
Citation: Buryi, M.;

Gaston-Bellegarde, A.M.; Pejchal, J.;

Levchenko, F.; Remeš, Z.;
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Abstract: Erbium-doped Y3Al5O12 (YAG) single crystals grown using the micro-pulling-down tech-
nique were investigated. Three Er concentrations were chosen: 0.1, 0.3 and 1 at%. Er3+ electron
paramagnetic resonance (EPR) spectra were measured in the ground and first excited states. The
corresponding g tensors and 167Er hyperfine interaction were changing upon Er content indicating
moderation of the Er-O bond length and/or Er local surrounding. Photoluminescence (PL) and radio-
luminescence (RL) spectra were complex, consisting of strongly overlapped typical Er3+ transitions.
In addition, there were other broad PL band (3.1 eV) and RL band (3.95 eV) attributed to the F+

center and yttrium substituting for aluminum (YAl), respectively. The X-ray excited decay kinetics
exhibited a decrease of the decay time of the YAl from hundreds of nanoseconds to nanoseconds
upon Er doping level. This is discussed and explained considering EPR data.

Keywords: yttrium aluminum garnet; erbium doping; EPR; luminescence; kinetics

1. Introduction

Yttrium aluminium garnet (Y3Al5O12; YAG) is a synthetic crystalline material, known
for its excellent optical properties (especially when doped with a luminescent ion) and
mechanical, chemical and temperature stability [1–3]. In practice, YAG is doped with
different rare earth ions, such as Nd, Er, Ce and Tm, to obtain new chemical/physical prop-
erties, thus, making YAG feasible for lasers, light emitters and scintillators [4]. The main
application of YAG:X (X = Nd, Er or Tm) is in medicine for laser treatment (dermatology [5],
ophthalmology [6], blood sugar monitoring [7], etc.).

Er ions with deep infrared luminescence (1.55 µm) and, specifically, absorption bands
at 600 and 800 nm are especially suitable for lasing applications as a YAG:Er laser emits at
2940 nm [5,8–11]. This wavelength is strongly absorbed by water/body fluids [12] making
it suitable for a large branch of medical applications, such as skin disease or as monitoring
medical procedures (making them less invasive). In addition, YAG:Er laser wavelength is
also absorbed by hydroxyapatite [12] making it able to cut bones or soft tissues [13]. These
properties are exceedingly useful for oral surgery and otolaryngology [12,14–16]. Moreover,
YAG:Er is also used as a dental laser [13], because it has a sedative effect on the nerves
leading to painless dental surgeries.

Many studies in the last decade were dedicated to optical characterization (absorption
and luminescence, including upconversion and decay kinetics) of YAG:Er in different
material forms (single crystals (stoichiometric and non-stoichiometric), thin films and
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micro- and nanoparticles), see, e.g., [1,3,4,17–19]. To the best of our knowledge, there
is only one relatively recent work focused on EPR characterization of YAG:Er [20]. In
particular, it was shown that, in YAG:Er, Er3+ can be found in its ground state or in its first
excited state.

The g tensor values were determined as follows g1 = 7.75, g2 = 7.35 and g3 = 3.71
for the Er3+ in the ground state and g1 = 2.036, g2 = 1.995 and g3 = 14.6 for the Er3+ in
the first excited state. At the same time, the hyperfine tensors of Er3+ ions in both the
ground and first excited states were not determined. Moreover, there is not a single
work reporting on luminescence properties correlated with the EPR characterization,
especially considering the determination of Er distribution and defect states creation in
YAG:Er as a function of Er content.

The influence of Er local surrounding on luminescence properties is, thus, unknown.
Therefore, these are the aims of the present work. In addition, it is commonly known that
antisite defects degrade scintillating performance. In contrast, in the present study, we
demonstrate that the luminescence band generated by yttrium-aluminum antisite can be
accelerated to the order of nanoseconds by increased erbium content.

2. Experimental
2.1. Samples Preparation

The YAG:Er crystals were grown by the micro-pulling-down method [21,22] with
radiofrequency inductive heating. The growth was performed using an Ir crucible with
a circular die of 3 mm in diameter and a nozzle diameter of 0.5 mm under a N2 (4N)
atmosphere using the <111> oriented YAG single crystal as a seed. The crucible was placed
on an Ir after-heater with windows and an alumina pedestal. The hot zone around the
crucible consisted of three layers of alumina shielding for thermal insulation. The gas flow
was always kept at 0.5 L/min.

