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ABSTRACT: Although machine learning potentials have recently had
a substantial impact on molecular simulations, the construction of a
robust training set can still become a limiting factor, especially due to
the requirement of a reference ab initio simulation that covers all the
relevant geometries of the system. Recognizing that this can be
prohibitive for certain systems, we develop the method of transition
tube sampling that mitigates the computational cost of training set and
model generation. In this approach, we generate classical or quantum
thermal geometries around a transition path describing a conforma-
tional change or a chemical reaction using only a sparse set of local
normal mode expansions along this path and select from these
geometries by an active learning protocol. This yields a training set
with geometries that characterize the whole transition without the need
for a costly reference trajectory. The performance of the method is evaluated on different molecular systems with the complexity of
the potential energy landscape increasing from a single minimum to a double proton-transfer reaction with high barriers. Our results
show that the method leads to training sets that give rise to models applicable in classical and path integral simulations alike that are
on par with those based directly on ab initio calculations while providing the computational speedup we have come to expect from
machine learning potentials.

1. INTRODUCTION
Owing to the detailed atomistic insight into the structure and
dynamics of molecular systems and materials, the relevance of
computer simulations of molecular dynamics (MD) in current
research is undeniable. MD simulations represent a valuable
analytic and predictive tool in multiple fields of both basic and
applied research including physical chemistry, materials
science, or drug design.1−5 They also provide a way to explain
and corroborate experimental data that might be difficult to
interpret otherwise. For many systems of interest, MD
simulations can be routinely performed under the Born−
Oppenheimer approximation in the electronic ground state,
with the nuclei being treated either classically or quantum-
mechanically within the imaginary time path integral formal-
ism. This makes the choice of the potential energy surface
(PES) a key decision that determines the accuracy of the
resulting simulation. Out of the available options, ab initio
molecular dynamics6 (AIMD) is a state-of-the-art method-
ology that relies on a full, on-the-fly quantum electronic
structure calculation7,8 at every step of the simulation to
evaluate the potential energy and forces. This is most
commonly performed at the level of density functional
theory8−10 (DFT), which provides correlated electronic
energies at a computational cost accessible in practice, but
for smaller systems, the use of correlated wave function
methods is feasible as well.11−13 In any case, the computational

cost of AIMD simulations is typically large�especially so for
advanced hybrid DFT functionals in the condensed phase�
and can easily become prohibitive in the light of the ever-
growing demand for larger time and length scales of the
relevant simulations.

This issue can be mitigated by the recent development of the
so-called machine learning potentials (MLPs).14,15 These use
various machine learning approaches16−20 to faithfully
approximate the desired ab initio PES by training on a
reference data set consisting of a relatively modest number of
ab initio geometries and their corresponding energies and,
optionally, forces. As such, they indeed combine the best of the
two worlds: they are able to maintain the accuracy of the
parent ab initio method, but they also circumvent the need for
explicit electronic structure calculations at each step of the MD
simulation. Thus, they evaluate the potential energy and forces
at a significantly reduced computational cost.21 One particular
flavor of MLPs of major practical importance is represented by
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neural network potentials (NNPs), which rely on artificial
neural networks combined with a set of appropriate atomic
descriptors to accurately represent the molecular geometry-to-
energy relationship, including all its symmetries.16,22 NNPs
have repeatedly proved their worth in modeling a plethora of
various molecular systems ranging from liquids and solutions
to interfaces and solids.20,23−26 Our recent study,26,27 building
on the findings of previous studies focusing on NNPs,28−30

shows that rather than using a single NNP to represent the
PES, it is advantageous to build a model as a committee31,32 of
NNPs (C-NNP) that comprises a small number of NNPs, each
trained individually to a subset of the main training set. The
advantage is twofold: first, the energy prediction obtained as
the committee average is known to be a better approximation
of the ab initio energy than the estimates of the individual
members.29,33 Second, the committee disagreement,34 repre-
sented by the standard deviation of the individual member
estimates of energies or forces, serves as a valuable indicator of
prediction reliability and can be used to monitor and optionally
ensure the stability of the simulation.27 Crucially, this
disagreement can be used as the key ingredient of the active
learning process called query by committee35 (QbC) that
systematically builds the training set in a data-driven
way.27,34,36

An accurate and stable NNP can only be obtained on a
foundation of robust, high-quality training data. This is
typically based on a reference AIMD trajectory, from which
geometries are selected for the training set, together with the
corresponding energies and forces. However, the trajectory is
highly correlated in time and thus most of the expensive AIMD
data do not contribute useful information for the training of
the model. This selection has been approached in different
ways from random sampling and manual selection to more
data-driven procedures,25,27,30,37−43 with QbC being a
particularly efficient method. QbC considers a set of candidate
structures, in this case, the whole AIMD trajectory, and
iteratively builds up the training set. It starts by training a C-
NNP on a very small set of initial configurations and using its
disagreement to screen the candidate configurations for those
with the most uncertain prediction. A small number of these
configurations are then added to the training set, a new C-
NNP is trained, and the process is iteratively repeated until
some convergence criteria are met. In comparison to random
selection, this approach is known to generate more compact
training sets that give rise to robust models of similar
accuracy.30,39 Even though the initial AIMD trajectory is
typically the most expensive part of the procedure, numerous
successful MLPs have been generated on top of reasonably
short AIMD simulations.26

However, for many purposes, this process involving AIMD is
still too expensive to be practical. For instance, the require-
ments on a high-level electronic structure method can raise the
computational demands above a reasonable threshold. One
might also be interested in a system that features rare events,
such as chemical or conformational changes, which will happen
quickly and occur infrequently or not at all in a direct AIMD
simulation. In turn, these crucial configurations are under-
represented in the set of candidates and enhanced sampling
simulations would be required in order to construct a robust
training set, which typically raises the computational cost
further by one or more orders of magnitude.

In case such a situation occurs, one needs to adhere to an
approximate method of candidate generation that relieves

some of the computational expenses while maintaining the
quality of the resulting candidate set. For simple systems with a
single potential energy minimum, the solution is fairly
straightforward. In this case, one can benefit from a random
sampling of displacements in the directions of a fixed set of
normal modes to obtain a set of distorted configurations. This
approach, sometimes called normal mode sampling (NMS) in
the literature,18 avoids the cost of a full AIMD simulation by
replacing it with a more manageable combination of a Hessian
matrix evaluation and a number of single-point electronic
structure calculations for the generated geometries. The
sampling of the known normal mode distribution itself yields
uncorrelated samples by definition and requires no ab initio
calculations; therefore, its cost is negligible. Various versions of
this approach were successfully used to generate structures for
the training of MLPs. Using a scaled uniform random sampling
of the normal modes, the method was used to obtain auxiliary
structures used in model validation44 and with approximate
thermal distortions in NNP training set generation around
configurational minima18 as well as to construct an NNP
model for a gas-phase ammonia molecule.42 Clearly, the utility
of NMS is limited when the harmonic approximation becomes
insufficient. This can be the case if individual modes are
strongly anharmonic or coupled, or if the system features
conformational changes or reactions, where multiple local
minima come into play. The need for reactive training data sets
was recognized in a recent work introducing the Transition-1x
data set,45 which includes training points along a converged
minimum energy path (MEP) obtained through a nudged
elastic band calculation46 and its surrounding arising from
prior unconverged iterations of the optimization.

