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Abstract – Perception-reaction delays have experimentally been found to cause a spontaneous
circling of microswimmers around a fixed target particle. Here we investigate a many-body version
of such an experiment with Brownian-dynamics simulations of active particles in a plane. For short
delays, they form a hexagonal crystallite around the target. The bifurcation to a chiral dynamical
phase, seen for longer delays, maps onto that for a single active particle. Different angular velocities
at different distances from the target induce shear stresses that grow with increasing delay. By
exciting shear bands, they shake and intermittently break the rotating crystallite. For long delays,
it detaches from the target to circle around it near the preferred single-particle orbit as a compact
spinning satellite, trembling from what could be called tidal quakes.
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Introduction. – Recent experiments with synthetic
microswimmers steered toward a fixed target have revealed
a spontaneous vortex formation caused by a perception-
reaction delay [1]. The observed phenomenology can be
attributed to the delay-induced aiming errors, akin to
those associated with microswimmer navigation strategies
employing “vision-cone” [2,3] or “acceptance-angle” [4,5]
criteria. The experiment thereby established a simple
paradigmatic model system for swarm forming ensembles
with delayed interactions. Notably, the reaction of all liv-
ing creatures and artificial devices to external stimuli is
delayed by the time required to transfer and process in-
formation and realize the required response. All these
systems can be classified as feedback-driven systems [6],
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which are well studied in control theory, a branch of
dynamical-systems theory. In physics, objects capable of
an active response to perceived stimuli, such as animals
or robots, are commonly studied within the field of active
matter [7]. Even though most models of active matter ne-
glect perception-reaction delays, it was shown that delays
can significantly impact stability, dynamical phases, and
even finite-size scaling in active matter systems [8–16].

In this letter, we numerically study a model system in-
troduced and experimentally motivated in ref. [1]. We
extend the analysis to particle numbers that are currently
inaccessible to the experimental techniques [17] employed.
Using Brownian-dynamics simulations, we find that the
average angular velocity still exhibits the bifurcation de-
scribed for small particle numbers in ref. [1], but that
the many-body dynamics undergoes a surprisingly rich
series of delay-induced dynamical phase transitions. For
short delays, a densely packed crystallite forms around
the target. The mechanism somewhat resembles motility-
induced phase separation [18], in the sense that the clus-
ters are maintained by swim forces in a strongly depleted
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gas phase. As the delay increases, the crystallite is inter-
mittently broken up by delay-induced shear bands.

Even for experimentally realistic noise intensities, the
phenomenology observed in our simulations resembles the
behavior of sheared low-temperature colloidal suspensions
or athermal granular materials [19,20]. An important fea-
ture of densely packed crystalline and amorphous particle
assemblies is that they can only be sheared if the packing
structure is somewhat dilated to allow the particles to es-
cape from their nearest-neighbor cages and move around
each other. Typical defect structures observed under such
conditions are therefore shear bands [21,22]. In the field of
granular rheology, one also speaks of the dilatancy effect.
It is responsible for normal stresses and the non-affine re-
sponse to shear. In everyday life, you may experience it in
the form of drained halos around your feet when you step
on wet sand. In contrast to common granular and col-
loidal rheological setups, the shear stresses in our active-
Brownian-particle ensembles are however not induced by
a moving background solvent or a system boundary or
immersed probe particle, but solely by the individual par-
ticles’ activity itself. This entails some counter-intuitive
consequences. Most importantly, the time delay only en-
tails relevant navigational aiming errors if the particles are
actually moving, but not if they are jammed up in a dense
cluster. This somewhat unconventional property distin-
guishes our setup from the myriad of superficially related
rheological problems documented in the literature. It also
impedes attempts to provide a complete mechanistic in-
terpretation of the unique succession of dynamical phases
and phase transitions, described in the following.

Model. – We consider a two-dimensional system of N
overdamped active Brownian discs, interacting via soft
steric interactions. One particle is held fixed at the ori-
gin. The N mobile particles aim to move toward it with
a constant speed v0. As shown in fig. 1(a), they cannot
react instantaneously to the detected target position, but
only after a certain delay time δt. Since the particles keep
moving during this time, the resulting retarded attraction
to the central target acquires important aiming errors.

