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ABSTRACT
The theory of mechanical twinning is revisited for the case of
face-centred tetragonal lattices. The motivation is an
imprecision in the determination of twinning shear vector
magnitude, which occurs repeatedly in the literature. The
magnitude of this vector describing the mutual shear of
two adjacent crystallographic planes in the process of twin
formation is a function of the tetragonality of the lattice
c/a. Therefore, we introduce the c/a-dependent factor f
which has to be applied to the magnitude of shearing
vector 〈112] instead of the commonly use factor 1/6, which
is correct only for perfect cubic lattices. The theory is
verified by ab initio calculations of the generalised planar
fault energy curves for three tetragonal materials: the
nonmodulated martensite phase of Ni2FeGa magnetic
shape memory alloy, γ-TiAl intermetallic and pure In.
Moreover, the calculations show that the additional
modification of shear vector is caused by structural
optimisation due to short-range interactions in the vicinity
of twin interface, especially for lattices with large deviation
of c/a from 1. Such modification cannot be simply
predicted from the lattice geometry.
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1. Introduction

Two crystals are in a position of twins if they have (i) the same lattice, (ii)
common crystallographic (twinning) plane and (iii) there is an operation of
symmetry by which one crystal can be transformed into the other. This oper-
ation of symmetry can be either reflection (Type I twins) or rotation about
an axis lying in the twinning plane (Type II twins). Compound twins fulfil
both criteria (e.g. twins in cubic crystals). Twins can be formed either at high
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temperature when atoms can diffuse easily (growth twins) or at low homolo-
gous temperature as a result of stresses in the crystal (mechanical or defor-
mation twins). The terms ‘mechanical’ twinning and ‘deformation’ twinning
are synonyms that both appear in the literature frequently [1]. Mechanical
twinning is a common mode of plastic deformation of crystals. The experimen-
tal observations indicate that mechanical twinning can occur in many (maybe
all) types of crystal lattices at suitable conditions [2]. There is also wide agree-
ment in the literature that mechanical twinning is a stress-mediated (not defor-
mation-mediated) mechanism [1]. Therefore, the term mechanical twinning is
used in this paper. Mechanical twinning thus occurs when local shear stress, i.e.
twinning stress, is large enough for a twin to nucleate and propagate. It means
that the twinning is frequently observed in deformation under high stress, i.e. at
low homologous temperatures, high strain rates or in situations where dislo-
cation slip is difficult or the number of slip systems is limited. The notoriously
cited examples of such materials are hcp crystals [3–7]. Mechanical twinning
has been reported also for fcc metals and related alloys, which exhibit low stack-
ing fault energy (SFE) [2, 8–12]. Twinning also plays a crucial role in excellent
mechanical behaviour of austenitic steels [13, 14] and medium or high entropy
alloys [15–18]. The same twinning modes as in fcc-like structures are active in
materials exhibiting tetragonally distorted fcc-like structures [19–23].

An example of a material with tetragonal lattice which will be discussed further
in the paper is a γ-TiAl phase. It is a chemically ordered intermetallic with L10
structure where ordinary dislocations with two Burgers vectors are available: ½
[110] and ½ [�110]. Plastic deformation with non-zero c component can be
achieved by activation of ‘hard’ deformation modes; either slip of superdisloca-
tions or mechanical twinning in 〈112]{111} twin system. Detailed studies of
mechanical twinning in γ-TiAl are available [24–26]. The γ-TiAl phase is slightly
tetragonal, the ratio c/a equals 1.016. Industrial γ-TiAl alloy are alloyed with Nb,
Cr and/or other elements [27] and the c/a ration can slightly vary depending on
the chemical composition; however, the difference between the length of c and a
parameters is only a few percent. Therefore, mechanical twinning in γ-TiAl is
often in the literature described by the same elements as in fcc crystals.