In this work, we propose transition tube sampling (TTS), a
robust and general approach to the generation of training sets
and models that are able to accurately describe processes that
feature transitions over potential energy barriers, which
includes both conformational flexibility and chemical reactivity.
We achieve this by generating thermally distorted candidate
geometries along a reaction pathway with the help of multiple
normal mode expansions and screening these candidates using
QbC. The role of the minimum geometry in NMS is taken by
the MEP that describes the course of the reaction through
configuration space. Local harmonic expansions are performed
in a small number of relevant configurations along the MEP
and physically relevant candidate configurations are generated
with uniform distribution along the MEP and with classical or
quantum thermal weights in all perpendicular directions based
on one of the sets of normal modes. An arbitrary number of
these candidate configurations can be generated at a negligible
computational cost and submitted to the QbC process, which
selects the most important ones to have ab initio calculations
performed and to be included in the training set. This results in
compact and robust training sets and models that maintain
consistent accuracy along the reaction path, making them
suitable for MD simulations of the reactive process, including
enhanced sampling simulations, while no AIMD trajectories
are required as part of this process. We test this method on
three different molecules in the gas phase to illustrate its
capabilities.

The rest of the paper is organized as follows. In Section 2,
we begin by formalizing thermal NMS, which samples the
exact classical or quantum canonical distribution under the
harmonic approximation. With the obtained framework, we
then proceed to introduce the MEP into the picture and
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describe the technical details of TTS. In Section 3, we describe
how we used TTS to create C-NNP models, the simulations
performed with these models, and other related computational
details. In Section 4, we apply this approach to three different
gas-phase systems of increasing complexity represented by the
molecules of benzene, malonaldehyde, and 2,5-diaminobenzo-
quinone-1,4-diimine (DABQDI) and discuss its successes and
possible pitfalls. Section 5 concludes the paper and offers
outlooks concerning the generalization and the limitations of
the method beyond the gas phase.

2. THEORY
In this section, we discuss the theoretical basis of the TTS
method. In this approach, we rely on the harmonic
approximation and the vibrational normal mode formalism to
obtain ab initio training data for the construction of C-NNPs
for reactive systems without the need to run expensive
sampling simulations, such as full AIMD. First, we present the
simple key idea behind NMS which relies on the harmonic
approximation to describe the underlying PES and thus is
expected to work well for systems that are close to harmonic
around a single given minimum geometry at the temperature of
interest. Clearly, this does not yield a flexible and general
method, since the harmonic approximation is readily
challenged by many realistic systems, notably those that
exhibit more pronounced configurational flexibility or chemical
reactivity. Therefore, we propose a more general approach to
sampling candidate geometries based on NMS which is
applicable even to systems described by multiple minima
separated by barriers. This is achieved using the harmonic
expansion locally along an MEP in a way that eventually
generates a balanced training set.
2.1. NMS for Thermal Sampling around Minimum

Geometries. To open the discussion of the theory behind
TTS, we first turn our attention to the simple case represented
by a PES with a single minimum geometry R0 on which the
nuclear motion is described by classical mechanics. Assuming a
reasonable extent of validity of the harmonic approximation to
capture the thermally accessible potential energy landscape, the
classical thermal probability density ρc at temperature T is
approximated by

( , ..., ) exp
1
2N

i

N

i ic 1
1

2 2
int

int

=

i
k
jjj y

{
zzz

(1)

In this expression, ωi and Ωi denote, respectively, the natural
frequency and the normal coordinate corresponding to the i-th
normalized vibrational normal mode vector Ωi, and β is the
inverse temperature equal to 1/kBT (with kB representing the
Boltzmann constant). Nint is the total number of internal
degrees of freedom of the species, typically 3N − 6 for N
atoms. Hence, in the harmonic approximation, the thermal
density is described as a multivariate, yet uncoupled normal
distribution where each i-th orthogonal degree of freedom has
the standard deviation of 1/i i

2= .
As such, it is straightforward to generate completely

uncorrelated thermal geometries R by distorting the minimum
geometry R0 independently in the direction of each of the
normal mode vectors. The appropriate magnitude of the
distortions is given by a randomly generated value of the
corresponding normal coordinate Ωi from the distribution in
eq 1. The instrumental prescription for this procedure is the

inverse coordinate transformation from normal modes back to
Cartesian coordinates

R R
i

N

i i0
1/2

1

int

= +
= (2)

where represents the diagonal mass matrix. Thus, by
drawing samples of normal coordinates and transforming them,
we obtain correctly distributed thermal samples in Cartesian
coordinates.

We can now perform thermal NMS by sampling from this
auxiliary harmonic ensemble as a source of candidate
geometries to be potentially included in the training set of
an MLP. The auxiliary ensemble is thus never used directly and
no expectation values are calculated over it. It only needs to
provide good coverage of the thermally accessible region of the
PES, which will be the case as long as the harmonic
approximation is reasonably accurate for the system of interest.
Specifically, we construct a training set in our active learning
procedure by generating a large number of these NMS
candidate geometries and screening them in a QbC process
using a C-NNP model. In each QbC iteration, electronic
structure calculations are performed only for a small number of
selected structures to obtain their potential energies and
possibly forces, which then comprise the final training set once
the process converges. The computational cost is thus
determined primarily by the geometry optimization procedure,
the Hessian calculation, the C-NNP prediction required for
screening, and the electronic structure calculations for the
selected geometries. The cost of the sample generation is
negligible. This approach is substantially less computationally
demanding when compared to the more conventional
approach of sampling the candidate geometries for QbC
from an AIMD trajectory, which requires a large number of
electronic structure calculations for very similar geometries
that do not contribute diversity to the training set. In contrast
to that, NMS generates fully decorrelated geometries by
construction, and electronic structure calculations are only
needed for the relatively small number of the most important
geometries selected by the subsequent QbC process.

So far, we have focused on the situation where NMS is used
to sample a classical distribution on the studied PES. However,
since the harmonic approximation describes a molecule as a set
of independent one-dimensional harmonic oscillators, we can
readily generalize the above classical case to a quantum one as
the analytic solution of the quantum harmonic oscillator is
known. Specifically, it is straightforward to show (see Section
S1 of the Supporting Information) that the canonical thermal
density of a quantum harmonic oscillator at a given
temperature is Gaussian just as its classical counterpart, but
broader. This broadening is encoded in the quantum effective
inverse temperature47

( , )
2

tanh
2

* = i
k
jjj y

{
zzz (3)

at which a classical harmonic oscillator would have the same
thermal width as a quantum harmonic oscillator at a reference
inverse temperature β. Since β* is by definition a frequency-
dependent quantity, one cannot describe the whole molecule
by a single quantum effective temperature but instead has to
assign one to each individual mode. In turn, the quantum
thermal density is given by
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This simple modification allows one to generate an auxiliary
quantum ensemble at practically the same cost as the classical
one that would otherwise need to be approached from a
significantly more demanding perspective, perhaps based on
sampling techniques using the imaginary time path integral
formalism.
2.2. Transition Tube Sampling. Up to this point, we have

relied on the ability of the harmonic expansion around a single
minimum to approximate the real PES so that the generated
samples cover sufficiently all the relevant regions for the
purpose of generating an MLP. Arguably, this is a reasonable
requirement for most stable molecules with a single minimum
geometry where the onset of the anharmonic region connected
to the dissociation of the molecule is not thermally accessible.
On the other hand, it is a stringent requirement for molecular
systems which display conformational changes or chemical
reactivity and, therefore, are represented by multiple PES
minima connected by MEPs: features not captured by a single
harmonic expansion. However, in such cases, it is desirable for
the resulting model to be able to describe the potential energy
landscape not only around local potential energy minima but
also in the transition regions. This is vital in the case of low-
kBT barriers, where spontaneous transitions occur during direct

MD. Nonetheless, it cannot be omitted even in the case of
high-kBT barriers where an enhanced sampling simulation
would be required to cross the barrier. Even if the transition
does not actually occur, the presence of the transition state
may introduce substantial anharmonicity within the original
PES basin that an eventual MLP should learn. However, in the
case of barrier transitions it is not desirable to attempt to build
the C-NNP model starting from a candidate set representing
the true thermal ensemble, even if we could obtain it, since this
would lead to a possibly detrimental under-representation of
the high-energy configurations close to the transition state in
the resulting candidate set and, in turn, to poor performance of
the resulting model in the transition regions.