We fix length and time scales by setting the particle
diameter and the speed to unity (i.e., the time unit is
particle diameter over speed; see table S1 in the Supple-
mentary Material Supplementarymaterial.pdf (SM)).
The dimensionless position vector ri of the i-th Brownian
particle at the dimensionless time t obeys the Langevin
equation

ṙi(t) = Fi(t)+k
∑
j �=i

rij(t)Θ [1 − |rij(t)|]+
√

2Dηi(t), (1)

where Fi(t) = −ri(t − δt)/|ri(t − δt)| are the “intended”
nominal velocities of the individual particles, which differ
from the actual velocities ṙi, due to inter-particle interac-
tions and noise. The soft steric repulsion has a strength
given by the dimensionless stiffness k and a range cut-
off at |rij(t)| = 1 (the “particle diameter”), imposed by
the Heaviside Θ function. The diffusivity D controls the

Fig. 1: Active Brownian particles (blue), moving at constant
speed, aim at a central target (red) with a perception-reaction
delay δt. (a) the fact that the actual direction of motion at
time t is determined by position r(t − δt) at the earlier time
t−δt gives rise to aiming errors and ensuing dynamical phases.
(b) The bifurcation diagram shows the average angular dis-
placement ωδt per delay time δt. Upon increasing delay, the
isotropic static phase (I) gives way to radially symmetric chi-
ral phases (II–IV). For the yin-yang and blob phases (V and
VI), ωδt ≈ π/2. The colors code for various particle numbers
N = 30, . . . , 1000. The diagram obtained for athermal motion
(diffusivity D = 0) remains unchanged for an experimentally
realistic noise intensity (D = 0.0136). (c) Close-packed crys-
tallites of N � 30 particles have radius ρ =

√
(N + 1)/3.62 in

units of the (soft-)particle diameter.

intensity of mutually independent Gaussian white noise
vectors ηi, i = 1, . . . , N , with zero mean, 〈ηi(t)〉 = 0,
and covariance

〈
[ηi(t)]x[ηj(t

′)]y
〉

= δijδxyδ(t − t′), where
[ηi(t)]x denotes the x component of vector [ηi]. We do
not consider rotational diffusion, as it is irrelevant for the
experimental setup in ref. [1], which motivated our work.

We studied for particle numbers N = 15, . . . , 1000 that
are neither analytically tractable nor currently realizable
in experiments. The dynamical equations are solved by
Brownian-dynamics simulations with time step 0.001, stiff-
ness k = 101.4, and diffusion coefficient D = 0.0136.
The chosen value for the diffusion coefficient corresponds
to typical experimental conditions in aqueous solvents
at room temperature, if the particle diameter is identi-
fied with 2.19 × 10−6 m and the propulsion speed with
2.16 × 10−6 m/s [1]. We initialized the particles randomly
around the origin, let them diffuse for a time t = δt, and
simulated long enough such that the system relaxed to a
steady state (see the Supplementary Videos VideoS1.mp4,
VideoS2.mp4, VideoS3.mp4, VideoS4.mp4, VideoS5.mp4,
VideoS6.mp4, VideoS7.mp4, VideoS8.mp4, VideoS9.mp4,
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VideoS10.mp4 (SV)). Afterward, we continued the sim-
ulation and collected the data. Varying k and D in the
dynamical equations (1) within an experimentally reason-
able range does not change the qualitative results. (For
better visibility of the structural differences, we have cho-
sen to only show results for zero diffusivity, D = 0, in the
main figures, but see supplementary videos VideoS7.mp4
and VideoS10.mp4) Hence, the relevant control parame-
ters are the time delay δt and particle number N , or the
corresponding radius ρ(N) ≡ √

(N + 1)/3.62 of a close
packed hexagonal crystallite (see fig. 1(c)).

Bifurcation. – As shown in ref. [1], for N = 1, the
average angular velocity ω of the single active Brownian
particle around the fixed target is determined by a tran-
scendental self-consistency equation. If the active-particle
and target diameters are set to unity, it takes the form
of the “sine map” ω = sin(ωδt). It exhibits a bifurcation
from ω = 0 to ω �= 0 at δt = 1 (or, in the dimensional units
of ref. [1], v0δt = 2a). For 1 < δt < π/2, the single active
Brownian particle “slides” around the target, and thus its
dimensionless orbit radius is close to 1. When δt > π/2,
the active and target particle lose contact and the circular
orbit “takes off”. Its radius R = 2δt/π is now determined
by the condition that the angular displacement of the par-
ticle per one delay time, ωδt, is π/2. In other words, for
large delay times, the particle always propels tangentially
(at a right angle) to the target, corresponding to a self-
selected circular orbit (optimal single-particle orbit).