The crucible with the starting material composed of stoichiometric mixture of Y2O3,
Al2O3 and Er2O3 powders (4N) was heated up to the YAG melting temperature, which was
around 1940 ◦C. Then, the YAG single-crystal seed was brought into contact with the melt
coming through the nozzle due to the capillary action. The pulling speed was 0.1 mm/min.
In all of the growth attempts, it was possible to pull out all the melt. The crystal rods had a
diameter of 3 mm and were around 30 mm in length. Afterwards, the samples were ground
to powders.

2.2. Experimental Techniques

X-ray diffraction (XRD) patterns (Rigaku Innovative Technologies Europe s.r.o.,
Dolní Břežany, Czech Republic) were obtained within the 20–80◦ range of angles (a step of
0.02◦ and a scanning rate of 2◦/min were used) on a Rigaku Miniflex 600 diffractometer coupled
with the Cu X-ray tube operating at a wavelength Kα1,2 of 0.15418 nm, a voltage of 40 kV and a
current of 15 mA. The ICDD PDF-2 database (version 2013) was used for comparison.

The diffraction patterns were processed by Rietveld Refinement program Topas 3 to
perform fast sequential and parametric whole powder profile refinement of in situ time-
resolved powder diffraction data [23]. The phase composition was given by structure fit,
where intensities of peaks were calculated based on the atomic position in the unit cell (the
atomic positions were not refined). Scherrer law was used.

Photoluminescence characteristics were measured on a homemade spectrometer
composed of: (a) a pulsed UV light-emitting diode (LED) operating at 340 nm wavelength
and 1 mW power; (b) a narrow UV band-pass optical filter; (c) a spectrally calibrated
double-grating monochromator SPEX 1672; (d) long-pass filters; (e) a Peltier cooled
photomultiplier sensitive in the 350–750 nm spectral range with 2 nm spectral resolution;
(f) a picoammeter as a current amplifier (105 V/A); and (g) a lock-in amplifier referenced
to the LED frequency (307 Hz) [24,25].

The IR PL spectra were measured at room temperature with a 1 cm−1 spectral reso-
lution using a Nicolet™ iS50 FTIR Spectrometer (Thermo Fisher Scientific, Waltham, MA,
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USA) equipped with 980 nm laser diode, 50 mW laser power, CaF2 beamsplitter, InGaAs
photodiode as a detector and a scan rate of 0.3165 cm/s.

The radioluminescence was measured using the Horiba Jobin-Yvon 5000 M spec-
trometer (Horiba Scientific, Glasgow, UK) with Oxford liquid nitrogen cryostat and
TBX-04 (IBH) photomultiplier operating in the 200–800 nm spectral range. The spectral
resolution of the monochromator was 8 nm. All the spectra were corrected for experi-
mental distortions caused by the setup. The samples were irradiated by a Seifert X-ray
tube operated at 40 kV with a tungsten target. The RL spectra were measured at 300 and
77 K. All PL and RL spectra were converted from wavelength to energy scale taking into
account the Jacobian correction [26].

Ultrafast decays under pulsing X-ray excitation (Hamamatsu Photonics, Hamamatsu
City, Japan) were measured using picosecond (ps) X-ray tube N5084 (Hamamatsu, 40 kV).
The X-ray tube is driven by the ps light pulser equipped with a laser with the repetition
rate up to 1 MHz. The signal was detected by hybrid picosecond photon detector and
Fluorohub unit (Horiba Scientific, Glasgow, UK). The instrumental response time was
about 75 ps. The spectrally unresolved luminescence decay curves were detected from the
same side where they were excited by X-rays. The decay curves were recorded by means of
the time-correlated single photon counting method. The true decay times were obtained
using the convolution of the instrumental response with a multiexponential function using
the Spectra Solve software package (Ames Photonics, Hurst, TX, USA).

Electron paramagnetic resonance (EPR) (Bruker, Billerica, MA, USA) measurements
were performed on a commercial Bruker EMXplus spectrometer (X-band with a 9.4 GHz
frequency) with a sensitivity of around 1012 spins/mT. The temperature range was
10–296 K (Oxford Instruments ESR900 cryostat was used). The “Easyspin 5.2.35” pro-
gram toolbox [27] was used for all spectra simulations.