Therefore, we propose the TTS method: a generalization of
NMS for systems with transitions that employ local normal
modes along an MEP to sample uniformly along the path and
with proper thermal weights in all perpendicular directions.
This leads to an auxiliary harmonic ensemble that differs
significantly from the true thermal one but enables the
construction of MLPs with uniform accuracy along the whole
transition. The TTS method naturally reduces to thermal NMS
as described above for single-minimum systems in the zero
MEP length limit. The process, illustrated in Figure 1, starts by
finding the MEP R(ξ) on the given PES (panel A). Here, ξ is a
dimensionless reaction coordinate along the MEP curve
through configuration space normalized to the interval from

Figure 1. Schematic depiction of the TTS approach proposed for reactive systems. Panel A: an illustrative MEP winding through a model two-
dimensional configuration space given by V(x,y) = (1/6){4(1 − x2 − y2)2 + 2(x2 − 2)2 + [(x + y)2 − 1]2 + [(x − y)2 − 1]2 − 2}. Panel B: control
points are selected and their local normal modes (gray arrows) are calculated. Here, the control points are taken as the two end-point minima on
the MEP (purple and brown dots) and the transition state (yellow−green). Panel C: a much denser set of uniformly distributed reference
geometries is generated along the MEP. Panel D: each of the reference geometries is distorted using the local modes of their assigned control point
(as detailed in panel E) to become a candidate geometry. Panel E: a detailed view showing how each reference geometry is assigned to a set of local
modes. A set of reference geometries on the MEP is assigned to each control point following eq 5. At the MEP edges, standard Gaussian thermal
NMS is performed outside of the reaction coordinate (decaying purple and brown tails of the total density).
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0 to 1. In the following, we shall assume that the MEP is
available as a continuous, differentiable function of the
parameter ξ. In practice, this can be achieved by spline fitting
of the discretized representation of the MEP originating from,
for instance, a nudged elastic band calculation.46 Note that by
definition, the MEP is a minimum of the PES in all directions
perpendicular to it. Once the relevant MEP is known, we
continue by selecting a sparse set of control points Rc, c = 1, ...,
Np along the MEP at positions ξc for which the Hessian
matrices are calculated and diagonalized to give the set of local
normal mode vectors Ωc,i and their corresponding frequencies.
For instance, this can be the two end-point minima and the
transition state between them (Figure 1, panel B), although
there is no constraint on how densely one might select the
control points along the MEP other than the limiting
computational expense of the Hessian matrix calculation.
The selection of the control points is performed by hand by
the user, ensuring a homogeneous coverage of the MEP.
Formally, the expansion of the PES along the MEP becomes
exact under the harmonic approximation in the limit of a large
number of control points Np. Since we want to achieve uniform
sampling along the MEP, we now proceed to the generation of
reference geometries on the MEP that do have this property.
Specifically, to each control point Rc, we first assign a
probability distribution pc(ξ) defined on the interval [ξc−1,
ξc+1] (Figure 1, panel E, interval between purple and brown
control points) as

p ( )

sin
2

( )

cos
2

( )
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c c
c c c

c c
c c c
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(5)

Once this is done for all Np control points, the identity

p p( ) ( ) 1
c

N

c
1

p

= =
= (6)

holds over the whole length of the MEP (Figure 1, panel E
over the range of ξ). Note that the choice of squares of
harmonic functions is only one out of many possibilities, and
any other pair of complementary functions that sum up to
unity would work in this case. Next, we generate an arbitrary
number of reference geometries R0(ξ) at a chosen linear
density by drawing random values of ξ from the above
distributions and passing them to the continuous prescription
of the MEP, all while keeping track of the parent c-th control
point (Figure 1, panel C). Analogously to the distortion of the
minimum geometry in the single-minimum case through eq 2,
we distort each of these reference geometries using the normal
modes and frequencies of its parent control point using

R R ( ) 1 ( )
i

c i c i0
1/2

, ,= + [ ]
(7)

where the normal coordinate values Ωc,i are sampled thermally
according to eq 1 or 4 (Figure 1, panel D); the prime indicates
that modes with imaginary frequencies are omitted from the
sum. The matrix ( ) is the projector on the tangent direction
at the point ξ which can be constructed analytically from

dR(ξ)/dξ. This is used to obtain distortions strictly
perpendicular to the MEP and thus to correct for the
approximate validity of the normal mode expansion calculated
at ξc for all the displaced geometries. However, the use of the
decaying probability distributions (eq 5) favors the use of the
local modes close to their origin. Through this procedure, one
obtains a set of candidate geometries distributed inside a tube
around the MEP the width of which is given thermally. At this
point, this tube still has open ends cut sharply by the planes
defined by normal vectors equal to the MEP tangent vector at
the end points of the MEP. Since these points are (usually)
also well-defined minima on the PES, the presence of these
sharp edges is easily sanitized by appending the usual thermal
NMS samples at these minima, although only adding the
configurations away from the MEP (Figure 1, decaying purple
and brown lines). In other words, just one-half of the
multivariate Gaussian is appended to the tube that does not
overlap with it. In our TTS implementation, we ensure that the
uniform density of the sampling along the MEP and the one at
the peak of the half-Gaussian are seamlessly matched (as
described in Section S1 of the Supporting Information).

Using the described sampling approach leads to an auxiliary
ensemble of candidates that does not correspond to the true
thermal ensemble, but contains a balanced selection of
geometries distributed uniformly along the MEP with classical
or quantum thermal displacements around it. Just like with
plain NMS, we submit these samples as candidates to the QbC
procedure, where in each iteration a large number of them is
screened and a small number of those is selected to be
included in the training set. Ab initio calculations are only
required for these selected geometries. This enables the
building of diverse training sets in which all representative
structures that might be encountered in a future simulation are
contained so that the resulting model is, in fact, able to
accurately describe the PES along the whole MEP, even in
regions that have negligible thermal populations. Similar to
NMS, the computational cost of TTS is determined primarily
by the MEP optimization procedure, the Hessian calculation,
the C-NNP prediction required for screening, and the
electronic structure calculations for the selected geometries.
In general, this can be expected to be substantially less
computationally demanding than executing direct, or even
enhanced sampling, classical, or path integral AIMD
simulations and sampling from their trajectories.

