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Abstract: Conjugated BaI2:Eu (5 at.%) nanocrystalline particles were synthesized, decorated with
golden nanoparticles (GNP). GNP demonstrated some hydrophilic effect, leading to the BaI2·H2O
phase creation. The Eu2+ luminescence intensity was reduced according to the GNP content. This was
due to the decreased number of Eu2+ ions in the BaI2, most probably, arising from the Au substitution
for Ba competing with Eu. Moreover, the decay time of luminescence was decreased upon GNP
content. This was explained by the moderation of negative charge in the GNP, leading to the repulsion
with an electron in the excited Eu2+.

Keywords: barium iodide; Eu2+, Au nanoparticles; luminescence; EPR

1. Introduction

Development of effective scintillator materials with low-cost manufacturing still re-
mains a current issue due to the absence of an ideal phosphor [1]. The alkaline-earth binary
halides, such as CaI2, SrI2, BaCl2, BaBr2 and BaI2, represent, thanks to their high effective
atomic numbers (Z ~ 50), high light yields (up to 100,000 photon/MeV) and low-cost
synthesis, making them promising materials for scintillation radiation detectors [2–7]. To
enhance their luminescent properties, alkaline-earth halides require activation by a dopant.
Rare earths ions, such as Eu2+, Eu3+, Ce3+ or Tb3+ are amongst the most-used dopants
with their selection dependent on the required emission spectra [8]. Both charge states of
europium, Eu2+ and Eu3+, emit under UV irradiation in the visible spectral region. The
exact luminescence efficiency and spectral region of the europium activator is dependent
on the surrounding environment and on the Eu2+/Eu3+ ratio [9,10]. The Eu2+ dopant
particularly emits in the blue region [11,12] thanks to 5d-4f transition, while Eu3+ ions have
been shown to exhibit narrow emissions in the red, blue and green regions corresponding
to f−f transitions [11–16].

Barium iodide (BaI2) may be considered as one of the most effective scintillation
materials in the alkaline-earth halides family thanks to its relatively high atomic number
(Z = 54) [17]. BaI2 is additionally characterized by high light output (up to 60,000 pho-
tons/MeV), broad bandgap of 5 eV, sufficient density of 5.1 g·cm−3, absence of intrinsic
radioactivity and is less hygroscopic compared to other alkali-earth halides [17,18]. Bar-
ium iodide may be grown in the form of orthorhombic single crystals by the Bridgman
method [17]. However, due to the hygroscopic nature of most alkaline-earth halides and
synthesis cost reduction, BaI2 is more often synthetized in form of nanocrystals incorpo-
rated into the glass–ceramic matrix which act as protection from moisture in the air [8].

Crystals 2023, 13, 902. https://doi.org/10.3390/cryst13060902 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13060902
https://doi.org/10.3390/cryst13060902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-7529-255X
https://orcid.org/0000-0003-3359-3212
https://orcid.org/0000-0002-9992-4988
https://doi.org/10.3390/cryst13060902
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13060902?type=check_update&version=1


Crystals 2023, 13, 902 2 of 10

Eu2+ and Eu3+ ions represent a suitable activator for BaI2 while their effect on structural,
morphological and optoelectronic properties have been previously subjected to research
in [18,19].

Besides using the dopant activator, the addition of nanoparticles may further sig-
nificantly improve material optical properties [20–23]. In particular, the incorporation of
Au ions into BaBrCl:Eu single crystals leads to the enhancement of photoluminescence
intensity and reduces long afterglow. Similar improvement of luminescent properties has
also been previously observed in Eu-activated germanate films with golden nanoparticles
(GNPs) [24–26]. The co-doping with nanoparticles may also enable radiation absorption
in other regions of the spectrum, while the exact absorption spectrum may be tuned by
varying the size and surface morphology of the nanoparticles used [27,28]. The previously
observed improvement of Eu2+ luminescent properties in alkaline-earth binary halides
may originate in the formation of AuX, AuX−2 and AuX−4 halide compounds in BaX2 where
X stands for the halide used. Such halide compound formation leads to excess electron
creation, which may be subsequently captured by Eu3+—resulting in the increase of Eu2+

concentration and its PL luminescence [29]. Another possible explanation of GNPs-induced
PL improvement may originate in the Richardson–Schottky effect coupled with the plas-
monic Au nanoparticles [30,31]. The incident excitation light excites electrons in the golden
nanoparticles which are then transferred to the conduction band of the BaX2:Eu particles.
These excess electrons then contribute to the Eu2+ luminescence being relaxed from the
conduction band appearing at the excited state of the Eu2+ with the subsequent recombi-
nation. The larger the amount of Au nanoparticles, the more the electrons appear in the
BaX2. Lastly, the GNPs may suppress the number of non-radiative recombination centers
in BaX2:Eu.