A monoatomic analog of L10 structure discussed also in this work is the face-
centre tetragonal structure (fct) structure, which can be found for indium, the
softest metals stable in air. It crystallises in fct lattice with larger tetragonality
than γ-TiAl, the c/a ratio equals 1.078 [28]. Mechanical twins have been
reported in In by Carpenter and Tamura [29] considering the {111} plane as
a twinning plane. Later, Becker et al. claimed that the twinning plane is not
the {111} plane, but corresponds to (011), (0�11), (101) or (10�1) planes [28]
which was also confirmed by electron diffraction patterns [30].

Mechanical twinning in fct-like systems is important also for martensitic
phases of certain Heusler alloys exhibiting a shape memory effect [20, 31–
38]. The sufficiently low twinning stress (<50 MPa) observed in these materials
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allows high mobility of twin boundaries and it consequently results in reversible
macroscopic deformation of martensite, which can be controlled even by mod-
erate magnetic field [39]. The simplest case of martensitic phase, so-called non-
modulated, exhibits tetragonally distorted L21 structure [40–42], which can be
described also as L10 structure with two fct-like unit cell with c/a < 1. An
example of such martensite further discussed in the paper is the nonmodulated
martensite of Ni2FeGa which structure consists of fct-like unit cells with c/a =
0.86 [43]. The nonmodulated martensite is the result of stress-induced inter-
martensitic transformation from 10M/14M modulated monoclinic martensite
[43,44] or direct stress-induced martensitic transformation from cubic auste-
nite at elevated temperatures [45–47]. The L10 structure is also stable in
Ni2FeGa alloys doped by Co [48].

The twinning stress is one of the most important parameters related to mech-
anical twinning which can be predicted also from theoretical simulations based
on the extended Peierls–Nabarro (PN) model [36, 49–51]. The twin-boundary
energy and SFE are fundamental inputs for the PN model which are usually
obtained from ab initio calculations of generalised-planar-fault-energy (GPFE)
curves. The GPFE curves describe the energy pathways associated with twinning
[10, 52–54] as a function magnitude of the shearing vector. The maxima on the
GPFE curves correspond to barriers which Shockley partials must overcome
during twin nucleation and grow whereas minima correspond to stable configur-
ations of stacking faults consisting of different number of layers. The GPFE
curves then characterise the continuous development from the perfect crystal
through the intrinsic stacking fault (ISF, i.e. one-layer twin) to a multilayer twin.

One purpose of the paper is to demonstrate the differences in the magnitude
of twinning shear vector �s between fcc and fct lattices, which are often over-
looked due to the similar twinning mechanism, especially, if the tetragonality
of the fct structure is small. The differences in the magnitude of�s cannot be neg-
lected, because the wrong value can lead even to inaccurate predictions of SFE
or twin-boundary energy for structures with large tetragonality. Moreover, our
theoretical findings are supported by ab initio calculations of GPFE for selected
materials with tetragonal lattices, which demonstrate the effect of tetragonal
distortion as well as the effects of structural optimisation which results in
additional modification of the magnitude of �s.

1.1. Crystallographic description of twinning

In the classical description of twinning developed by Cahn [55] and Bilby
and Crocker [56], the twin is formed from the initial crystal by shearing. Four
parameters (elements) of twinning, K1, K2, η1 and η2 are used (see Figure 1):

. K1, the twinning plane, common crystallographic plane for both crystal and
twin
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. K2, the plane which is rotated during twinning but stays undistorted. Its
notation after twinning is K2’

. η1, the crystallographic direction (not vector) which lies in K1 and is the
direction of shearing which can transform K2 into K2’. It is also called twin-
ning direction

. η2, the crystallographic direction in plane K2 which changes in η2’ after
twining; both η2 and η2’ lie in the plane of shearing S.

Moreover, other parameters are used in the literature:

. P, the plane of shear which contains η1, intersects K2 in direction η2; and K2’
in direction η2

. �s, vector of shearing between two adjacent K1 crystallographic planes during
the twin formation, �s = f · h1

. f, factor of vector of shearing

. sd, amount of shear or shear deformation, sd = |�s|
dhkl

where dhkl is the inter-
planar distance of K1 planes.