3. COMPUTATIONAL DETAILS
3.1. Ab Initio Electronic Structure. Two different levels

of electronic structure theory were used in the simulations
presented in this work. In both cases, we used the
implementation provided by the CP2K software package48

with its Quickstep DFT module.49,50 We described the
electronic structure of the benzene molecule in the gas phase
at the self-consistent charge density-functional tight binding51

(SCC-DFTB) level with third-order diagonal corrections. The
system was enclosed in a 10 Å wide cubic box with open
boundary conditions. For malonaldehyde and DABQDI
systems, we used the revPBE0-D3 hybrid density func-
tional52−55 combined with the TVZ2P Gaussian basis
set49,56,57 to represent the molecular orbitals and a plane
wave basis with a 600 Ry cutoff to represent the density. The
core electrons of the heavy atoms were represented using
Goedecker−Tetter−Hutter pseudopotentials.58 In addition,
we used the auxiliary density matrix method59 with the cpFIT3
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fitting basis set for the DABQDI molecule. Both systems using
hybrid DFT were centered in a 15 Å wide cubic box with open
boundary conditions and the wavelet Poisson equation solver.
3.2. C-NNP Model Generation. Throughout all of our

investigations, we used committees consisting of eight different
Behler−Parrinello NNPs,16 where for each of them, a different
initialization of weights and a different 90% subset of the full
training data set was used to ensure a diverse committee. The
models consisted of two hidden layers of 20 nodes each and
were trained using the multistream60 adaptive extended
Kalman61,62 filter with 32 streams. The input features were a
standard set of atom-centered symmetry functions.26 The
training of the individual models was done using the n2p2
package60 and the selection of training structures by QbC was
done with a development version of our AML package63

following the procedures outlined in refs 26 and 27. For
benzene, 20 structures were randomly sampled initially and in
each of the 40 QbC iterations, 10 new structures with the
highest committee force disagreement were added to the data
set, for a total of 420 training geometries. The final NNPs were
trained for 2000 epochs. For the first generation of
malonaldehyde and DABQDI models, 20 initial structures
were sampled randomly and then 15 structures were selected
and added to the data set in each of the 40 QbC iterations, for
a total of 620 training geometries. The selection process is
based on the standard deviation of the force prediction of the
individual committee members and in each iteration, a
predetermined number of structures with the highest disagree-
ment of the candidate structures is selected. In our case, adding
15 structures at each iteration forms a compromise between
choosing only the optimal structure and limiting the number of
QbC iterations (which each require training a new committee)
necessary to get to a sufficient training set size. For
malonaldehyde, where additional generations of models were
required (as detailed in Section 4), the original training set was
supplemented by additional structures QbC-sampled from an
MD trajectory which was produced using the previous C-NNP
model. Here, 15 structures were added in each iteration until
the force committee disagreements for the selected structures
and the remaining candidate structures were similar. Like in
our previous work, we chose this stopping criterion over a
predetermined force disagreement threshold because it works
well on its own, whereas an additional calibration against the
force error would have been necessary to determine a suitable
threshold. All reference calculations were done using CP2K
and the electronic structure settings described above.
3.3. Geometry Optimization and Vibrational Anal-

ysis. The optimization of the minimum reference geometries
for benzene and DABQDI was executed natively in the CP2K
software. It was performed using the BFGS optimizer64

combined with threshold criteria of 0.07 eV Å−1 for the
maximum change in force components, 0.009 Å for the change
in atomic positions, and 0.13 eV for the change in total energy.
For the malonaldehyde molecule, we employed the Atomic
Simulation Environment (ASE)65 together with CP2K and
performed the optimization using the FIRE optimizer66 while
specifying only a force criterion of 0.01 eV Å−1. Additional
constrained optimizations in the case of DABQDI needed for
the relaxed PES scan were performed using the constraint
functionality provided by ASE together with its FIRE
optimizer. The Hessian matrix evaluation on the optimized
structures was performed in each case using CP2K and a
Cartesian atomic displacement of 0.0005 Å.

3.4. Nudged Elastic Band Calculations. The relevant
MEPs needed for the TTS procedure were obtained through
the climbing-image67 nudged elastic band46 (CI-NEB)
optimization procedure as implemented in CP2K. The initial
band geometries in this work consisted of 15 replicas of the
molecule in question including the two fixed, preoptimized
endpoints, and were obtained through linear interpolation. The
spring constant of the harmonic links between the neighboring
replicas was kept constant at the value of 4.86 eV Å−2. We used
a force convergence criterion of 0.007 eV Å−1 and the
minimization of the band energy was performed using a DIIS
optimizer.
3.5. MD Simulations. All MD simulations involving both

ab initio as well as C-NNP potentials33 were run using the
CP2K package. The simulations with the classical representa-
tion of the nuclei were propagated at a temperature of 300 K
using a time step of 0.5 fs to numerically integrate the Langevin
equation with the friction coefficient γ of 0.02 fs−1 to achieve
canonical sampling. The path integral simulations that include
nuclear quantum effects were performed using imaginary-time
ring polymers consisting of 64 replicas using the RPMD
propagator. The canonical distribution at 300 K was sampled
using the local path integral Langevin equation thermostat68

(PILE-L) with the time constant for the centroid motion of
200 fs while the integration time step was kept at 0.25 fs.
3.6. Umbrella Sampling. The initial conditions for each

umbrella sampling window were extracted from a steered MD
trajectory, which was performed in the CP2K v2022.1 software
package combined with the PLUMED plugin.69−71 In this case,
the value of the proton-sharing coordinate δ1 (as detailed in
Section 4) was biased from −1.2 to 1.2 Å during a 10 ps long
simulation using a moving harmonic restraint with the force
constant κ of 500.0 kJ mol−1 Å−2. The simulation was
performed classically with an integration time step of 0.5 fs in
the canonical ensemble at 300 K using a local CSVR
thermostat72 with a time constant of 50 fs.

30 equidistant umbrella sampling windows separated by 0.08
Å were set up from the above steered MD simulation.
Individually in each window, the value of δ1 was biased by a
static harmonic restraint of 500.0 kJ mol−1 Å−2 and simulated
for 50 ps using the same setup as for the steered MD
simulation above. The overlap of the corresponding histograms
of δ1 values observed in each simulation window is shown in
Section S2 of the Supporting Information. The value of δ2 was
kept unbiased in each simulation window but was monitored
for use in the following analysis. The biased configurations
were reweighed to the unbiased ensemble using a Python
implementation of the multistate Bennet acceptance ratio73,74

(MBAR) procedure to obtain both a one-dimensional free
energy profile for the proton-transfer along δ1 as well as a two-
dimensional free energy surface showing the dependence on
both proton-sharing coordinates. This was done by determin-
ing the thermal weight associated with each configuration in
the biased simulations and using these to obtain the probability
distribution in the δ1, δ2 subspace, and from that the
corresponding free energy surface.

4. RESULTS AND DISCUSSION
To showcase the performance of the TTS procedure in the
creation of models for realistic potentials, we select three
different gas-phase molecules with an increasing complexity of
their PES. We begin with benzene, which represents a single-
minimum system with a close-to-harmonic potential at room

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00391
J. Chem. Theory Comput. 2023, 19, 6589−6604

6594

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00391/suppl_file/ct3c00391_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


temperature and thus allows us to illustrate the simple thermal
NMS procedure. This is followed by a study of the enol form
of 1,3-propanedial (malonaldehyde), which exhibits reactivity
by sharing the acidic proton between the two oxygen atoms
spontaneously at ambient conditions.75 Finally, we focus on a
more involved proton-sharing system represented by 2,5-
diaminobenzoquinone-1,4-diimine (DABQDI), which has two
proton-sharing sites.76 Spontaneous proton transfer is hindered
by a barrier thermally insurmountable at room temperature,
and an enhanced sampling simulation is necessary to
determine the free energy profile.
4.1. Benzene. To lead off the discussion of the ability of

TTS to seed a training set for the creation of C-NNP models
for realistic systems in the gas phase, we focus on the benzene
molecule. It represents an ideal example to illustrate the basic
idea of thermal NMS using a single normal mode expansion at
an optimal geometry since it features a single configurational
minimum and the surrounding PES exhibits almost no
anharmonic effects.

To prepare the ground for comparison with the relevant C-
NNP data, we initially performed one 250 ps AIMD simulation
of gas-phase benzene at 300 K at the DFTB level using a
classical representation of the atomic nuclei as well as a 100 ps
PIMD simulation using 64 replicas to approximate the
imaginary time path. Two C-NNP models were then based
on candidate sets obtained from a thermal NMS of gas-phase
benzene using a Hessian matrix calculated at the same DFTB
level of theory as the (PI)-AIMD simulations at 300 K for the
classical model and with the appropriate effective temperatures
at 300 K for the quantum one. The resulting models were
evaluated on test sets consisting of 1000 structures sampled
from the two AIMD trajectories. Both models performed very
well with an energy root-mean-square error (RMSE) of 1.66
and 5.90 meV for the model constructed for the use without
and with path integral structures, respectively. The RMSE for a
single force component was 14.9 and 30.4 meV A−1.
Subsequently, the models were used to obtain new 500 ps
long MD and 100 ps PIMD simulations at 300 K.