3. Results and Discussion
3.1. Phase Purity by XRD

To determine whether the grown samples were phase purity Y3Al5O12 (YAG), powder
XRD was applied. The corresponding patterns are shown in Figure 1. It can be seen that the
reflections are the same in all three samples, and they correspond to the pure cubic (Ia3d)
YAG phase (no other phases were detected). From this, it also follows that, in general, the
incorporation of Er does not affect the crystal lattice parameter. The crystallite size was
determined to be in the range 0.002–5 µm in all the YAG:Er samples.

3.2. Paramagnetic Defect States and Er Incorporation by EPR

EPR spectra measured at room temperature are shown in Figure 2A. They were
composed of one signal found at the g factor g~2 relevant for the present study.

This signal is different in different samples—S1 in YAG:Er (0.1%), S2 in YAG:Er (0.3%)
and S3 in YAG:Er (1%) as shown in Figure 2A. Moreover, the signals intensity is lower
upon Er content. To obtain better insight into the structure of these signals, they were fitted.
The following spin-Hamiltonian was used for this purpose:

Ĥ = βŜĝH, (1)

where β, Ŝ, ĝ and H are the Bohr magneton; electron spin operator (S = 1
2 since no other

complementary resonances to those in Figure 2A were observed); g tensor with the principal
values g1, g2 and g3 (variable parameters); and magnetic field, respectively. The results of
fit are given in Table 1.

As one can see, the g tensor values are different for the S1–S3 signals. In the case
of the S1, the g1 = g2 = g⊥, and it is larger than 2.0023. The free electron value while
the g3 = g|| is lower than 2.0023. This is typical for the O2

− oxygen complexes [28,29].
The |g|| − g⊥| = 0.023. In contrast, in the case of the S2, despite the equality of the
g1,2 = g⊥, this value is only slightly lower than 2.0023 while the g3 is larger than 2.0023.
This can be, in principle, an O− defect, the oxygen anion captured a hole in the presence
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of some local perturbation, such as the cation vacancy lowering bonding as reported for
CaO (for more details, see, e.g., [30]).
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Figure 2. (A) Experimental EPR S1-3 signals measured in the YAG:Er (0.1, 0.3 and 1%) samples at
296 K shown along with the calculated ones. (B) Experimental EPR spectra of Er3+ in the ground
state (Er3+

GS) measured in the YAG:Er (0.1, 0.3 and 1%) samples at 10 K. g1–3, and arrows indicate the
spectral position of the g tensor values contributions. Dashed oblongs stress hyperfine structure
(HFS) due to 167Er nucleus. Green vertical “up” and “down” arrows point out the doublets due to the
Er–Er dimer creation. (C) Experimental EPR spectra of Er3+ in the first excited state (Er3+

ES ) measured
in the YAG:Er (0.1, 0.3 and 1%) samples at 10 K. g1,2 and arrows indicate the spectral position of the g
tensor values contributions. Dashed oblongs stress HFS due to the 167Er nucleus.
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Table 1. Spin-Hamiltonian parameters from Equation (1). The error of gi (i = 1–3) determination
is ±0.0005.

Sample Signal g1 g2 g3

YAG:Er (0.1%) S1 2.0070 2.0070 1.9840

YAG:Er (0.3%) S2 2.0014 2.0014 2.0170

YAG:Er (1%) S3 2.0045 2.0045 2.0045

The |g|| − g⊥| = 0.0156. The S3 signal is isotropic and its giso = g1 = g2 = g3 = g|| = g⊥
is slightly larger than 2.0023. Again, it is expected to be produced by the O− defect as well.
Formally, in this case, the |g|| − g⊥| = 0. All of these indicates that Er improves the defect
structure of the YAG lattice. The yttrium vacancies likely become filled in with Er, and as
a result, the cation related O− defects cannot appear. Note that Er3Al5O12 (EAG) garnet
exists [31,32], and therefore erbium incorporation into the garnet host is natural. Er3+ is
paramagnetic with a short relaxation constant.