Though not accessible experimentally, ref. [1] already
demonstrated by Brownian-dynamics simulations that the
single-particle bifurcation diagram stays meaningful for
many particles up to N = 100. The increased parti-
cle number actually stabilizes the spontaneously chosen
sense of rotation against Brownian fluctuations, render-
ing the transient chiral symmetry breaking quasi perma-
nent. More importantly, the increase in particle number
merely renormalizes the bifurcation diagram. As shown
in fig. 2(b), the average angular particle displacement ωδt
around the fixed target particle for N ranging from 30
to 1000 indeed falls on a single master curve, if plot-
ted against δt/(0.75ρ), corresponding to the renormalized
sine map 0.75ρ ω = sin(ωδt). The bifurcation curve co-
incides with that of a single large quasi-particle of radius
(0.75ρ − 0.5), rotating around the target particle of ra-
dius 0.5. In other words, the minimum radius for active
rotation (originally given by the particle diameter) equals
0.75ρ, in the many-body case. One can speculate that the
effective radius 0.75ρ could coincide with the crystallite’s
radius of gyration

∫ ρ

0 dx 2πx2/(πρ2) ≈ 0.67ρ. This is in-
deed not far off, although the data is more suggestive of
a matching of the radius R = 2δt/π of the optimal single-
particle orbit with ρ/2. This could suggest that spinning
starts when the preferred nominal velocity components of
the particles inside and outside the optimal orbit cancel
out. The difficulty with such interpretation is that the
actually measured nominal velocity field created by the

Fig. 2: Dynamic phase diagram. Like the preferred single-
particle orbit R, the (binned) crystallite radius ρ grows with
increasing delay time δt. We distinguish phases with a (I)
static, (II) spinning, and (III) quaking crystallite, and a (IV)
ring, (V) yin-yang/blobs, and (VI) satellite, respectively. No-
tice the appearance of predominantly concentric (III), radial
(IV) and criss-crossing (V-VI) shear bands that intermittently
break the crystallite, giving rise to a staircase-like increase of
the shear strain Γ(t) (3rd row of fig. 3), for all but the first two
phases.

highly frustrated active particles in the bulk of a solid
crystallite is, for the relevant delays, still purely central.

As shown in fig. 2 for particle numbers N = 15, . . . , 200,
when the delay time δt is increased, the particle ensemble
experiences a series of abrupt dynamical changes, thereby
evolving from a static hexagonal crystallite to a contin-
uously breaking elliptic satellite droplet, circling around
the target on an orbit close to that preferred by a single
active particle. Remarkably, the average angular velocity
in all these phases obeys the effective single-particle the-
ory well. In fact, the single-particle theory can be used as
a starting point for understanding most of the features of
the various dynamical phases of the many-body model.

Order parameters. – To distinguish between the six
dynamical phases in fig. 2, we introduce the following three
order parameters:
– the radial distribution p(r) (the probability density to
find an active particle at distance r from the targeted cen-
ter), normalized as 2π

∫ ∞
0

dr rp(r) = 1.
– the absolute value ω(r) ≡ r−2|〈ri × ṙi〉|ri|≈r| of the an-
gular velocity. (The average was evaluated over concentric
shells of width 0.14.)
– the cumulative shear strain Γ(t) =

∫ t

0
dt′|Γ̇(t′)| around a

representative bulk particle at time t. Formally, the shear
rate is defined as Γ̇ = (∂vx/∂y + ∂vy/∂x)/2, where vx,y

denote Cartesian components of the velocity field. As a
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Fig. 3: Crystallite configurations and their shell angular velocities ω(r) and the accumulated shear strains Γ(t) for selected bulk
particles (green and orange), as caused by the radial and tangential “forces” or nominal swim velocities Fr, Fφ in the co-moving,
co-spinning frame. The corresponding force fields are shown in the SM, fig. S1. The dynamical phases I to VI of fig. 2 were
simulated for vanishing thermal noise D = 0 and N = 199 particles (corresponding to ρ ≈ 7.43 if close-packed). Vertical dashed
lines in the radial distribution functions p(r) indicate the preferred single particle orbit radius R = 2δt/π.

proxy for our particulate system, we use

Γ̇(t) =
1
2

∑
j

(
ẋi(t) − ẋj(t)
yi(t) − yj(t)

+
ẏi(t) − ẏj(t)
xi(t) − xj(t)

)
. (2)

The sum runs over nearest-neighbor shell particles j that
are less than

√
2 away from a selected bulk particle i. To

obtain the time derivatives of the components xi(t) and
yi(t) of the position vector ri(t), we average eq. (1) over
200 simulation time steps. Spurious coordinate singulari-
ties are regularized by discarding terms with denominators
smaller than 0.05.