Based on the previous successful implemention of GNPs into BaBrCl:Eu single crystals,
the co-doping of BaI2:Eu microcrystalline powders with GNPs has been presently tested. To
understand the exact effect of GNPs on BaI2:Eu properties, X-ray diffraction spectroscopy
(XRD), photoluminescence (PL) spectroscopy, PL decay measurements, radioluminescence
(RL) spectroscopy and electron paramagnetic resonance (EPR) spectroscopy have been
combined in the present study. The influence of the varying GNP concentration on the
incorporation of Eu2+ into the BaI2 lattice and defect concentration were investigated
as well.

2. Experimental
2.1. Preparation of BaI2:Eu Samples with GNPs

The following materials of analytical grade were used in the sample synthesis: Ba(NO3)2,
NH4I, Eu(NO3)3·6H2O, NH4HCO3, NaOH, Na2EDTA and HAuCl4. A two-stage process,
described in more detail in [19,32], was used for BaI2:Eu powders synthesis. GNPs were
added in the form of Au solution in the amount of 0, 0.01, 0.05 and 0.2 wt.% to the precursor
BaCO3:Eu which was prepared during the first stage of synthesis.

To prepare GNPs, 0.075 mole/dm3 of NaOH was mixed under constant stirring into
0.008 mole/dm3 of Na2EDTA to a pH level of 10.5. The resulting solution was gradually
heated with a time step of ~2 ◦C/min and then 0.023 mole/dm3 of HAuCl4 was added
while keeping the mixture at 90 ◦C for another 30 min. Concentration of Au in the resulting
mixture was 5 × 10−4 mole/dm3.

To prepare BaCO3:Eu powder, 0.1 mole/dm3 of Eu(NO3)3 was mixed into 0.2 mole/dm3

of Ba(NO3)2. The chosen concentration of Eu(NO3)3 leads to 5 at.% replacement of Ba2+

ions by Eu3+ ions. The nitrate mixture was subsequently added under constant stirring
into 1.2 mole/dm3 of NH4HCO3. The obtained BaCO3:Eu precipitate was then centrifuged
and rinsed by distilled water.

The required amounts of GNPs were calculated according to the weight of Ba in the
samples and were added to BaCO3:Eu upon 1 h constant stirring. The obtained suspensions
were annealed at 80 ◦C for 12 h and subsequently stirred for 10–15 min.
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In the second stage, BaCO3:Eu doped with GNPs was mixed with NH4I powders
and then annealed at 400 ◦C for 30 min under Ar flow. The samples were then left to cool
to the room temperature under the Ar flow. The designations of the samples with their
corresponding amounts of GNPs used in the sample preparation are listed in Table 1.

Table 1. Designations of the obtained samples varying in the used amount of GNPs.

Sample Au0 Au001 Au005 Au02

Au, wt.% 0 0.01 0.05 0.2

The second stage of the sample preparation is governed by the following chemi-
cal equation:

BaCO3:Eu + 4NH4I→ BaI2:Eu + CO2 + I2 + H2 + 4NH3 + H2O (1)

2.2. Experimental Techniques

The samples were stored between individual measurements in the glovebox filled
with Ar to prevent the interaction with atmosphere [8].

X-ray diffraction (XRD) patterns of the synthesized samples were performed by Rigaku
MiniFlex 600 diffractometer which was equipped with an NaI:Tl scintillation detector
and Ni-filtered Cu-K(α) radiation source (λ = 1.54151 Å). The X-ray diffraction patterns
were measured in the 2θ range of 23–75◦ with a step of 0.02◦ and a scanning speed of
2◦/min. Collected XRD patterns were compared to the records in the ICDD PDF-2 database
(version 2013).

The top-view scanning electron microscope (SEM) images were obtained by ultra-high
resolution SEM MAIA3 from TESCAN Brno with and an in-lens secondary electron detector.
An electron energy of 10 keV and magnification of 50,000 was used. All samples were in
their pristine state without any conductive coating.