Therefore, it is very well observed at temperatures below 15 K [33,34]. The Er3+

spectrum with perfect spectral resolution was presently measured in all the YAG:Er
samples. Moreover, its integral intensity exhibited linear dependence on the Er doping
level. This is shown in Figure 2B. It is classical, especially considering the clearly
visible hyperfine structure from 167Er nucleus with the nuclear spin I = 7/2 and natural
abundance of about 23% as stressed in Figure 2B. The Er3+ has three unpaired electrons
in the outer 4f11 shell.

However, the splitting between Kramers doublets in this case is too high—much larger
than the microwave quantum energy in the spectrometer used. Therefore, only the effective
spin S̃ = 1

2 2 of the lowest one can be observed experimentally. Due to this reason, the Er3+

powder spectra of the three YAG:Er samples in Figure 2B have all features of the typical
three-component rhombic powder spectrum [35]. The spectrum in Figure 2B is typical for
Er3+ in the ground ion state, i.e., 4I15/2, Er3+

GS .
Spectral positions of these components correspond to the principal values of a g tensor.

The Er3+
GS signal becomes broader upon Er content due to the dipolar mechanism [35].

Moreover, a doublet of lines becomes clearly visible in the YAG:Er (1%) beside the first two
partly overlapping characteristic components (g1,2 in Figure 2B), which can be ascribed to
the Er3+–Er3+ dimer.

Another signal whose intensity had the same temperature dependence as well as the
dependence on Er doping level as the Er3+

GS one was measured at the g factor ~2 (Figure 2C).
Therefore, it is expected to originate from Er as well. It is much weaker (about 30 times)
than the Er3+

GS one (Figure 2B,C).
Since the spectral positions of both the Er3+

GS and the new Er signal are very different
(Figure 2B,C) and considering the fact that the typical spectral position of Er EPR signal is
that of the Er3+

GS (see also [20,34]), the new erbium related signal in Figure 2C was attributed
to the Er3+ found in the first excited state, 4I13/2. It is stressed as the Er3+

ES in Figure 2C.
To obtain more information about Er incorporation into the YAG host and to determine

the spectral parameters, first, the Er3+
GS signal (Figure 2B) was fitted in all the YAG:Er samples

using the following spin-Hamiltonian (the natural abundance of 167Er was considered):

Ĥ = βŜĝH + ŜÂÎ + ÎQ̂Î, (2)

where Â, Q̂ and Î are hyperfine and quadrupolar tensors with the principal values
A1, A2 and A3 and Q1, Q2 and Q3 (variable parameters) and nuclear spin operator (for
167Er I = 7/2), respectively. The experimental signals as well as fitting curves are shown
in Figure 3A,B on an example of a YAG:Er (0.1%) sample where the line Er3+ resonance
line broadening is the smallest, and the resolution is the best. The results of the fit are
given in Table 2.
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Figure 3. (A) Experimental EPR Er3+
GS and Er3+

ES signals measured in the YAG:Er (0.1%) samples at
10 K shown along with the calculated ones (see the legend). (B,C) Closeups of the panel A. Addition-
ally, the closeup of the experimental YAG:Er (1%) spectrum as well as calculated Er–Er dimers are
also indicated. g1–3 and arrows indicate the spectral position of the g tensor values contributions for
both Er3+

GS and Er3+
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Table 2. Spin-Hamiltonian parameters from Equations (2) and (3). The error of gi (i = 1–3) determina-
tion is ±0.0005. The error of Ai (i = 1–3) determination is ±10. The error of Qi (i = 1–3) determination
is ±1. The error of Ki (i = 1–3) determination is ±1. Ki is related only to the Er–Er dimer.

Sample Signal g1 g2 g3 A1 A2 A3 K1/Q1 K2/Q2 K3/Q3

YAG:Er
(0.1%)

Er3+
GS

7.718 7.258 3.702 800 740 390 10 2 50

YAG:Er
(0.3%) 7.718 7.268 3.700 790 740 400 10 −20 50

YAG:Er
(1%) 7.745 7.288 3.701 790 740 400 10 −20 50

YAG:Er
(0.1%)