1.2. Twinning in fcc

The twinning in fcc will be briefly reminded in this section because it shows
many similarities with twinning in face-centred tetragonal (fct) lattice.

Of course, there is more than one possibility of twinning in a chosen lattice.
For example, in the case of Cu nanocrystals, twinning with K1 = {112} was
reported [57]. However, in materials having fcc lattice the vast majority of
observed mechanical twins have the following elements:

K1 = {111}, K2 = {11�1}, η1 = 〈11�2〉, η2 = 〈112〉, P = {1�10}, �s = 1/6〈11�2〉, f = 1/6,

sd = |1/6(11�2)|
|1/3(111)| =

1��
2

√ , Σ3 [58].

The schematics of such twinning is shown in Figure 2. In the right part of the
schematics, faint red atoms were shifted by shearing the positions of full red
atoms.

Figure 1. Formation of mechanical twin by shear and definition of elements of twinning.
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It is visible that such mechanical twinning can appear if a single Shockley dis-

location with �b = 1/6 [�112] slip on each (1�11) plane. Please note that the same
positions of atoms would be reached if the shear is done in the opposite direc-
tion and double magnitude: −2�s. More generally, if we define �s as oriented
accordingly to [�112] direction, the twinning can be achieved by shearing of

either �s or �s− 1
2
[�112]

( )
. However, the shearing along longer of these

vectors will be associated with much higher energetical barrier. Therefore, in
the following parts of the paper, we will consider the shorter of these two poss-
ible shear vectors. Note also that twinning changes the orientation of surface
(the angle between original surface and new surface is about 19.47°). If such
mechanical twinning appears in a bulk grain in polycrystal, the twin cannot
be too thick; otherwise the grain boundary would be cracked.

1.3. Twinning in fct

First, let’s note that face-centred tetragonal lattice is not listed among 14 Bravais
lattices. Indeed, the symmetry elements of body-centred tetragonal (bct) and
face-centred tetragonal lattices are identical, so only one of the two lattices
can be considered. Because bct lattice (2 lattice nodes per unit lattice) have

Figure 2. Crystallography of the most common twinning in fcc, schematised in (110) plane.
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half of the volume of the fct lattice (4 lattice nodes per unit lattice), the bct is
usually chosen as the Bravais lattice.

There are examples of slightly tetragonal materials, which have lattice close
to either bcc (e.g. martensite in ferritic steels) or fcc (e.g. materials in this
paper). Of course, it is reasonable to use bct lattice in the former and fct
lattice for the latter case.

Let’s now study mechanical twinning with the {111} twinning plane in fct
lattice. The elements of twinning and mechanism of mechanical twin formation
are recalled in Appendix. Due to the reduced symmetry only the four twin
directions of 〈112]-type are possible [27]. In the literature concerning fct crys-
tals [24, 36, 59–62], in which the magnitude of c axis differs slightly from the
magnitude of a axes (e.g. γ-TiAl and Ni2FeGa nonmodulated martensite) it is
sometimes erroneously mentioned that the twinning happens by the same
mechanisms as in fcc crystals, including shearing by �s = 1/6[�112]. It is not
true as the magnitude of the shear vector depends on c/a and differ from
1/6[�112]. The dependency of twining shear on c/a was already pointed out
by Yoo [63,64] and Kauffmann–Weiss [20].

The ratio c/a in the example below (Figure 3) is chosen as 0.8. At first, the
result of shearing along the (1�11) plane by �s = 1/6[�112] is shown in Figure 3
(a). The atomic positions after such transformation are not in the mirror pos-
ition accordingly to the (1�11) plane and the angle f between [001] and [�110]
directions is not 90°. The crystal axes a and c are thus not perpendicular and
such shearing is an example of phase transformation but not twinning. There
is still a common coincidence lattice between the two parts of crystal.

The case when the two parts of crystal show the mirror symmetry is shown in
Figure 3(b). The K1 is now the mirror plane and both crystals have the same
lattice and lattice parameters. It is visible that the vector �s is shorter than
1/6[�112].