The comparison of the C-NNP models to the corresponding
(PI)-AIMD trajectories in terms of molecular geometry
properties is summarized in Figure 2. In general, we can see
the expected broadening of probability distributions due to
nuclear quantum effects when we compare the left and right
columns of Figure 2. In both the classical and quantum case,
we observe a perfect match between the ab initio (green
shading) and C-NNP distributions (blue dashed lines) in C−C
bond lengths (panels A and B), C−H bond lengths (panels D
and E), C−C−C angles (panels E and F), and C−C−C−C
dihedrals (panels G and H). The two types of covalent bonds
have expected distributions; the mean of the C−C−C angle is
located at 120° which shows the average hexagonal arrange-
ment of the aromatic ring subject to planarity, which is, in turn,
demonstrated by the (signed) C−C−C−C dihedral angle
peaking at 0° as expected. This level of agreement suggests that
the final models used for production MD represent excellent
approximations of the original DFTB PES. The negligible
deviations between the C-NNP and the (PI)-AIMD results are
quantified by the differences shown in the small sub-panels in
Figure 2 in blue. Additionally, we show the distributions of the
NMS structures (orange dotted lines) alongside the
anharmonic distributions. These exhibit significant overlap
with both the (PI)-AIMD and C-NNP data. This suggests that
the harmonic approximation to the original ensemble is

relatively good and confirms the assumed high degree of
harmonicity of the 300 K gas-phase benzene PES, even in the
quantum case. However, note that the match of the NMS data

Figure 2. Thermal geometry properties of benzene in the gas phase at
300 K from classical MD (left column) and path integral MD (right
column) compared between simulations using the reference DFTB
potential, the harmonic TTS ensemble, and simulations using a C-
NNP model building on the thermal NMS geometries. Panels A and
B show the distribution of C−C bond lengths, panels C and D the
distribution of C−H bond lengths, panels E and F the distribution of
C−C−C angles, and, finally, panels G and H the distribution of the
C−C−C−C dihedral angles. The smaller panels below each labeled
panel show the deviations of the NMS and C-NNP data from the
DFTB reference, using the same color coding as in panel A.
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with the (PI)-AIMD data is not nearly as perfect as that of the
C-NNP data and certain deviations are, in fact, present. As
discussed in Section 2, these are to be expected since the NMS
ensemble is only auxiliary and its goal is to provide sufficient
coverage of the accessible PES which ultimately leads to an
accurate C-NNP model. The differences of the NMS ensemble
from the ab initio reference are again quantified as differences
in Figure 2. Using thermal NMS, we were thus able to
construct a C-NNP that accurately describes the original PES

of benzene based on a single Hessian evaluation and 420
single-point electronic structure calculations.
4.2. Malonaldehyde. The enol form of malonaldehyde is a

simple organic molecule that has been used in MD
simulations75 to illustrate a simple intramolecular proton-
transfer reaction

Figure 3. TTS sampling of the malonaldehyde proton transfer and the MD simulation with the resulting C-NNP model. The top left panel shows
the relevant MEP (orange) with the three selected control points in the two configurational minima and the transition state highlighted and the
distribution of the TTS geometries (blue). The top right panel shows a scatter plot of a subset of geometries (selected with a stride of 37.5 fs)
obtained during a 250 ps MD simulation using the C-NNP model built on top of the TTS ensemble. Each point is colored by the norm of the force
committee disagreement on the carbon atoms and the mean of the quantity is shown in the box. Note the high force disagreement in the high δ
tails of the distribution. The bottom panel shows the Boltzmann-inverted free energy profile (red) and the corresponding binned average potential
energy of the system (black, aligned to zero) along the proton transfer reaction as observed in the MD simulation. The error of the free energy,
obtained by block averaging, is ≤2 meV, which roughly corresponds to the thickness of the red line.

Figure 4. Evolution of the force disagreement of the carbon atoms through multiple instances of QbC. The left panel shows a subset of
configurations originating from an MD simulation using a model trained on data selected directly from the TTS candidate set (identical data as in
the top right panel of Figure 3 are shown). The force disagreement (depicted using the color scale) in the vicinity of the two configurational
minima and along the proton-sharing reaction is adequately low; however, for structures with a high absolute δ, it is more than 1 order of
magnitude higher. The central panel shows configurations and disagreements obtained from an MD simulation using a model trained on the initial
training data augmented by QbC-selected high-disagreement configurations from the data in the left panel. In turn, the right panel shows data
obtained by improving the model using the new data sampled in the simulation shown in the central panel. Most notably, structures at the tails of
the populated configuration space are substantially improved. The mean force disagreement over all configurations in each data set is shown in the
framed box in each panel. The δ and dOO′ coordinates are illustrated in the snapshot to the left of the panels.
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in which the proton is moved from the enol oxygen to the
aldehyde oxygen with a simultaneous electronic rearrangement
which altogether causes the reactant and the product to
become symmetrically mirrored, chemically identical structures
(eq 8). As such, malonaldehyde is a convenient molecule to
demonstrate the ability of TTS to describe a simple reaction.

With the aim to describe the proton-sharing process
accurately, we decided to model the original ab initio PES at
the hybrid DFT level using the revPBE0-D3 functional.
Thanks to the ability to use quantum normal coordinate
distributions in the TTS method, we produced both classical
and quantum models and classical and PIMD trajectories for
malonaldehyde to test and showcase this functionality.
However, we focus mostly on the classical case in the main
text and discuss the complementary quantum results, for which
qualitatively similar conclusions arise, in the Supporting
Information, Section S2. The starting point of the TTS
procedure is the proton-sharing MEP, which was discretized
into 15 replicas and optimized using the CI-NEB procedure
and the revPBE0-D3 density functional. For illustration
purposes, we decided to use the full MEP with both the
reactant and product explicitly represented: this is strictly
speaking not necessary since the symmetry of the reaction
allows the use of only one nontrivial half of the MEP for TTS.
Out of the optimized full-length MEP, three control points
were selected in the two minima (reactant and product) and in
the transition state. For the visualization of the multidimen-
sional configuration data, we choose the reduction into a 2D
space of two geometric parameters: the proton-sharing
coordinate δ(R) = |RO − RH| − |RO′ − RH| and the
oxygen−oxygen dOO′(R) = |RO − RO′|, where O and O′ denote
the two oxygen atoms that share the proton H. The obtained
optimized MEP and the selected control points in this
representation are shown in the top left panel of Figure 3 in
orange. The chosen parameters, illustrated in the snapshot on
the left of Figure 4, are not relevant for the execution of TTS
itself, which takes place in the full dimension, but allow to
conveniently show the results of the sampling in a reduced-
dimensionality parameter space that is physically meaningful
and suitable for the characterization of a proton transfer
process. The TTS classical candidate structures were then
generated using the procedure outlined in Section 2 at the
temperature of 300 K, linear sampling density along the MEP
of 1 × 105 Å−1, and matched-density sampling at the minima.
The distribution of the obtained configurations is shown in the
top left panel of Figure 3 as blue contours. The same
distribution colored by the assignment of each candidate to the
individual control points (corresponding to the situation
shown in panel D of Figure 1) is shown in Section S2 of the
Supporting Information. Note that this particular presentation
of the data does not do justice to the uniformity of the sample
distribution along the MEP as the regions around the minima
seem to be more populated than the transition state. This is an
effect of the deformation of the configuration space by the
projection on the selected subspace; the samples are
distributed uniformly in the full dimension. After passing the
resulting set of candidates through the QbC selection and
training a C-NNP model on the obtained training set, the
model was used to run a direct 250 ps MD simulation of gas-
phase malonaldehyde at 300 K. A subset of the obtained
configurations is shown in the form of a scatter plot in the top
right panel of Figure 3 colored by the decadic logarithm of the
norm of the force committee disagreement on carbon atoms in