Dynamical phases. – As shown in fig. 3, each of
the dynamical phases differs from the other five either in

the topology of the cluster or in the qualitative behav-
ior of at least one of the characteristics p(r), ω(r), and
Γ(t). The figure also shows the average radial and tan-
gential projections of the nominal velocities (or “forces”)
Fi − Ṙ0 of particles in the co-moving frame at a given
distance from the center of mass R0 =

∑N
i=1 ri/N of the

system. The average radial projection Fr(r) ≡ 〈(Fi −
Ṙ0) · (ri − R0)/r〉|ri−R0|≈r can be interpreted as a “shell
pressure”. In the depicted average tangential component
Fφ(r) ≡ |〈(Fi −Ṙ0)×(ri −R0)/r〉||ri−R0|≈r −|ω|r we also
subtracted the part responsible for the crystallite’s overall
solid body rotation to improve the visibility of what can
then be interpreted as a tangential shear stress. While the
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compression of the cluster by Fr mostly helps to maintain
its crystalline structure, the tangential stress Fφ imposes
unequal torques on the concentric particle shells, thereby
inducing the tangential shear bands and breakup events
seen in the phases III-VI. It is noteworthy that, due to the
normalization of the nominal velocities |Fi| = 1, these two
competing tendencies are not independent in our system.
Upon increasing the delay time δt, the nominal velocities
increasingly tilt away from the central direction, meaning
that the pressure decreases while the shear increases, at
the same time, aggravating the destabilization. Also, for
the non-compact crystallites forming for longer delays, the
radial forces themselves may cause radial shear bands and
additionally contribute to the breaking of the crystalline
configuration.

In the following, we characterize the individual dynami-
cal phases in greater detail. The best intuitive insight into
their dynamic nature is gathered from the SV.

I) Static crystallite: δt � 0.75ρ. For short delays δt,
the active Brownian particles are propelled exactly toward
the target by their nominal velocities, as shown in last two
lines of fig. 3 and fig. S1 in the SM. Due to the steric repul-
sion, they form a non-rotating densely packed hexagonal
crystallite (with small Brownian fluctuations). Its radial
distribution function p(r) resembles that of close-packed
hard discs, while the dynamical order parameters ω and
Γ̇ vanish.

II) Spinning crystallite: 0.75ρ < δt � 0.94ρ. Upon
increasing the delay time δt beyond the threshold 0.75ρ,
the crystallite exhibits solid body rotation around the tar-
get particle. The order parameters thus remain the same
as in phase I, with the exception that ω(r) = ω is given
by a nonzero constant that is accurately predicted by the
single-particle theory. However, as the particles’ propul-
sion speed is fixed to 1, the particles closer to the target
would individually prefer to move with larger angular ve-
locities than those further away, while a constant ω(r) is
enforced by the steric interactions and the radial pressure
exerted by the particles in the periphery, which still pre-
dominantly aim at the center. These features are nicely
reflected in the radial and tangential projections of the
nominal velocity in fig. 3 and the nominal velocity field
in fig. S1 of the SM. Notice that the nominal tangen-
tial velocities of particles near the target/periphery are
larger/smaller than ωr, which induces the tangential shear
stresses that attempt to break up the crystallite.

III) Quaking crystallite: 0.94ρ � δt � 1.05ρ. The
tangential shear stresses caused by inhomogeneous an-
gular velocity ω(r) grow with increasing time delay. At
δt ≈ 0.94ρ they overcome the compressive forces and cre-
ate shear bands. As shown in fig. 3, the inner particles
rotate (almost) at the optimal single-particle angular ve-
locity π/(2δt). The periphery lags behind, intermittently
detaching and sliding around the rotating core (see the
snapshots of the system in figs. 3 and 4, and supplemen-
tary video VideoS2.mp4). These stick-slip events cause

Fig. 4: Snapshot of the supplementary video VideoS3.mp4
(δt = 7.1, N = 199, phase III). Particle color codes for the
number of nearest neighbors (from 2 to 6: steel blue, sky blue,
aquamarine, orange and yellow). Red dots mark shear bands.
The arrows show the actual velocities of the particles in the
co-moving, co-rotating frame. The black triangle depicts the
system’s center of mass, which here overlaps with the central
target particle. The meanings of the symbols in all SV are the
same.

a staircase-like increase of the shear strain Γ(t) (not ob-
served around bulk particles that are not part of a shear
band), and can be interpreted as quakes of the outer shell.