Figure 3. (a) Result of shearing by �s = 1/6[�112] in fct lattice, c/a = 0.8. The same positions of

atoms can be reached also by shearing in the opposite direction by the vector s′
�

. (b) Result of
mirroring the crystal along the (1�11) plane in fct lattice, c/a = 0.8.
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The fraction f of the vector of shearing can be calculated using the reflection
matrix as a function of ratio r = c/a. The development is shown in Appendix
and the result is

f = 1
2
(2r2 − 1)
2r2 + 1

(1)

The vector �s is parallel to the direction [�112] and can be also written as

�s = f [�112] (2)

Equation (1) is in an agreement with the equation for the shear deformation sd
given in [2]:

sd = (2r2 − 1)

r
��
2

√ (3)

It is also important to note that the same position of atoms after twinning can be
reachedby shearing thecrystal in theoppositedirection, i.e. in thedirectionantiparallel
to [�112] vector. The magnitude of the antiparallel shear vector s′

�
and the fraction f ’

(defined as value larger or equal to zero) can be calculated knowing that (see Figure 3
(a)):

s′
� = �s− f

2|f | [
�112] (4)

f ′ = f − f
2|f |

∣∣∣∣
∣∣∣∣ (5)

The fractions f and f ′ are plotted as a function of r in Figure 4. In this figure,
we plotted the absolute value of f; vector �s changes its orientation for r = 1/

��
2

√
.

The particular cases are:

r = 1, fcc lattice, f = 1/6, f ′ = 2/6
r = 1/

��
2

√
, bcc lattice, f = 0, f ′ = 1/2, (i.e. no twinning along {111} planes is

possible)
r =

����
3/2

√
, f = f ′ = 1/4

r =
����
1/6

√
, f = f ′ = 1/4.

It is important to note that the direction of possible shearing is dictated by
the orientation of the shear stress for a given grain. The same approach for
the prediction of the magnitude of the shear vector as described in this work
should be applied also to any other twin system, e.g. {101} twins or any other
lattices with decreased symmetry, e.g. bct.
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2. Examples of real crystals: results and discussion

To investigate the magnitude of �s in real crystals at the atomic level we
employed ab initio calculations based on density functional theory. We calcu-
lated the GPFE curves as a function of shearing vector. The magnitude of �s can
be estimated from position of minima on the GPFE curve as can be seen in
Figure 5. In particular, we performed these calculations for tetragonal lattices
of In, γ-TiAl and Ni2FeGa nonmodulated martensite as well as for cubic Al.

Figure 4. Parameters f and f ‘ as a function of ratio r = c/a. Magnitude of the [�112] vector is the
unity of the y-axis.

Figure 5. The generalised planar fault energies γ (GPFE) of (a) Al, (b) In, (c) TiAl, (d) Ni2FeGa as a
function of |�s|/|�b| ratio (the ratio of shear displacement�s and Burgers vector �b = 1/6[�112]). The
structures in each subplot display from left to right the perfect lattice, the intrinsic stacking
fault, and two- and three-layer twins. The dashed arrows correspond to the minima of non-opti-
mised GPFE whereas solid arrows represent the minima of fully optimised GPFE. If only solid
arrow is shown, both minima coincide.
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The total energies used for estimation of GPFE were calculated with help of the
Vienna Ab initio Simulation Package (VASP) [65,66] in which the electron–ion
interaction was described by PAW potentials [67,68]. The electronic orbitals
were expanded in terms of plane waves with a maximum kinetic energy of
400 eV for Al, 500 eV for In and Ni2FeGa and 600 eV for TiAl. We used the
gradient-corrected exchange–correlation functional proposed by Perdew,
Burke, and Ernzerhof [69]. The Brillouin zone (BZ) was sampled using a Γ-
point-centred mesh with the smallest allowed spacing between k-points in
each direction of the reciprocal lattice vectors equal to 0.10 Å−1 for Al, In
and Ni2FeGa and 0.08 Å