the usual δ and dOO′ representation. Additionally, a 1D free-
energy profile obtained by a Boltzmann inversion of the
probability density of configurations along the δ-axis is shown
in the bottom panel of Figure 3; the height of the barrier is
approximately 120 meV which corresponds to roughly 5 kBT at
300 K. This accounts for the expected low, but existing
population surrounding the transition state at δ = 0 Å. We
estimated the error of the free energy by the block-averaging
method followed by extrapolation to infinite block size. This
gives errors lower than 2 meV over the studied range of δ,
which corresponds to the fact that the transition is sampled
often during the simulation and the fact that the raw profile is
already symmetric. Alongside the free energy profile, we show
the corresponding average potential energy as a function of δ.

An important observation can be made from the presented
data. By comparison of the two distributions in the top panels
of Figure 3, it is clear that the TTS distribution populates a
smaller volume of the configuration space than the data
obtained from the MD simulation. In this particular case, it
means that TTS does not directly provide good enough
coverage and the resulting model is undertrained in the
missing, yet thermally accessible regions. Specifically, the C-
NNP model performs poorly in the large dOO′ tails of the
shown distribution, as quantified by the larger force disagree-
ment values. On the contrary, in regions around the proton-
sharing MEP, the coverage is good and the force disagreement
remains small, despite the tiny thermal population. Regardless
of the elevated model uncertainty for some configurations,
these MD simulations remain stable. The observed increased
disagreement can be interpreted in the following way: going in
the opposite direction from the minima as the proton-sharing
MEP, the true anharmonic PES has a potential wall that grows
slower than the harmonic wall captured by the TTS
distribution and, therefore, the thermal coverage of the TTS
configurations cannot reach far enough. In principle, this
behavior is caused by either the strongly anharmonic character
of the chemical bonds leading to bond dissociation or, more
likely in this case, the presence of another reactive process
leading to a new transition state. In the following two
paragraphs, we present two possible solutions to the issue. The
first one relies on an active-learning-based iterative improve-
ment of the model which has the advantage of requiring no
knowledge of the origin of the anharmonicity but is tedious to
perform since several intermediate simulations and model
generations need to be created. Meanwhile, the other solution
relies on the chemical intuition of the user to identify the
reactive nature of the issue with the aim to extend the initial
TTS, which leads to a fully capable C-NNP model straight
away.

The QbC process can be used to fill in an already existing
training data set that has gaps, perhaps due to an incomplete
TTS candidate set in the QbC selection for the initial model.
We illustrate this process in Figure 4, where the left panel
shows the same data as the top right panel of Figure 3 as a
starting point. Regions of configuration space not covered well
in the training set of this generation 1 model can be easily
identified by the high committee disagreement, as can be seen
in the tails of the distribution. Hence, one can start a new QbC
using the existing training data set augmented by structures
from an MD simulation performed with the initial C-NNP.
Depending on the size of the gaps in the initial training data
set, only a few iterations of QbC are typically necessary.
However, adding these structures to the training data set can
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lead to substantial changes in the previously inaccurate regions
of the PES, resulting in an MD simulation that again reaches
new regions of the configuration space where the shape of the
PES is yet unknown to the model and the committee
disagreement is high. This can be seen in the generation 2
model shown in the middle panel of Figure 4. Therefore,
multiple repetitions of the MD−QbC cycle might be necessary
until a highly accurate model that exhibits low and uniform
disagreements over the sampled data is reached, as is the case
for the generation 3 model in the right panel of Figure 4. As
such, the approach could become practically cumbersome
when the regions of high disagreement coincide with regions of
high free energy and long MD simulations are needed to
uncover these structures, but nonetheless represents a general
solution to the anharmonicity problem. Overall, repeating the
cycle of sampling MD configurations with a given generation of
a C-NNP model followed by training a new generation on a
training set enhanced by high-disagreement QbC-selected
structures from the previous MD simulations leads to a force
disagreement that is lower in the problematic PES regions and,
therefore, more uniform overall. In addition, we observe a
decrease in the mean of the force disagreement of the sampled
configurations due to the fact that the size of the training set
increases in each generation. Specifically, 620 structures were
used for the original model in the left panel of Figure 4, 800
structures for the model in the middle panel, and 950
structures for the last model in the right panel. This approach
can be beneficial in systems where it is difficult to identify the
origin of the anharmonicity of the original PES but is rather
demanding from the point of view of both computational
requirements and user involvement due to the need for the
semi-supervised iterative procedure.

However, in the case of malonaldehyde, the general active
learning iterative procedure to improve the model might be
excessive. The possible reasons for the softer-than-harmonic
wall due to conformational flexibility are few and the particular
direction against which the first generation of the model is
pushing can be easily identified with the s-cis and s-trans
torsional isomerism

which is mediated by rotation around the C−C single bond in
the propane backbone (eq 9). The optimized MEP
corresponding to this torsion displays a perfect continuation
in the correct direction when projected into the δ and dOO′
subspace, as shown in the top left panel of Figure 5 in orange.
Although this pair of descriptors is not appropriate for the
whole torsion MEP, which entails a more complicated motion,
it is accurate enough at small deviations from the equilibrium
geometry. To include structures along this MEP into the initial
(first generation) proton-sharing TTS, two control points were
chosen in the minimum (shared by the two MEPs) and in the
new transition state (not shown in Figure 5, as it is around
dOO′ = 3.8 Å). We do not need to use the s-trans minimum at
all, as we are not interested in including the transition itself,
only the shape of the PES on the side of the global minimum.
A new TTS was performed between these control points with
the same parameters as the initial one and the resulting
distribution of the combined sets of configurations is shown in
blue in the top left panel of Figure 5. Running a 250 ps long
MD simulation with a new C-NNP model trained on the QbC-
selected training set from this combined candidate set leads to
the distribution shown in the top right panel in Figure 5.

Figure 5. TTS sampling of the extended malonaldehyde MEP containing the proton transfer reaction as well as the single C−C bond torsion and
the MD simulation with the resulting C-NNP model. Identical quantities as in Figure 3 are shown with the free energy being plotted here for both
classical (solid line) and path-integral (dashed line) data. The orange curve shown in the top left panel is a union of the MEPs corresponding to the
proton transfer and the C−C bond torsion; the projection of the latter into the δ, dOO′ subspace is not, strictly speaking, a physically meaningful
concept, but clearly visualizes the fact that MEP is the continuation in the desired direction. As such, the C-NNP model trained on the combined
TTS structures has no further deficiencies as shown by the overall uniform force disagreement in the top right panel.
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Clearly, the distribution reaches all the expected thermally
accessible regions, the force disagreement is evened out across
the configurations, and the high-disagreement tails are no
longer present. The mean value of the disagreement is
comparable to that of the first-generation model, as these
two models are based on training sets of the same size. The
bottom panel of Figure 5 shows the potential energy and the
free energy profile along δ, where the latter is shown for both
classical and path-integral data. In all three curves, one can
observe a softening of the barrier in the high |δ| regions in
comparison to the data shown in Figure 3 resulting from the
present C-NNP being aware of the anharmonic nature of the
PES in these regions. The transition-state free energy of 43
meV for the quantum simulation is ∼4 times lower than in the
classical case, which is a manifestation of proton tunneling
through the barrier. This is qualitatively consistent with
existing literature but quantitatively different from the results
reported for the BLYP functional, where the classical free
energy barrier is somewhat higher and the quantum effect is
substantially smaller, decreasing the barrier by a factor of only
∼2.75