Photoluminescence spectra were collected using a pulsed UV LED excitation source
with a frequency of 333 Hz, wavelength of 340 nm and power of 1 mW. The excitation
source was additionally filtered by a narrow band-pass filter centered at 340 nm. The PL
spectra were obtained using a double-grating monochromator SPEX 1672 with 2 nm spectral
resolution, a photomultiplier sensitive in the 350–750 nm cooled by the Peltier effect, and
a lock-in amplifier referenced to the frequency of excitation LED. The measured samples
were prepared by pressing 5 mg of BaI2:Eu/GNP powder into a pellets with a diameter
of 3 mm which were further attached to the holder by double-sided conductive tape.
All measurements were provided in a vacuum using an Oxford Instruments OptistatDry
BLV cryostat. The data were converted from wavelength to energy scale using Jacobian
correction [33].

The PL decay times were measured for all samples for a 3 eV emission band under
excitation by nanoLED at 3.66 eV (339 nm). In order to determine true decay times, the
deconvolution procedure (SpectraSolve software package, Ames Photonics) was applied to
the decay curves.

Radioluminescence (RL) spectra measurements at room temperature (290 K) were
performed by the Horiba Jobin-Yvon 5000 M spectrometer, TBX-04 (IBH) photomultiplier
operating in the 200–800 nm spectral range and monochromator with a spectral resolution
of 8 nm. The samples were irradiated by a Seifert X-ray tube operated at 40 kV with a
tungsten target. All the spectra were corrected for experimental distortions caused by
the setup.

Electron paramagnetic resonance (EPR) spectra measurements were obtained at room
temperature (290 K) using a commercial Bruker EMXplus spectrometer in the X-band
(9.4 GHz). The spectrometer sensitivity is about 1012 spins/mT, while microwave power of
1–2 mW, modulation amplitude of 0.1–0.5 mT and time constant of 160 µs were used.
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3. Results and Discussion
3.1. Structural Analysis and Morphology of BaI2:Eu/GNP

To verify the purity of phase BaI2 the XRD patterns of the samples Au0, 001, 005
and 02 were measured. By comparing measured data shown in Figure 1 with the PDF
database record #73–1849, one can see that, as well as containing prevailing reflections
corresponding to BaI2·H2O, the XRD patterns also contain peaks of pure BaI2 phase in
the Au0 and Au001 samples. They are absent in the Au005 and Au02 samples. This
may indicate the hydrophilic action of the golden nanoparticles. The BaI2·H2O phase
appears due to the hygroscopic nature of BaI2, particularly due to absorption of water
vapor released during synthesis or air moisture (see Equation (1)). The unit cell parameters
and coherent scattering region (CSR) standing for the size of the BaI2 crystallites were
calculated for BaI2·H2O phase. The unit cell parameters, together with crystallite sizes of
the samples Au0, 001, 005 and 02, are given in Table 2. Note that the calculated values of
the unit cell parameters are in accordance with the PDF database record #39–1300 for the
BaI2·H2O phase.
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Figure 1. XRD patterns of the BaI2:Eu/GNP samples (see Table 1) together with database patterns
PDF #39–1300 corresponding to BaI2·H2O phase.

Table 2. Unit cell parameters and crystallites size of the Eu doped BaI2·H2O/GNP samples (see
Table 1).

Sample a (Å) b (Å) c (Å)

Au0 12.507 ± 0.003 4.768 ± 0.003 10.010 ± 0.003
Au001 12.508 ± 0.003 4.767 ± 0.003 10.009 ± 0.003
Au005 12.509 ± 0.003 4.768 ± 0.003 10.008 ± 0.003
Au02 12.517 ± 0.003 4.772 ± 0.003 10.012 ± 0.003

The obtained lattice parameters are in a good agreement with the previously reported
in [34].
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The incorporation of GNPs into BaI2:Eu leads to the fluctuations in the unit cell
parameters, as can be seen from Table 2. This may indicate the presence of two competing
processes. A slight decrease of the lattice parameter c upon the rising GNP content from
0 to 0.005% (see Table 1) and fluctuation of the parameter b, may be caused by substitution
of smaller Au+ or Au3+ for larger Ba2+ ions in BaI2 [35]. The ionic radii of Au+, Au3+ and
Ba2+ are 1.37 Å, 0.68 Å and 1.47 Å, respectively. The formation of compounds, such as
AuI, AuI−2 and AuI−4 [36–38] during the synthesis may also explain the decrease of cell
volumes upon GNP co-doping. However, these material phases were not detected in the
XRD patterns (Figure 1). On the contrary, the slight increases of unit cell parameters upon
co-doping with GNP, which is most obvious for the unit cell parameter a (all concentrations
studied) and b (for the concentration 0.2%), may be explained by the incorporation of Au
particles into the lattice in the interstitial positions.