Er3+
ES

2.025 1.991 15.3 230 190 180 - - -

YAG:Er
(0.3%) 2.025 1.991 15.3 240 230 180 - - -

YAG:Er
(1%) 2.025 1.991 15.3 240 230 180 - - -

YAG:Er
(1%) Er–Er 7.745 7.288 3.401 - - - 19,300 19,300 5000

The fit is good (Figure 3A,B). The g tensor parameters presently determined
(Equation (2)) are close to those reported previously for Er3+ in Czochralski-grown
YAG:Er (0.1%) (g1 = 7.75, g2 = 7.35 and g3 = 3.71) [20] but still different (see Table 2).
The g3 is oriented along the <100> axis whereas the g1,2 are oriented along the <110>
axes [20]. There is a clearly observed trend—the g1,2 values are increasing with the Er
content (Table 2). This tendency has never been reported before.
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Since EAG exists [31] and the lattice parameters of EAG (11.9928 Å) and YAG
(12.0062 Å) [32,36] are different (0.0134 Å), the Er-O bond length will also be different.
Therefore, the Er-O bond length becomes moderated in YAG upon increased Er content.
The local crystal field is changing, and the g factors are changing as well. However,
the g3 remains almost unchanged. This indicates preferable erbium substitution in the
YAG lattice in the way that the tension appears along the <110> axes. Remarkably,
the determined hyperfine constants A1,3 as well as quadrupolar Q2 are changing also
(Table 2). Similar explanation is appropriate.

The Er–Er dimer doublet of lines is most clearly visible in the EPR spectra of YAG:Er
(1%) and almost totally absent in the EPR spectra of the rest of samples. To describe it, the
exchange and dipolar interactions were considered as one tensor K̂ (with the components
K1–3) in the following spin-Hamiltonian:

Ĥ = βŜ1ĝ1H + βŜ2ĝ2H + Ŝ1K̂Ŝ2, (3)

where Ŝ1,2 ĝ1,2 are electron spin operators (S1 = S2 = 1
2 2) and the g tensors of the two Er3+

ions creating the Er–Er dimer, respectively. The calculated spectrum as well as experimental
one of the YAG:Er (1%) are both shown in Figure 3B. The agreement between them is good.
The ĝ1 = ĝ2 was considered. The fit parameters are listed in Table 2. As one can see, the g3
in this case is smaller than in the case of a single ion. From this, it follows that, most likely,
in the dimer, both Er ions are situated at adjacent yttrium sites to create a larger influence
on the lattice there. Note that the resonance lines of the dimer are broad, and therefore the
(super) hyperfine interaction with 167Er could not be taken into account.

The Er3+
ES signal (Figure 2C) was fitted in all the YAG:Er samples using the spin-

Hamiltonian in Equation (2) without the third term since the hyperfine structure (the
resonance lines originating from the interaction of the electron spin and 167Er nucleus)
is not clearly visible. The experimental signals as well as fitting curves are shown in
Figure 3A,C again on an example YAG:Er (0.1%) sample. The fit is satisfactory—at least the
order of magnitude can be guessed.

The results of the fit are given in Table 2 as well. The g tensor parameters presently
determined (Equation (2)) are close to those reported for Er3+ in the first excited state in
Czochralski-grown YAG:Er (0.1%) previously (g1 = 2.036, g2 = 1.995 and g3 = 14.6) [20]
but still different (see Table 2). The strongest difference was observed for the g3 value. In
contrast to the Er3+

GS , the g tensor values remained unchanged in the case of the Er3+
ES upon

Er content.
However, the determined hyperfine constants A1,2 changed with the erbium concen-

tration (Table 2). This leads to the assumption that the first excited state of Er3+ is found
above the ligand levels creating molecular orbitals with the ground state. Therefore, the
Er-O bond length plays a minor role in this case. However, hyperfine interaction occurs
with the same nucleus as in the case of Er3+

GS . Therefore, the same explanations as given
above for the Er3+

GS are suitable here as well.
The rest of the signals in Figure 3C (Fe3+

TO) originate from Fe3+ in tetrahedral and
octahedral Al sites. This is unintentional impurity, as studied in many other works (see,
e.g., [37]), and therefore it will not further be considered.

3.3. Luminescence Properties

Photoluminescence spectra measured in the UV-visible spectral range in all YAG:Er
samples under the same conditions are shown in Figure 4A. There are two bands in the PL
spectrum of YAG:Er (0.1%). The first one is peaking at about 2.24 eV, and the second, very
broad one, has the maximum at about 3.1 eV. The first band was about 1.5-times increased
in the PL spectrum of the YAG:Er (0.3%). The presence of the second band at 3.1 eV could
not be confirmed any longer as the other strong multicomponent and broad band with the
center of gravity found at about 2.88 eV appeared there.
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In general, one may expect it to be composed of at least six strongly overlapped
contributions. The 2.24 eV band remained about the same in the PL spectrum of the YAG:Er
(1%) whereas the 2.88 eV band increased, and its multicomponent origin became even
more prominently visible. Since clear correlation between the 2.88 eV band intensity and
Er content in the samples was reached, the mentioned six components may originate from
broadened Er3+ 4f–4f transitions.