For further insights, a test set independent of the training set
data was created by generating 500 structures using TTS and
sampling 500 structures from the classical MD trajectory
shown in Figure 5, and evaluating their energies and forces
with the revPBE0-D3 reference method. The generation 3 C-
NNP of the iterative approach as well as the extended TTS C-
NNP performs well with an energy RMSE of 1.80 and 3.44
meV and a force component RMSE of 18.3 and 24.4 meV A−1,
respectively. The slightly elevated RMSE of the extended TTS
approach is due to the broader coverage of the training set. It
includes a range of geometries along the C−C single bond
torsion, even in regions that are not populated during MD,
leading to a less dense coverage of the rest of the configuration
space. The validation errors of the intermediate models of the
iterative approach and the distribution of errors within
configuration space are discussed in more detail in the
Supporting Information, Section S2.

Both of the approaches above thus yield highly accurate
models for the description of the proton-sharing reaction in

malonaldehyde for classical and quantum nuclei. The
advantage of one over the other therefore depends mostly
on the specific situation in which the need for any of them
should arise: if the reaction coordinate of the complementary
transition can be identified, then the latter approach using the
extended TTS reaches the desired result with higher efficiency.
Note that this approach can also be used when multiple
different transitions are to be included in a single model.
Finally, it is worth noting that an MLP trained on structures
selected only from the quantum formulation of TTS and
PIMD trajectories performs well for classical MD simulations
of malonaldehyde, too, as detailed in Section S2 of the
Supporting Information.
4.3. DABQDI. The most complex reactive system used to

demonstrate the performance of the TTS method is
represented by the DABQDI molecule. This nitrogenated
benzoquinone derivative can exchange two protons between
the neighboring amine and imine groups

again accompanied by an electronic rearrangement that
maintains the π-electron conjugation throughout the process
(eq 10). However, this time, the proton-sharing does not take
place at ambient conditions, which suggests high barriers to the
process.

The corresponding PES reduced to the relevant δ1 and δ2
subspace (illustrated in the snapshot in Figure 6), where each
proton-sharing coordinate describes a single proton-sharing
site, was obtained at the revPBE0-D3 level of electronic
structure theory through a relaxed scan of the molecular
potential energies while applying appropriate constraints and is
shown in the left panel of Figure 6. The shown data was
aligned so that the global minimum of the PES corresponds to
the zero-energy level. The typical structure of the PES
featuring four distinct configurational minima and four
transition states corresponds to a sequential double proton
transfer at the level of an MEP. Here, one proton is first fully
exchanged to reach an intermediate state located at a higher

Figure 6. Comparison between the reference ab initio revPBE0-D3 and the C-NNP proton-sharing PESs of the DABQDI molecule. The left panel
shows the projection of the reference DFT PES into the δ1, δ2 subspace using a color scale as well as individual isoenergetic contours. Furthermore,
the minimal nontrivial MEP which describes a single proton transfer is depicted in white with the selected control points highlighted. A sparse
subset of the TTS geometries sampled around the MEP at 300 K is shown in green. The middle panel shows the corresponding PES projection
calculated with the resulting C-NNP. Finally, the right panel shows the difference between the two PESs aligned to the global minima. The black
contours range from −1.5 kBT to 1.5 kBT and are spaced by 0.5 kBT at 300 K. The two δ coordinates are illustrated in the snapshot of the DABQDI
molecule to the left of the panels.
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potential energy and only then the other proton follows. The
height of the potential energy barrier for this sequential process
of roughly 0.8 eV indicates that its thermal rate should be
negligible. The alternative concerted proton transfer path that
is seen in other species including carboxylic acid dimers77 is
classically disallowed in this case by a tall (>1.2 eV) potential
barrier in the middle of the presented PES which represents a
second-order saddle point and, as such, no MEP can go
through it. The symmetry of the DABQDI PES allows us to
explicitly address only a single proton transfer: unlike in the
previous example, we exploit this feature here for the C-NNP
model generation. The relevant nontrivial MEP connecting the
two chemically distinct minima was obtained using the CI-
NEB optimization at the revPBE0-D3 level of theory and is
shown in white in the left panel of Figure 6. From there, the
straightforward TTS candidate generation was performed
using the three usual control points in the two minima and
in the transition state at 300 K with the linear sampling density
of 1 × 103 Å−1. A subset of the candidate geometries is shown
in the left panel of Figure 6 as green points. The obtained C-
NNP model was used to recreate the 2D proton transfer PES
which is shown in the middle panel of Figure 6 with the
energies aligned in the same way as in the DFT case.
Qualitatively, the C-NNP model captures all the features of the
original ab initio PES including the position of the minima, the
transition state, and the barriers, as well as the potential energy
values. Note that the good agreement in the representation of
the central barrier in spite of the lack of corresponding

geometries in the TTS candidates is due to the successful
extrapolation by the model. The quantitative difference
between the ab initio and C-NNP potential energy landscape
is captured in the right panel of Figure 6 which shows the
difference between them relative to the global minima, with
contours in multiples of 0.5 kBT for reference. It is important
to view this deviation in the context of the height of the barrier,
which is 0.71 eV (27.3 kBT, deviation of ∼−1.25 kBT), and the
relative energy of the two minima, which is 0.45 eV (17.3 kBT,
deviation of ∼0.5 kBT). A test set calculated over the TTS
auxiliary ensemble quantifies the error in the thermal vicinity of
the reaction coordinate to 0.88 meV/atom for energies and
47.6 meV/A for forces. These errors are comparable to test set
errors of accurate nonreactive models for water using the same
NNP architecture.27,60 This difference could be decreased
further, if desired, by optimizing hyperparameters of the
model, by completely changing the architecture of the MLP, or
by increasing the size of the training set beyond the current
intentionally rather small set of 620 structures.

Since DABQDI features barriers that are not practically
accessible by direct MD, it serves as a useful example to
illustrate the power of the TTS-based C-NNP model to
perform an enhanced sampling calculation to correctly
estimate the free energy profile of the double proton transfer
at 300 K. This was obtained using an umbrella sampling
simulation in the coordinate δ1 with the C-NNP PES (as
described in Section 3) followed by a multistate Bennet
acceptance ratio (MBAR) reweighing of the biased config-