The last two rows of fig. 3 and fig. S1 of the SM more-
over indicate that the nominal velocities of particles along
radial rays from the center are no longer parallel. Closer
to the center they have larger tangential components than
at the periphery, creating a pressure imbalance in the sys-
tem. One can interpret this as a result of the tendency of
the particles to propel toward the optimal single-particle
orbit, which expands with increasing δt, as indicated in the
p(r) panels. Upon increasing the delay somewhat beyond
the value δt ≈ 0.94ρ, for which the tangential shear bands
appear (e.g., from δt = 7 to δt = 7.1 for N = 200), the cor-
responding pressure imbalance eventually also causes the
formation of system-spanning radial shear bands. Once a
single radial band is formed, it destabilizes the next neigh-
bor shell around the immobile target particle, which nu-
cleates two more bands by the dilatancy effect, as shown
in fig. 4. The angles between the three bands are 2π/3,
corresponding to three equally sized fragments. Along the
shear bands, particles slide in opposite directions (see the
SV).

IV) Ring: 1.05ρ � δt � 1.20ρ. The single particle
theory predicts that the outermost layer of the crystallite
would start to rotate by itself (i.e., even if the rest of the
crystallite was fixed), at δt = ρ. Some of the pressure
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onto the crystalline core is thereupon released, which fa-
cilitates its “breathing” due to the dilatancy effect. The
core particles can then follow more freely their tendency
to approach the optimal single-particle orbit, thereby cre-
ating an outward pressure (fig. S1 in the SM). As a result,
the crystallite detaches from the central target particle
and forms a ring, in which particles inside and outside the
optimal orbit converge toward it. The crystalline struc-
ture is then no longer compressed only from the outside
but also from the inside. The corresponding stresses in-
crease the frequency of quakes and tangential and radial
shear-band formation throughout the ring, as witnessed
by Γ(t) (fig. 3). The associated repeated breaking and
healing effectively melts the crystalline structure as is re-
flected in the monotonic decay of the angular velocity ω(r)
with increasing distance r from the target and the loss of
structure in the radial distribution function. Both effects
are somewhat moderated within the fragments forming af-
ter the permanent breakup of the ring into the yin-yang
shape, described next.

V) Yin-yang/blobs: 1.2ρ � δt � 2.1ρ. The effective
contractile force due to the inward-outward pressures de-
scribed above for the ring structure destabilize the ring
in a manner similar to the capillary forces in a Plateau-
Rayleigh instability [23]. It therefore tends to break up
into 2πl/2l = π ≈ 3 equally sized fragments, where 2l is
the ring width. Due to the (essentially) athermal condi-
tions, the exact features of the breakup depend on initial
conditions, as seen in supplementary videos VideoS8.mp4,
VideoS9.mp4, VideoS10.mp4. The contractile forces to-
wards the optimal orbit also causes larger clusters to orbit
more slowly than smaller ones. They contain particles fur-
ther away from the optimal radius, pointing less along the
orbital direction. This slows down larger fragments com-
pared to smaller ones, so that smaller fragments will chase
the larger ones, thereby giving rise to some coarsening.

One might therefore conclude that the many-body sys-
tem would ultimately form a giant quasi-particle, centered
on the optimal orbit. However, as long as the radius of the
closely packed crystallite ρ is larger than the optimal or-
bit radius R = 2δt/π, such quasi-particle would constantly
be damaged by the fixed target particle and therefore ac-
tually cannot form. As a result, coarsening is interrupted
and the system instead forms a highly dynamical yin-yang
structure where the yin part continuously “steals” parti-
cles from the yang part, and vice-versa. For larger delays,
the yin (or the yang) component outgrows its partner un-
til it hits the target particle. The steady state ultimately
consists of a single cluster in contact with the target par-
ticle, surrounded by several sub-clusters traveling close to
the optimal single-particle orbit. Also note that, due to
their fixed speed, the particles in the fragments move with
larger angular velocities the closer they are to the center
(fig. 3). Together with their tendency to propel towards
the optimal orbit, this causes a retrograde spinning of the
fragments around their own centers of mass. With respect

to the order parameters depicted in fig. 3, the yin-yang
phase exhibits the same phenomenology as the ring phase.