3.2. Luminescence and Timing Characteristics

The PL spectra of the samples Au0, 001, 005 and 02 measured at 290 K are shown in
Figure 2a. The main PL bands are narrow and almost symmetric with the maximum at
about 3 eV (Figure 2a). They were related to the Eu2+ 4f65d1→ 4f7 transition in BaI2 [19,39].
Another “tail”-like band in the 2.2–2.8 eV region can be visible for all the samples (Figure 2a).
To attain higher resolution of the PL spectra, they were also measured at 10 K (Figure 2b).
Now, the unresolved broad band at 2.2–2.8 eV becomes the low-intensity bands with the
maxima at 2.36 eV and 2.76 eV, respectively. These are most visible in PL spectra of Au0 at
10 K and are almost absent in the Au001, 005 and 02 samples at room temperature (Figure 2).
The total intensity of secondary PL bands between 2.2–2.8 eV does not change significantly
with temperature (Figure 2). This indicates weak coupling of the corresponding emission
centers with the lattice. It is worth mentioning that similar double-peak structured bands
have also been recorded in undoped BaCl2 and BaBr2 where they were related to H and F
centers [17]. However, the exact origin of the bands in the present case is unknown and
requires extended study which is beyond the subject addressed in the present paper and
will be considered elsewhere.
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Figure 2. Photoluminescence spectra for the BaI2: Eu/GNP samples measured at (a) room tempera-
ture 290 K and (b) 10 K.

The Eu2+ band is narrowing and its amplitude is increased only slightly with the
temperature lowering (Figure 2b). This again indicates a weak bonding of the Eu2+ to
ligand iodine anions.

As can be seen in Figure 2, the GNP co-doping significantly affects the luminescence
properties of the BaI2: Eu samples. The PL band of the Eu2+ generally decreases with GNP
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content. Comparing the main PL bands at 3 eV, a 2.3-fold decrease in the PL maximum
intensity of sample Au02 compared to sample A0 was observed at 10 K. A deteriorated
luminescence of the main peak corresponding to Eu2+ upon GNP co-doping may be
explained by the Au+ incorporation competing with the incorporation of Eu2+. The PL
intensities of both secondary bands at 2.76 eV and 2.36 eV of Au02 sample decrease
more significantly by factor 3 and 5.3, respectively, compared to Au0 sample at 10 K. The
Au+ ions may be incorporated into the lattice in interstitial positions, thereby supplying
additional positive charge to the system. Thanks to charge compensation, the presence of
the extra positively charged Au interstitials suppresses the formation of the corresponding
emission centers.

PL decay kinetics was further measured in all samples at 420 nm (3 eV), which cor-
responds to the emission maximum of the Eu2+. The decay curve of the sample Au02
together with the fit obtained using the standard single-exponential approach and decon-
volution procedure are depicted in Figure 3. The decay curves of other samples show
qualitatively similar trends. The obtained decay times from the individual fits are in the
order of hundreds of nanoseconds and are listed in Table 3. It is seen that the decay time
is shortening with the increasing concentration of GNPs. Strong concentration effect of
the GNPs on the Eu2+ luminescence properties of the BaI2:Eu samples is clearly observed.
This can be explained by the Richardson–Schottky effect coupled with the plasmonic Au
nanoparticles [30,31]. The incident 340 nm light (3.88 eV) moderates negative charge (elec-
tron) density in the golden nanoparticles at the GNP/BaI2 interface and beyond it in the
BaI2 crystallite itself. This extra negative charge appeared next to the excited Eu2+ having
the excited 5d1 level. The repulsion appearing in this place forces the electron in the excited
state to relax to the stable ground state. Therefore, GNPs speed up the luminescence. The
larger the amount of Au nanoparticles, the stronger the influence. As a result, the Eu2+

decay time decreases with the doping level of golden particles. However, since the number
of Au nanoparticles is, in general, small (not more than 0.2%, see Table 1) and, taking into
account that the overall europium doping level is 5% (note, that not all Eu2+ ions of the
total 5% are in the excited state) the effect is weak (Table 3).
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Table 3. PL decay time constants for the Eu2+ band peaking at 420 nm (3 eV).

