of the converted and unconverted frac-
tions of EGFP_H2B in the illuminated nucleolus. The
equilibration of the photoconverted protein between
different nucleoli is visually less prominent, never-
theless, as documented in figure 5(D), it is measurable
and significant. Figure 5(D) presents time-evolution of
the τmean in the photoconverted focal plane of the
light-treated and control nucleoli. The time-depen-
dent lifetimes in the photoconverted nucleolus were
fitted by the biexponential rising model, which
revealed two characteristic redistribution times of 6 s
and 150 s. The fast rising component documents rapid
initial mixing of the converted and unconverted

Figure 2.Comparison of the spatial localization of single- and two-photon photoconversion infixedHEK-293T cell. X-Z-section of
two adjacent nucleoli in a cell containing EGFP_NPM. (A) and (C)—intensity and FLIM image of the nucleoli before
photoconversion, respectively. (B) and (D)—the nucleoli after the photoconversion. Photoconversionwas performed in a single focal
plane by 488 nm and 870 nm light in the left and right nucleolus, respectively. TheX-Z projection of the photoconverted circular ROI
ismarked by the dashed line in (B), (D). (E) - Fluorescence lifetime profiles across the nucleoli after the photoconversion. The
direction of the profiles ismarked by arrows in (B). Bar—3μm,UPLSAPO60XWobjective, single photon imagingwith 488 nm
excitation.
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proteins, which can be associated mainly with the
redistribution of the mobile fraction of TPPc-
EGFP_H2Bwithin the photoconverted nucleolus. The
longer component reflects slower processes likely
associated with a dynamic exchange of bound photo-
converted histones for the unconverted ones. As
already mentioned, the control nucleolus also exhibits
photoconversion-induced change in the mean EGFP
lifetime, which speaks for free diffusion of TPPc-
EGFP_H2B all around the nucleus resulting in a gra-
dual enrichment of other nucleoli for the photo-
converted protein and decreased τmean. Fitting the
data in the control nucleus by the biexponential model
revealed characteristic exchange times of about 5 s and

250–500 s. Interestingly, the fast mixing time closely
resembles the 6s rising component in the photo-
converted nucleolus and the long components are also
reasonably comparable. The result suggests that a sig-
nificant fraction of the tagged H2B is highly mobile.
Besides the internal nucleolar mixing, TPPc-
EGFP_H2B escaping from the photoconverted
nucleolus very rapidly diffuses through the nucleo-
plasm being almost instantly trapped in other nucleoli
where it equilibrates. The bi-phasic equilibration
kinetics in the control and photoconverted nucleolus
seem to mimic, within the experimental uncertainty,
each other, which is consistent with a significant frac-
tion of highlymobileH2B in the nucleus.

Figure 3.Two-photon excitation efficiency of TPPC-EGFP in in fixedHEK-293T cells. (A) and (B) - Two-photon fluorescence
intensity images of free EGFP excited at 850 nm and 1050 nm, respectively. The area photoconverted by 920 nm light is bordered by
thewhite rectangle. The unconverted control cell is in the left. Intensities of panels A andBwere normalized at the nucleus of the
control cell. (C) - Fluorescence intensity profiles for different excitationwavelengths. The direction of the profile ismarked by the red
arrow in panels A, B. The profiles were peak-normalized at the emissionmaximumof the control cell. (D) - Relative two-photon
excitation efficiency of the TPPc-EGFP and EGFP (red circles) overlaidwith the two-photon absorption spectrumof EGFP shownby
the blue line [15]. The photoconversion and imaging conditions were the same as infigure 1, bar 10 μm.
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4.Discussion

A strong blue illumination photoconverts EGFP to a
form with shorter fluorescence lifetime [12]. It can be
therefore used as an optically activable highlighter in
kinetic FLIM applications. Since the single-photon
photoconversion does not exhibit any distinct inten-
sity threshold, the overall light dosage seems to
determine the photoconversion efficiency. As a con-
sequence, the photoconverted volume in the axial
Z-direction of the microscopic sample is poorly

defined. It spans essentially the whole sample thick-
ness, even though, due to the focusing the efficiency of
the conversion is not uniform throughout the sample.
This limitation prevents accurate 3D positioning of
the photoconverted volume within the sample, which
is critical for accurate targeting of small cellular
compartments in tracking applications [12, 25, 63].
For instance, targeting of the interior of nucleoli,
whose dimensions typically do not exceed 2 μm in live
cells, is hardly possible with the single-photon excita-
tion, as seen fromfigure 2(E). Herewe have shown that