To quantify the phase boundaries, we again resort to
the bifurcation diagram in fig. 1. It shows that the average
angular displacement during one delay time, ωδt, mono-
tonically increases with δt up to δt = 0.75ρπ/2 ≈ 1.18ρ,
when it saturates at the value ωδt = π/2. This is when
a single active particle would detach from the fixed target
particle, as its optimal orbit of radius R takes off. This
suggests that the tendency to break the ring and form a
single eccentric crystallite, centered on the optimal orbit,
would start at δt > 1.18ρ, which is indeed close to the ob-
served value 1.2ρ, and would eventually succeed once the
optimal orbit radius R exceeds ρ. At this point a spherical
crystallite would no longer interfere with fixed target par-
ticle at the center. Why this estimate fails to provide the
correct condition for the transition to the last dynamical
phase is explained in the next paragraph.

VI) Satellite: δt � 2.1ρ. As pointed out in the preced-
ing paragraph, one would expect to find a single compact
satellite orbiting the target particle (roughly) on the op-
timal single-particle orbit, when R ≈ ρ, hence δt = πρ/2,
which is actually not the case. The discrepancy is caused
by the fact that the satellite is actually not circular but
somewhat elongated along an axis that is slightly tilted
relative to the radial direction. The reason is that the
pressure exerted by the individual particles is no longer
radially symmetric (see fig. S1 in the SM).

The stick-slip motion of particles along the shear bands
in this phase is somewhat reminiscent of an extreme ver-
sion of the terrestrial tides caused by the motion of the
Moon around Earth. The major difference is that the
tidal forces correspond to an attraction rather than a re-
pulsion relative to the satellite center. As a result, the
quake dynamics is approximately out of phase by π/2,
with respect to the Moon-Earth system [24] (supplemen-
tary video VideoS6.mp4). Moreover, the attraction does
not act toward the satellite center but toward the optimal
single-particle orbit. And finally, the elongation of the
crystallite is not perfectly aligned with the direction to
the center, giving rise to another phase shift that depends
on the precise model parameters.

Concerning the order parameters depicted in fig. 3,
the satellite phase again exhibits almost the same phe-
nomenology as the ring phase. The only difference is the
radial distribution, which is now much broader than in
the other five phases. This is indicative of the destructive
effect of the tidal quakes, which dynamically dilate and
melt the crystallite into an effectively liquid droplet.

Discussion and conclusions. – We have numerically
studied a two-dimensional ensemble of soft active Brown-
ian particles steered toward a target particle with a time
delay. The particles form a closely packed hexagonal
crystallite around the target for short delay times and
experimentally relevant noise intensities. However, with
increasing delay, a much richer behavior is observed. The
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average angular velocity around the target exhibits a bi-
furcation, which can be mapped to the one found recently
for a single active particle [1]. An interesting “plastic”
deformation of the hexagonal crystalline structure ensues.
The tangential and radial shear stresses grow with time
delay, eventually creating shear bands and breaking the
crystallite. Its overall shape changes with increasing delay
from a disc over a ring around the target to a yin-yang
and eventually an elongated retrograde spinning satellite
orbiting the target.

Our study demonstrates that simple time-delayed in-
teractions can induce very complex dynamical behaviors
in many-body systems, even in the case of delayed at-
tractions to a common fixed target. As time delays are
omnipresent in interacting active matter systems in na-
ture, this observation should be taken into account when
interpreting experimental data. To this end, it would be
interesting to realize the studied many-body system ex-
perimentally. In this case, hydrodynamic interactions be-
tween the active particles would play an important role
and potentially give rise to somewhat different results as
obtained above, for the idealized active Brownian particle
system. Our essentially athermal dynamics might there-
upon become more ergodic and fluid-like [21,22,25].

Our results could be extended in several other di-
rections. First, one could consider substantially larger
particle numbers than in the present simulations. Our
preliminary results suggest that the phase diagram stays
essentially the same, while it seems possible to introduce
a finer division of phases for short delays. Second, one
may consider attraction to a fixed position in space rather
than to a fixed target particle. Our preliminary results
with this setup reveal two major differences. Firstly, the
minimum radius of rotation is determined by the noise, not
by the particle diameters. Secondly, omitting the target
particle increases the accessible state space. For example,
the dynamics in the yin-yang/blobs phase (V) becomes
much richer without the central particle, allowing for an
almost deterministic periodically switching chirality. Of
more practical interest might be the extension of our setup
to an all-to-all attraction between the particles. Our pre-
liminary results show that the phenomenology essentially
remains unchanged, for short delay times. Differences ap-
pear for longer delays, where the emerging patterns are
more symmetric compared to what we found above, and
would deserve further study. Finally it would be inter-
esting to connect our particle simulations to effective field
theories [26].
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