To obtain better insight into the structure of the PL spectra of the YAG:Er (0.1%,
0.3% and 1%) samples, they were deconvoluted into Gaussian components using the
following expression:

I =

I0i

/(
Wi
√

π/2
)exp

−2

(E− Ei)
/

Wi

2
, (4)

where Ei, Wi, I0i (i = 1–9) are the peak energy maximum, full width at half maximum
(FWHM) and amplitude. The fit is shown in Figure 4B on an example of the YAG:Er (1%)
sample. The fit parameters are listed in Table 3 for all three YAG:Er samples.

The amplitude (I0i) of peaks 3–8 was lowered several times with the decreased Er
content (Table 3). Interestingly, the amplitudes of the peaks 1 and 2 remained almost
unchanged in the YAG:Er (0.3 and 1%) samples, whereas they dropped about twice
in the YAG:Er (0.1%). Based on these considerations and the energy scheme for the
Er3+ ion [38–41], the peaks 3–8 were ascribed to the following Er3+ 4f–4f transitions:
2H11/2 → 4I15/2 (2.39 eV, peak 3), 2P3/2 → 4I11/2, 4F7/2 → 4I15/2 (2.51 eV, peak 4),
4F5/2 → 4I15/2 (2.71 eV, peak 5), 4F3/2 → 4I15/2 (2.86 eV, peak 6), 2H9/2 → 4I15/2 (3.02 eV,
peak 7) and 2P3/2 → 4I13/2 (3.12 eV, peak 8). Peak 2 (2.24 eV), most likely originates from
the 4S3/2 → 4I15/2 transition.

The peaks are expected to be composed of a number of Stark transitions. The interplay
between the intensity of these transitions results in the slight shift of the peaks 3–8. The
peaks are broad, likely, due to the distribution of crystal field parameters where each Er
ions is placed at. This is confirmed by the change in the g and hyperfine tensor principal
values in the consequence YAG:Er (0.1%, 0.3% and 1%) as discussed in the subsection above
(Table 2). The second reason for the broadening of the Stark transitions in the PL is the
interaction between Er ions—coupling, i.e., exchange interaction. This is confirmed by the
dipolar broadening of the EPR resonance lines in the section above and the Er–Er dimer
creation (see Figures 2 and 3). The exchange interaction leads to advanced charge and
energy transfer among erbium ions.
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Table 3. Fit parameters from Equation (4). The error of Ei and Wi (i = 1–9) determination is ±0.03 eV.
The error of the I0i (i = 1–9) determination is ±3 arb. units.

Sample Peak Ei, eV Wi, eV I0i, arb. Units

YAG:Er (0.1%)

1 2.15 0.32 194

2 2.24 0.15 133

3 2.39 0.15 30

4 2.51 0.18 64

5 2.71 0.20 118

6 2.86 0.14 77

7 3.02 0.17 102

8 3.12 0.22 123

9 3.25 0.25 150

YAG:Er (0.3%)

1 2.15 0.32 350

2 2.24 0.15 200

3 2.39 0.15 60

4 2.51 0.18 325

5 2.71 0.20 1104

6 2.86 0.14 994

7 3.02 0.17 1276

8 3.12 0.22 460

9 - - -

YAG:Er (1%)

1 2.15 0.32 300

2 2.24 0.15 150

3 2.39 0.15 140

4 2.51 0.18 530

5 2.71 0.20 1800

6 2.86 0.14 1620

7 3.02 0.17 2080

8 3.12 0.22 750

9 - - -

Peak 1 is very broad (Figure 4B, Table 3). Its origin is unknown. It is expected
to originate from some unintentional impurity. Moreover, there is peak 9 with a
maximum at 3.25 eV existing only in the YAG:Er (0.1%). It is too far from the 3.1 eV
where the F+ center (an electron trapped at an oxygen vacancy) emission was reported
to appear in YAG [42]. According to [43] it is host-related. However, the exact origin
is unknown. It was not observed in the YAG:Er (0.3 and 1%), likely, due to the Er
improved reabsorption channel.