Sample Decay Time (ns)

Au0 324.8 ± 0.2
Au001 322.5 ± 0.2
Au005 322.6 ± 0.2
Au02 318.8 ± 0.2

To investigate the characteristics of scintillation performance, a room temperature
radioluminescence was measured in all the samples. The spectra are shown in Figure 4.
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Figure 4. RL spectra of the samples at 295 K.

The RL spectra are composed of the two signals: dominating band peaking at 2.9 eV
attributed to Eu2+ in BaI2 and the weaker band within the ~1.8–2.7 eV range attributed to
Eu2+ in EuI2 based on previous work [19] (Figure 4). The spectral positions of these bands
do not depend on the GNP content while their intensities are decreasing. This correlates
strongly with PL spectra measurements in Figure 2. The band intensities of the samples
Au001 and Au005 are almost the same and about 1.4 times weaker as compared to the Au0
sample. The intensity of the A02 sample is about 2.6 times weaker as compared to the Au0
sample. To gain better insight into these peculiarities, EPR was measured.

3.3. Eu2+ Incorporation by EPR

EPR spectra measured on the Au0, 001, 005 and 02 samples are shown in Figure 5.
Considering only one cation, Ba2+ with ionic radius 1.38 Å, the most probable localization
of the Eu2+ with ionic radius 1.2 Å in the lattice is Ba2+ site (D2d local symmetry [34]).
Both ionic radii were taken from [35] for the ligand coordination 7. A multi-feature Eu2+

EPR spectrum in Figure 5 indicates the Eu2+ localization at the regular site due to strong
interaction with ligands (relatively strong ligand field) [40]. Detailed justification of the
Eu2+ localization in the BaI2 host is provided in [19].
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Figure 5. EPR spectra of the BaI2:Eu/GNP samples (see Table 1).

The intensity of the Eu2+ EPR spectrum reduces with GNP content (Figure 5). This
agrees well with the trends observed for the strongly dominating 3 eV PL and 2.9 eV RL
bands (Figures 2 and 4). Therefore, one can unambiguously refer these bands to the Eu2+ at
Ba2+ site. This can be explained as follows. The incorporation of Au into the BaI2 grains
instead of barium as Au−Ba creates concurrence for the Eu2+ substitution. In this case extra
negative charge is created which should be compensated in the way Eu+

Ba = Au−Ba which
increases the concentration of Eu3+ ions. However, the PL or RL Eu3+ spectra were not
detected (Figures 2 and 4) and, therefore, the creation of the EuI2 phase is possible. This
agrees with the red-energy shoulder existing in both RL and PL spectra (Figures 2 and 4).
However, the EPR signals of the EuI2 cannot be detected due to the strong resonance line
broadening, which occurs because of close packing of Eu2+ ions in the EuI2 [40].

4. Conclusions

The properties of BaI2: Eu (5 at.%) nanocrystalline powders decorated with varying
content of gold nanoparticles are studied with emphasis on Eu2+ incorporation. The
XRD patterns show simultaneous existence of the BaI2 and BaI2·H2O phases due to the
hygroscopic nature of BaI2. The slight fluctuations in the BaI2 unit cell parameters upon
GNP decoration corresponded to two competing processes. The decrease of the c parameter
particularly results from the substitution of smaller Au+ or Au3+ ions for larger Ba2+ ions in
BaI2. The increase of the a parameter was explained by the incorporation of Au particles into
the lattice in the interstitial positions. The PL and RL spectra consisted of the dominating
emission band at about 2.9–3 eV originating from Eu2+ at the Ba site in the BaI2 structure.
There were also secondary broad strongly overlapped bands (2.2–2.7 eV) related to some
defects whose exact origin remain unknown. GNPs present in the samples suppressed
both Eu2+ and defect-related PL and RL. Along with the EPR measurements, this provided
evidence for the degraded Eu incorporation into the BaI2 host upon GNPs decoration.
Interestingly, the PL decays were single exponential. They exhibited a decrease in the decay
time of the Eu2+ emission according to GNP content. This is the result of the extra negative
charge moderation in the GNP leading to repulsion between this negative charge and an
electron in the excited state of Eu2+.
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