Figure 4.Distribution of EGFP_NPM in the nucleus of the liveHEK-293T cell upon localized TPPc. Equilibrium intensity (A,D),
FLIM (B, E) and themerged images (C), (F) before (A), (B), (C) and after (D), (E), (F)TPPc localized to the center of the nucleolus. The
nucleus of interest is bordered by the yellow dashed line, theX-Y projection of the photoconverted spot is indicated by thewhite circle
(inD), and the transmission image of the corresponding area is shown in the inset in A. (G)–(I)—Equilibriumdistribution of TPPc-
EGFP_NPM in theX-Z plane of the photoconverted nucleus fewminutes after TPPc. The orientation of the plane is indicated by the
white arrow in panel F. (G) - Intensity image. Two spatially separated nucleoli are visible, the X-Z projection of the photoconverted
area ismarked by the red rectangle. (H) - FLIM image, (I)—merged images (G) and (H). (J) - The intensity (blue line) and the
fluorescence lifetime profile (red line) along the green arrow in (G), (H). TPPcwas done by a brief illumination of the ROI by 870 nm
light usingUPLSAPO30XS objective and laser power of 15mW in the focal point of the objective. Imagingwas performedwith the
single-photon 488 nmexcitation. Bar 10μm.Representative results are presented (n= 6).
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EGFP can be permanently photoconverted to the
short-lived form also by the two-photon absorption
process. Since this effect is nonlinear and it is supposed
to depend at least quadratically on the illumination
intensity, the photoconverted volume is better defined
and considerably shrinks in the axial Z-direction.
Consequently, it can be better localized in the exam-
ined structures, as shown in figure 2.When the TPPc is
followed by the time-lapse lifetime-based imaging, it
can reveal kinetic properties of both converted and
unconverted proteins by simultaneous visualization of
their diffusion. Since both the converted and uncon-
verted proteins are fluorescent, mixing of their signal
can be followed in time by FLIM. Such prolonged
time-lapse FLIM experiments can therefore reveal also
the rate of the freshly synthesized FPs, which might
negatively affect standard FRAP experiments [24].
Unrecognized lifetime-based photoconversion in the
vicinity of the photobleached volume, which is inevi-
tably accompanied by changes in fluorescence inten-
sity, may also bias quantitative analysis of both single-
and two-photon FRAP with EGFP. Our approach

offers milder FLIM-based alternative to the two-
photon FRAP,which usually requires complete photo-
destruction of the fluorophore in the range of interest
[36]. Importantly, TPPc is fully compatible with the
two-photon imaging with all its advantages, e.g. deep
imaging of thick scattering samples or elimination of
artefacts rising from difference in the objective’s focal
length for IR photoconversion and following single
photon imaging [37, 64]. Unlike intensity-based
FRAP, the lifetime-based FLIM is internally ratio-
metric and does not suffer by common artifacts
associatedwith intensitymeasurements [30].

Nuclear proteins are known to be highly mobile
[65]. Histones are expected to be an exception, because
they bind to the chromatin as constituents of nucleo-
plasm-localized nucleosomes [66]. Nevertheless, con-
sistently with literature, we found ectopically expressed
EGFP_H2B histone accumulated in nucleoli [67], since
their binding sites on the chromatin are occupied by the
endogenous protein with a slow exchange rate. In the
nucleolus, EGFP_H2B appears to be retained by entro-
pic forces and nonspecific electrostatic interactionswith

Figure 5.TPPc-induced redistribution of EGFP-labeled histoneH2B in the nucleus of a single liveHeLa cell. (A) - Fluorescence
intensity image before TPPc (gamma= 0.7was applied to thewhole image in order to visualize the nucleoplasm).The nuclear area is
bordered by the yellow line. The photoconverted (1) and the control nucleolus (2) aremarked by arrows. (B) - FLIM image before
TPPc, (C) - Evolution of the initial FLIM image shown in (B) uponTPPc. The photoconversionwas performed in the equatorial plane
of the nucleolus by 870 nm light (∼35mW in the focal plane for∼3 s). The photoconverted area ismarked by the dashed line. Images
were collected in the TPEnondescannedmodewith 870 nmexcitation and theUPLSAPO60XWwater immersion objective. (D) -
Detailed time-evolution of themean fluorescence lifetime assessed by the least-squares deconvolution analysis of the signal integrated
over the photoconverted and the control nucleolus. The red line corresponds to the initial lifetime, the blue line is afit-estimated
lifetime plateau in the photoconverted nucleolus. Error bars result from the bootstrap statistical analysis [61, 62] of the fluorescence
decays at each particular time after the TPPc. Bar is 2μm.
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charged nucleolar components. Our TPPc-induced
EGFP_H2B redistribution measurements revealed
highly mobile nucleolar fraction of EGFP_H2B with
characteristic exchange time of 6 s, and a slower fraction
with characteristic time of ∼150 s. Results qualitatively
agree well with literature FRAPdata where slow and fast
fractions were also identified [67]. While the whole
nucleolus was bleached in the FRAP experiments, we
photoconverted only an equatorial layer of the nucleo-
lus. The TPPc-FLIM data therefore reflect not only the
exchange of H2B between the nucleolus and nucleo-
plasm but also the 3D diffusion inside the nucleolus.
Newly we also documented fast exchange of
EGFP_H2B between nucleoli. The almost instant
appearance of TPPc-EGFP_H2B in the unconverted
nucleoli suggest very highmobility of EGFP_H2B in the
nucleoplasm where the protein rapidly scans the whole
nucleus until it is trapped by the proper target.

In conclusion, we have revealed permanent life-
time-based photoconversion of EGFP induced by a
two-photon absorption process. Besides potential
FLIM artifacts, which can be caused by an uninten-
tional photoconversion, controlled application of
TPPc turns EGFP to a valuable tool for kinetic mea-
surements. In combination with FLIM it offers higher
information content compared to FRAP. Applicability
of TPPc was demonstrated on measurements of a
nuclear diffusion of NPM and histone H2B, which
revealed high mobility of these fluorescently tagged
proteins in the nucleoplasm.
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