A high-resolution infrared PL spectrum of Er3+ 4I13/2 → 4I15/2 transition with per-
fectly discernible Stark transition is shown in Figure 4C. Logically, the intensity of the
transition increases upon erbium content. There are 20 peaks, and the intensity ra-
tio is the following for the YAG:Er (0.1%): 10:11:8:14:6:13:2:19:18:10:9:1:3:2:3:5:5:6:4:4.
There are 21 peaks, and the intensity ratio is the following for the YAG:Er (0.3%):
6:6:5:8:5:6:1:15:10:6:4:1:1:1:1:3:3:3:2:2. There are 21 peaks, and the intensity ratio is the
following for the YAG:Er (1%): 6:6:5:9:6:7:1:17:10:6:5:1:2:1:2:3:3:4:2:2. The peak P0 is
missing in the IR PL spectrum of YAG:Er (0.1%) as indicated in Figure 4C.



Crystals 2023, 13, 562 10 of 14

Moreover, the peak intensity ratios are strongly different for the YAG:Er (0.1%) as
compared to the YAG:Er (0.3 and 1%). It is about the same in the YAG:Er (0.3 and 1%). This
again confirms appearance of changes to the local surrounding of Er ions when its content
is increasing in the YAG host.

Radioluminescence spectra measured in the UV-visible spectral range in all YAG:Er
samples are shown in Figure 5A. There are seven narrow peaks and one broad
band at 3.95 eV.
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The spectral positions of narrow peaks correspond to the following Er3+ 4f–4f transi-
tions observed in RL spectra of YAG:Er [38–41]: 4I9/2 → 4I15/2 (1.59 eV),
4F9/2 → 4I15/2 (2.00 eV), 4S3/2 → 4I15/2 (2.23 eV), 2H11/2 → 4I15/2 (2.34 eV),
2P3/2 → 4I11/2 (2.61 eV), 2P3/2 → 4I13/2 (3.1 eV) and 2P3/2 → 4I15/2 (3.95 eV). More-
over, the intensity of the narrow peaks increased with the erbium content. The Stark
transitions were not observed due to low spectral resolution (see Experimental).

The 3.95 eV band was attributed to YAl antisite defects [44,45]. Its intensity dropped
about twice in the YAG:Er (0.3%) as compared to the YAG:Er (0.1%). It is about the same in
the YAG:Er (0.3%) and YAG:Er (1%). Er substituting for Y should increase the probability
for the Y substitution for Al, and therefore the YAl band should increase upon Er content.
Since this was not observed (Figure 5A) the YAl energy is expected to be partly reabsorbed
and then re-emitted by erbium. Erbium substitution for the Al site (ErAl) can be excluded
since no other signals than Er3+

GS and Er3+
ES , which might be related to Er3+, were detected in

EPR spectra (Figure 3) at all.
To study the influence of increased erbium content on the kinetics of luminescence

processes, the decay kinetics under pulsing X-ray excitation was measured in all the samples
as well. The decay curves are shown in Figure 5B. They were fitted with exponentials:
single-component in the YAG:Er (0.1%), two-component in the YAG:Er (0.3%) and four-
component in YAG:Er (1%).

I = ∑4
i=1 Aiexp(−t/τi) + I0, (5)

where Ai, τi and I0 are the amplitude and decay time constant of the i-th component
and background, respectively. The background provides no valuable information, and
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therefore it will not further be considered. The decay time constants and amplitudes are
listed in Table 4.

Table 4. Decay time constants (ns) and amplitudes (arb. units).

Sample τ1 τ2 τ3 τ4 A1 A2 A3 A4

YAG:Er (0.1%) 722.5 - - - 774 - - -

YAG:Er (0.3%) 299.3 622.2 - - 710 369 - -

YAG:Er (1%) 2.7 78.9 374.9 2524 309 68 19 8

Interestingly, the decay time constants, in general, shorten upon Er doping. This is
also in good agreement with the drop of the YAl band (Figure 5A). Considering only the
dominating amplitude (A1), one can see that the shortening of the corresponding decay
time constant is drastic: from 722.5 ns in the YAG:Er (0.1%) through 299.3 ns in the YAG:Er
(0.3%) to 2.7 ns in the YAG:Er (1%). The decay time constant of the second component (A2)
dropped about eight times from 622.2 ns in the YAG:Er (0.3%) to 78.9 ns in the YAG:Er (1%).