−1 for TiAl. The integration over the BZ used the Meth-
fessel-Paxton smearing method [70] with a 0.02 eV smearing width. The total
energy was calculated with high precision by convergence to 10−6 eV per com-
putational cell. The ground-state structures without stacking faults were fully
optimised with help of conjugate-gradient method and optimisation was termi-
nated when all forces acting on the atoms converged to within 10−3 eV·Å−2 and
all components of the stress tensor changed less than 0.1 GPa. Such settings
provide lattice parameters, which are summarised in Table 1 together with
experimental data. The table further contains magnitudes of Burgers vector
�b = 1/6[�112], shearing vector �s and the factor f, which were obtained from cal-
culated lattice parameters according to equations (1) and (2), respectively.

After structural optimisation of the lattices the GPFE curves were calculated by
shearing n successive (1�11) layers in a supercell along the [�112] direction in similar
way as explained for example in Ref. [36]. We used the supercells periodically
repeated in all directions (no free surfaces) consisting from eight (1�11) lattice
planes with lattice vectors corresponding to [�112], [�1�10] and [�11�2] directions of
the fct lattice. Theminimumcorresponding to ISFwas found by continuous trans-
lating (sliding) layers 5–8 relative to layers 1–4 about 1/14�b. The exact position of
theminimumwas then estimated by cubic interpolation. The two-layer and three-
layer twins were obtained by further translating (sliding) of layers 6–8 and 7–8,
respectively, starting from the minimum estimated in the previous step as dis-
played inFigure5. Initially,we calculated theGPFEcurve onlyby layers translating
without any structural optimisation of atomic positions. Such configuration cor-
responds to the ideal twin geometry as described in Figures 2 and 3(b). Further,

Table 1. Experimental and ab initio lattice parameters a and c/a and magnitude of Burges
vector |�b|, shearing vector |�s|, ratio |�s|/|�b|, and factor f calculated from ab initio lattice
parameters. The experimental data were taken from the following works: Al [71]; In [72]; TiAl
[73]; Ni2FeGa [43].

Experiment Theory

a [Å] c/a a [Å] c/a |�b| |�s| |�s|/|�b| f

Al 4.046 1.00 4.021 1.000 1.650 1.650 1.00 0.1667
In 4.599 1.075 4.677 1.073 2.004 2.339 1.17 0.1973
TiAl 3.997 1.021 3.979 1.025 1.651 1.759 1.06 0.1776
Ni2FeGa 3.810 0.858 3.674 0.954 1.454 1.296 0.87 0.1453
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we fully optimised all atomic position for several configurations around minima
obtainedwithout structural optimisation tominimise the short-range interactions
in the vicinity of stacking faults. The structural optimisation could result in further
modification of shearing vector magnitude, which is caused by non-equilibrium
geometry of ideal twin boundary or mutual interaction of adjacent twin bound-
aries in twins with thickness only few layers. The lattice vectors of the supercell
remain constant during the optimisation.

The results for all studiedmaterials are summarised in Figure 5, where generalised
planar fault energies γ (the total energies of the supercell with respect to the total
energy of perfect lattice per area of (1�11) plane) are plotted as functions of shear dis-
placement�sdividedbyBurgers vector�b = 1/6[�112].The |�s|/|�b| ratiowasused to see
immediately thedeviation from�bdue to tetragonalityof the lattice.The |1�s|/|�b| ratios
of ISF and two-layer (|2�s|/|�b|) and three-layer (|3�s|/|�b|) twins are summarised in
Table 2 together with corresponding generalised planar fault energies γisf, γ2t and γ3t.

Aluminium

For cubic fcc Al (c/a = 1, Figure 5(a)) the minima on non-optimised GPFE
curves perfectly coincides with integer numbers and therefore the factor f is
equal to 1/6 as expected. The structural optimisation of atomic positions
results in modest shortening of �s for ISF resulting in |1�s|/|�b| = 0.94.
However, the position of minima corresponding to wider twins deviates from
the integer number about the same value as for ISF
(|2�s|/|�b| = 1.94, |3�s|/|�b| = 2.94), which indicates that the shortening of �s is
localised exactly at the twin boundary and the shear vector between layers
inside a thicker twin has the factor f of 1/6. The structural optimisation also
slightly decreases the energies of twin boundaries about 15–30 mJ/m2 com-
pared to non-optimised structures.