Figure 7. Umbrella sampling simulation of the single proton transfer in the DABQDI molecule along the δ1 collective variable using the C-NNP
potential. The top panel shows the obtained free energy profile in blue. For validation purposes, we also show the DFT free energy profile (orange,
dashed) obtained by reweighting the C-NNP configurations as described in the text. Note that no umbrella sampling using the DFT potential was
performed to obtain the DFT free energy profile. The bottom panel shows the full 2D free energy surface obtained by weighting the distribution in
the two proton-sharing coordinates by the thermal Boltzmann factors extracted from the biased simulation and symmetrizing the resulting
histogram.
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urations. The obtained 1D free energy profile in δ1 is shown in
blue in the top panel of Figure 7. The transition state is located
at roughly 0.8 eV above the global minimum. Comparing this
with the value of the corresponding potential energy suggests
that the entropic contribution in the gas-phase system is small
and that the population at the barrier is clearly negligible at
300 K. The maximum error of the free energy profile is ±2
meV, which was estimated by the error analysis infrastructure
of the PyMBAR implementation of MBAR73 (shown in Figure
S6 of the Supporting Information). To validate the obtained
free energy profile, we perform a reweighing of a subset of the
obtained configurations in each umbrella window to the
original DFT ensemble. This is achieved by additionally
multiplying each MBAR-obtained unbiased weight by the
corresponding factor e−βΔE, where the energy difference ΔE is
the difference between the C-NNP and DFT potential energy
for each configuration. For this purpose, we used a total of
3000 configurations obtained by selecting 100 geometries
evenly spaced in time from each of the 30 umbrella sampling
windows. The resulting profile, which is a good approximation
to the full-DFT free energy profile, is displayed as the orange
dashed line in Figure 7 and shows very good correspondence
with the profile obtained using the C-NNP model alone. This
procedure thus at the same time validates the C-NNP model
and provides DFT data for a fraction of the cost of the
hypothetical purely ab initio enhanced sampling simulation.
Monitoring the values of the collective variable δ2 along the
umbrella sampling simulation and using the thermal weights
obtained from the MBAR treatment of the biased simulations
also allows for recovering the 2D free energy surface in δ1 and
δ2. Its symmetrized version is shown in the bottom panel of
Figure 7.
4.4. Computational Efficiency. The computational

speedup due to using TTS rather than the traditional sampling
based on AIMD simulations is not straightforward to measure
as it depends on the particular system in question. At least, one
can give a rough estimate of the order of magnitude of the
difference between the number of single-point evaluations
required by both approaches. For TTS, its dominant
computational requirements arise due to the parts of the
algorithm that require ab initio calculations: the MEP
optimization, the calculation of the Hessians at the chosen
control points, and the evaluation of training energies and
forces during QbC. Therefore, the total number of single-point
energy and force evaluations is

N N N NSP SP
MEP

SP
Hessian

SP
QbC= + + (11)

where

N NN6SP
Hessian

p= (12)

when analytic forces are available. For the MEP optimization, a
reasonable expectation is an NEB with low tens of replicas that
converges to the desired path on the order ∼102 steps, which
means the total number of single-point evaluations NSP

MEP on
the order of 103. For the Hessians, we typically require three
control points (maybe five in more challenging cases not
encountered in this work), which yields NSP

Hessian on the order of
102. Similarly, for the QbC we find that a converged training
set size is as small as several hundred thermal geometries. In
total, the number of single-point evaluations required for TTS
is thus on the order of 103. For simple NMS, where the MEP is
replaced by optimization of a single structure to potential

energy minimum and where only one Hessian is required, we
expect the number of single points to be an order of magnitude
less than TTS. The number of single-point evaluations for the
AIMD alternative is again not clear, as it depends on the
system-dependent correlation time scale. For a small gas-phase
molecule with a single minimum such as benzene, a reasonable
(although still optimistic) estimate is that a 20 ps long classical
direct AIMD trajectory with a 0.5 fs integration time step,
which allows us to extract 400 geometries with a 50 fs stride,
should be sufficient to provide decorrelated data for the
training of a C-NNP. This already requires ∼104 single-point
evaluations. However, more complex systems typically require
longer simulations to provide sufficient sampling. Crucially,
reactivity increases the computational cost of a hypothetical
reference AIMD simulation dramatically. Already in the
reactive case of malonaldehyde, adequately sampling the
barrier regions (Figure 5) required ∼106 MD steps of direct
sampling, which would have to be performed at the ab initio
level without TTS. Systems with higher barriers that will not
be crossed by direct AIMD on reasonable time scales would
require the use of enhanced sampling techniques, and the
construction of a model compatible with quantum nuclei
would require path integral simulations. These would, again,
raise the cost of the simulations by at least an order of
magnitude each�think, for instance, low tens of umbrella
sampling windows to cover a reaction coordinate and tens to
hundreds of path integral replicas to converge quantum
properties. All in all, we expect TTS to be always computa-
tionally superior to running AIMD simulations. Especially
when enhanced sampling and path integral simulations are
needed for an appropriate description of the studied system,
we expect the difference between the methods to be three to 4
orders of magnitude.

Another facet of the considerations of computational
efficiency is the simulation performance of the resulting C-
NNP in comparison to the original ab initio electronic
structure method itself, which we illustrate on the DABQDI
enhanced sampling simulation, where the acceleration of the
C-NNP umbrella simulation in comparison to the naive
execution with the original DFT method is substantial. To
illustrate the computational savings, we can compare the times
required for one MD step with the implementations in CP2K
used in this work. With the hybrid functional, one MD step
takes 272 s on a single core or 17 s on 32 cores (a full node) of
our EPYC-based cluster. With the C-NNP, one step takes
0.006 s and does not scale meaningfully to more cores due to
the small system size. This yields a speedup of ∼ 45,000× on
identical resources or ∼2800× with more resources given to
the DFT calculation. Obviously, the specific numbers will
depend on the details of the electronic structure setup and the
MLP architecture used, as well as the specific implementations
and hardware used, but this behavior of our particular setup
should provide a general idea.

5. CONCLUSIONS
In this work, we have introduced the TTS method to sample
thermal geometries around MEPs that describe barrier-
crossing transitions in molecular systems. The goal of the
method is to provide a physically meaningful set of candidate
structures for the creation of MLPs without the need to run
computationally demanding ab initio simulations. In our case
specifically, we submit these geometries to QbC and construct
a C-NNP model, but the same candidates could be used for
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other types of models as well. The execution of the TTS
protocol as a whole entails a relatively modest computational
cost with respect to the original ab initio method that is given
by the MEP optimization, several Hessian evaluations, and a
small number of single-point ab initio calculations for the
QbC-selected geometries. In terms of application to realistic
systems, the TTS method yields highly accurate C-NNP
models in all studied cases. This was achieved either by using
the generated candidate set directly or by letting the resulting
C-NNP model undergo additional active learning generations
to compensate for a pronounced anharmonic effect as seen in
the case of malonaldehyde. As such, the performance of TTS
in the presented test systems demonstrates its robustness and
efficiency and suggests applicability in most gas-phase systems,
including highly anharmonic cases.

A noteworthy feature of the TTS method is its ability to
provide thermal geometries sampled from the quantum
thermal distribution at essentially the computational cost of
the classical case. As such, models that are appropriate for use
in path integral simulations are made readily available without
the need to run expensive PI-AIMD simulations at all.
However, it is important to recognize that although the
present formulation of TTS can address quantum behavior, it
has limitations in this regard that derive from the
fundamentally classical nature of the MEP. Nuclear quantum
effects, in particular quantum tunneling through the potential
barrier, can cause the configuration-space probability density of
the system to deviate from the transition tube around the MEP
in a way that renders the coverage by TTS samples insufficient.

To account for this, the above formulation of TTS can be
straightforwardly generalized from sampling around classical
MEPs to ring-polymer instantons,78 which represent the paths
of optimal tunneling. While this modification requires
essentially no adaptation of the TTS theory and implementa-
tion itself, one can anticipate an elevated computational cost
due to the required instanton optimization at the explicit ab
initio level. The approach will find applications beyond the gas
phase, in systems where vibrational normal modes are a
meaningful concept, such as in the study of materials,
molecular crystals, or in surface science for the description of
growth and molecular adsorption. Disordered condensed
phase, including liquids, represents a more challenging case
in which TTS alone is not applicable for efficient thermal
sampling of geometries. However, the auxiliary use of the TTS
protocol in obtaining more diverse thermal structures of
liquids, for instance with the help of local normal modes,
should be explored. Our research anticipates the need to
address some of these condensed-phase systems in the near
future and we expect TTS to be a valuable tool in the creation
of accurate, yet computationally accessible potentials that will
enable the accurate description of these more complex systems
at unprecedented sizes and simulation time scales.
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