This and the multicomponent origin of the decay curves can be explained in the follow-
ing way. At low Er content (0.1%), YAl and Er are separated, and the single exponential with
the 722.5 ns characteristic decay time belongs to the YAl band. At higher Er concentrations
(0.3% and 1%), the exchange interaction between Er ions occurs as confirmed by EPR above.
This leads to the advanced charge and energy transfer among erbium ions. The more Er
present in the host, the higher the probability of Er appearing next to YAl. Altogether this
creates conditions for advanced electrons transfer through a erbium bridge to YAl.

The faster electrons appear at YAl, the faster they can recombine with the holes. The
supplement of holes is confirmed by EPR above (signals S2 and S3 in Figure 2A, see also
Table 2 and the discussion below it) through O− defects, the hole trapping centers. This
also leads to the creation of several paths for charge and energy transfer resulting in the
multicomponent decay curve origin. Moreover, this causes the shortening of the decay
time of the YAl band (Figure 5B). This is a very important observation since it opens the
way for further investigation of Er content influence on the YAl band, likely, making its
luminescence even faster than observed 2.7 ns.

The rest of the long components have very low amplitudes (A3 = 19 and A4 = 8;
this is about 15 and 40 times weaker than A1 = 309, respectively) in the YAG:Er (1%).
Therefore, they are rather the background of processes, likely due to Er3+ transitions that
were out of the range of the X-ray equipment used for the ultrafast kinetics measurements
(see Experimental).

The YAl band at 3.95 eV (Figure 5A) was not recorded in the PL spectra (Figure 4A)
due to low excitation energy, 3.65 eV. The F+-center-related band observed in PL spectra
(Figure 4A) was not directly observed in the RL spectra (Figure 5A), as its intensity was
low, and strong overlap with the YAl band occurs.

4. Conclusions

Erbium incorporation as well as its influence on the luminescence properties of YAG
single crystals grown using the micro-pulling-down technique was systematically studied.
Three ion concentrations were chosen: 0.1, 0.3 and 1 at%. In particular, by using electron
paramagnetic resonance (EPR), Er incorporation as a regular ion into the YAG host at the
yttrium site was confirmed.

Moreover, higher concentrations (0.3 and 1 at%) led to the dipolar broadening of the
Er3+ EPR line due to the Er–Er interaction, and Er–Er dimers were created. Er3+ EPR spectra
were measured in the ground and first excited states for all the concentrations mentioned.
The g tensors and 167Er hyperfine interaction (determined precisely) changed upon Er
content for the ground state, whereas in the first excited state, only the hyperfine interaction
changed. This was explained by the large difference in the ligand atomic orbitals and
erbium first excited state to create a molecular orbital and have influence on the g tensor.
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There was another signal in the EPR spectra measured at the g factor of about
2 attributed to some defect state, likely oxygen anions forming O2

− and O− electron
and hole trapping centers. The O2

− was observed in the YAG:Er (0.1%) whereas the
O− was detected in the YAG:Er (0.3% and 1%). The presence of the latter indicates the
participation of holes in the luminescence processes. PL spectra were complex, consisting
of strongly overlapped typical Er3+ transitions and the broad band at 3 eV attributed to
the F+ center (visible only for the 0.1% Er content).

For higher Er concentrations, the F+ band was not observed, likely due to the low
intensity and strong overlap with other Er-related bands or charge or energy transfer to
Er3+. The broadening of the Er transitions was explained by the exchange interactions
existing between Er ions revealed by EPR. Radioluminescence (RL) spectra were composed
of the Er3+ transitions as well and the other band with the maximum at about 4 eV was
attributed to YAl.

The X-ray excited decay kinetics exhibited decrease of the decay time of the YAl band
from hundreds of nanoseconds to nanoseconds based on the Er doping level. This was ex-
plained by the advanced electrons transfer from Er3+ to YAl with subsequent recombination
with holes from O−-like centers detected by EPR. The faster the electron appeared at YAl,
the faster it recombined with the hole. This also paves the way for further investigation of
Er content influence on fast and, likely, ultrafast processes of YAl luminescence.
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