Indium

The positions of minima in terms of |�s|/|�b| deviate significantly from integer
numbers for materials with tetragonal lattices and deviation increases with increas-
ing thickness of twin.The largest deviationswere found for In,which exhibit also the
largest deviation of c/a from 1. Although the elongation of�s does not reach the pre-
dicted value of |�s|/|�b| ratio 1.17 even for ISF, the |1�s|/|�b| is still bigger than 1 and
equals to 1.12 and magnitude of�s further increases for two-layer twin in non-opti-
mised structure (see dashed arrows on Figure 5(b)). The average value of�s (consid-
ering also the three-layer twin) agrees much better with predicted value as the
average of |�s|/|�b| = 1.15. The structural optimisation results in significant
elongation of �s for ISF but further disappears for wider twins (see solid arrows in
Figure 5(b)). The observed elongation of�s can be explained by low thermodynamic
stability of the {111} ISF, because the (1�11) plane is not the twining plane observed
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experimentally [28]. In this work the {111} twins were used only to illustrate the
effect of c/a in fct lattices. We calculated also the energies γ for the experimentally
observed twin with (101) plane as the twinning plane. Such twin exhibits energies
approximately 10 mJ/m2 which is significantly lower than energies obtained for
{111} twin (compare with values in Table 2). Therefore, the very low energies of
{101} twins are in agreement with experimental observations and explain softness
of In. However, the significant deviation of �s from �b = 1/6[�112] is apparent also
for energetically less preferred {111} twins.

γ-TiAl

Perfect agreementwith predicted values of�swas found for γ-TiAl alloy, which exhi-
bits lower c/a than In and where (1�11) twins are indeed observed experimentally
[74]. The non-optimised twins exhibit nearly the predicted |�s|/|�b| ratio 1.06 inde-
pendently on their thickness. The optimised ISF exhibits |1�s|/|�b| = 1.00 which is
slightly lower value than expected, but this shortening does not appear for wider
twins, where average |�s|/|�b| is again equal to 1.06 as can be seen in Figure 5(c).
Because the deviation of �s from �b = 1/6[�112] is very small, the correct value of �s
has only negligible effect on predicted values of SFE and twin-boundary energy.

Ni2FeGa nonmodulated martensite

The Ni2FeGa magnetic shape memory alloy exhibit c/a ratio smaller than 1 and
therefore the |�s|/|�b| should exhibits values smaller than integer numbers. Because
the L10 unit cell of Ni2FeGa is formed by two fct-like unit cell (cL10 = 2c fct), the
c/a ratio and the (1�11) twinning plane is considered with respect to this fct-like
lattice as is explained in Ref. [47]. The non-optimisedGPFE curve on Figure 5(d)
exhibits minimum for ISF at |�s|/|�b| equal to 0.87 which corresponds very well to
the predicted value. The magnitude of �s even further decreases for wider twins,
because values of |2�s|/|�b| and |3�s|/|�b| are smaller than predicted values 1.74 and
2.61, respectively. The structural optimisation results in the increasedmagnitude
of �s. However, the magnitude of �s of optimised twins never reach the integer
numbers (compare dashed and solid arrows in Figure 5(d)). There is also a
large difference between energies of optimised and non-optimised twins,

Table 2. Energies of intrinsic stacking fault γisf, two-layer twin γ2t and three-layer twin γ3t in
mJ/m2 and corresponding ratio of vectors |�b| and |�s| for non-optimised and fully-optimised
structures.

Non-optimised Optimised

γisf γ2t γ3t

|1�s|
|�b|

|2�s|
|�b|

|3�s|
|�b| γisf γ2t γ3t

|1�s|
|�b|

|2�s|
|�b|

|3�s|
|�b|

Al 135 152 149 1.00 2.00 3.00 119 131 117 0.94 1.94 2.94
In 42 27 32 1.12 2.38 3.42 40 25 30 1.41 2.51 3.40
TiAl 176 162 165 1.07 2.13 3.20 163 140 136 1.00 2.13 3.20
Ni2FeGa 62 63 86 0.87 1.67 2.38 30 32 40 0.95 1.76 2.64
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which could be caused by disadvantageous geometry of ideal twin boundary.
Although the energy of thicker twins should converge to a constant value
which is further independent on the twin thickness as can be seen for Al, In
and TiAl, the energy of three-layer twin in Ni2FeGa is about 25% bigger then
energies of ISF and two-layer twin. It indicates a strong mutual interaction of
twin boundaries for twins with small thickness. Similar effects have been
reported by Gruner et al. [75] for twins in analogue material of Ni2FeGa – the
nonmodulated martensite of Ni2MnGa magnetic shape memory alloy. In this
material the interaction of adjacent twin boundaries results in even higher stab-
ility of two-layer twin than detwinned structure [76].

3. Conclusion

We performed a detailed theoretical study of 〈112]{111} twin system in fct
lattice with the aim to estimate the magnitude of twinning shear vector �s.
Although the twinning in fct crystals is realised by similar mechanisms as in
fcc crystals, we demonstrate that the magnitude of �s is not equal to 1/6[�112]
as is repeatedly claimed in the literature but a c/a-dependent factor f has to
be used instead of 1/6 ratio. The shearing about 1/6[�112] in fct will not
result in mirror symmetry of newly created twin accordingly to the (1�11)
plane but to the change of the lattice type, i.e. in the phase transformation.
To obtain the perfect mirror symmetry of atomic positions after twining the
shearing of �s = f [�112] is necessary ( f = 1/6 if c/a = 1). These theoretical
findings are further supported by ab initio calculations of generalised planar
fault energies (GPFE) for In, TiAl and Ni2FeGa exhibiting fct-like structures
as well as for fcc cubic Al. Without the structural optimisation the minima
on the GPFE curves corresponds very well to the predicted values of |�s| =
f [�112]. However, the structural optimisation of atomic positions results in
further modification of |�s| due to minimisation of the short-range interactions
at the twin-boundary plane. Such modification of |�s| cannot be simply predicted
from lattice geometry but require ab initio simulations. The described effects
are relatively small in materials with small tetragonality like γ-TiAl but
cannot be neglected if c axis differs from a axes significantly like in Ni2FeGa.
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Appendix

Relation between the magnitude of vector of shearing�s and lattice parameters can be derived
as follows, using geometry in Figure A1.

Vector �s can be obtained as the difference of two translation vectors in the parent and
twin lattices:

�s = �ttw −�tm, (A1)

where �tm = 1
2
= [110] and vector �ttw can be obtained from translation vector �tr = [001] by

reflection operation in the twin boundary (K1) plane, i.e.

�ttw = R�tr, (A2)

Here R is the reflection matrix. Assuming K1 = (1�11) and r = c/a one can obtain R as
follows:

R = 1
2r2 + 1

1 2r2 −2r
2r2 1 2r
−2r 2r 2r2 − 1

⎛
⎝

⎞
⎠ (A3)

When

�s = 1
2
(2r2 − 1)
2r2 + 1

[�112] (A4)

Consequently, �s = 1
6
[�112] only if r = 1.

The shear value can be obtained as

s = |�s|
d111

= 2r2 − 1��
2

√
r

(A5)

Figure A1. Geometry of mirror-type twin in fct lattice with lattice constants a and c.

136 M. ZELENÝ ET AL.


	Abstract
	1. Introduction
	1.1. Crystallographic description of twinning
	1.2. Twinning in fcc
	1.3. Twinning in fct

	2. Examples of real crystals: results and discussion
	Aluminium
	Indium
	γ-TiAl
	Ni2FeGa nonmodulated martensite

	3. Conclusion
	Acknowledgements
	Data availability
	Disclosure statement
	ORCID
	References
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


