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Abstract

Advances in single-cell level analytical techniques, especially cytometric

approaches, have led to profound innovation in biomedical research, particularly

in the field of clinical immunology. This has resulted in an expansion of high-

dimensional data, posing great challenges for comprehensive and unbiased analy-

sis. Conventional manual analysis is thus becoming untenable to handle these

challenges. Furthermore, most newly developed computational methods lack flex-

ibility and interoperability, hampering their accessibility and usability. Here, we
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adapted Seurat, an R package originally developed for single-cell RNA sequencing

(scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based

on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood

and cord blood (CB), we showcased the robust capacity of Seurat in flow cyto-

metric data analysis, which was further validated by Spectre, another high-

dimensional cytometric data analysis package, and conventional manual analysis.

Importantly, we identified a unique CD8+ T-cell population defined as

CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We

characterised its IFN-γ-producing and potential cytotoxic properties using flow

cytometry experiments and scRNA-seq analysis from a published dataset. Collec-

tively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell

subset and demonstrated that Seurat, a widely used package for scRNA-seq analy-

sis, possesses great potential to be repurposed for cytometric data analysis. This

facilitates an unbiased and thorough interpretation of complicated high-

dimensional data using a single analytical pipeline and opens a novel avenue for

data-driven investigation in clinical immunology.
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INTRODUCTION

The rapid development of analytical technologies at a
single-cell level over recent decades has revolutionised
biological and medical research, particularly in the field
of immunology. Immune cell populations are well-
known for their heterogeneity and tools such as flow
cytometry (or fluorescence-activated cell sorting; FACS),
cytometry by time-of-flight mass spectrometry (CyTOF)
and single-cell RNA sequencing (scRNA-seq), facilitate
an in-depth identification and characterisation of various
immune cell types [1]. Conventionally, analysis of cyto-
metric data (including flow, spectral and mass cytometry)
has relied on manual analysis based on empirical gating
strategies under expert supervision. This is extremely
labour-intensive and tedious, as the complex cytometric
data is limited to permutational visualisation of two-
dimensional (2D) plots (FACS plots). These plots feature
different pairs of marker combinations, which require
arduous sequential inspection [2]. The possible combina-
tions of markers from a given panel increase exponen-
tially with the addition of extra parameters. As more and
more state-of-the-art cytometric panels exceed 20 markers
[3, 4], thorough manual gating analysis is becoming
increasingly challenging and impractical [5]. Further-
more, such analytical workflows are inevitably subject to
bias, considering their dependence on empirical knowl-
edge and subjective selection and inspection of markers.

These limitations hamper analyses and potentially con-
ceal novel findings.

Various computational approaches have been devel-
oped as potential solutions, including methods for dimen-
sion reduction (such as t-distributed stochastic neighbour
embedding [6] and uniform manifold approximation and
projection (UMAP) [7]), clustering (such as PhenoGraph
and FlowSOM [8, 9]) and automated cell gating and clas-
sification [5, 10]. These tools all accelerate high-
dimensional data analysis. Moreover, they have revolu-
tionised cytometry-based research, transitioning from the
conventional hypothesis-driven strategy that focuses on
specific cell types or markers, to more unbiased and com-
prehensive methods, that simultaneously take all data
into account. Despite their notable success, these tools
still suffer significant limitations. For example, many of
these computational modalities are separate, and some
even require specific data formatting and processing pro-
cedures. This is not user-friendly and hampers their
usability and accessibility in the broader research com-
munity. While some integrative toolkits combine these
modalities and offer end-to-end analysis of cross-platform
cytometric data, including normalisation, integration and
clustering, such as Spectre [10] and ImmPort Galaxy [11],
these are still few in number. There are also some other
commercial toolkits of this kind, like OMIQ [12, 13] and
Cytobank [14], but they usually require paid subscrip-
tions, limiting their availability. Furthermore, owing to
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their non-open-source nature, commercial toolkits can lag
in flexible customising services, as well as community-
driven support, maintenance and improvements, poten-
tially preventing optimal usability and adaptability. Hence,
there is great interest in more accessible and adaptable
tools.

Computational analyses of complex cytometric data
have considerably benefited clinical immunological
research. On one hand, clinical immunological data is
notorious for its heterogeneity, highlighting the need for
computational tools for data cleaning, batch alignment,
and unbiased analysis. On the other hand, given the lim-
ited availability of clinical samples (such as samples with
rare disease backgrounds or longitudinal samples),
expanding the markers and dimensionality of cytometry
panels may help to achieve more comprehensive and effi-
cient investigation, and represents an unprecedented
opportunity for high-dimensional data analysis. Leverag-
ing the rapidly developing computational analytical tools
for clinical immunological studies is thus emerging as a
promising avenue to provide more detailed insights into
clinical contexts whilst maximising the values of limited
clinical samples.

An area of increasing interest is the characterisation
of immune profiles in umbilical cord blood (CB) com-
pared to adult blood (AB). The striking immunological
differences between CB and AB not only offer critical
insights for disease pathogenesis but also provide an ideal
scenario for showcasing the analytical power of computa-
tional toolkits in clinical applications.

The main components of the CB immune compart-
ment are cord blood mononuclear cells (CBMCs), known
to exhibit unique characteristics relative to peripheral
blood mononuclear cells (PBMCs) from AB, due to the
semi-allogeneic environment of pregnancy. Mirroring
the foetal immune system [15], CBMCs feature a more
naïve phenotype [16–18] and are implicated in the physi-
ology and pathology during both pregnancy and later in
life [19–22]. Hence, understanding CB immune profiles
and their differences from AB provides precious insights
into immunological development at different stages, as
well as sheds light on the complex immunobiology of
pregnancy.

Here, we developed a 20-marker antibody panel for
thoroughly immunophenotyping T cells in both CB and
AB. We adapted Seurat, a widely used end-to-end pack-
age originally for scRNA-seq analysis, for the resulting
high-dimensional flow cytometric data analysis after pri-
mary processing in FlowJo. This workflow identified sev-
eral previously underappreciated T-cell subsets in AB,
validated by Spectre, another computational cytometric
analytical package, and conventional manual gating,
showcasing the capacity of Seurat. Importantly, using

Seurat for a comparative study of CB and AB profiles, we
revealed a unique CB T-cell population, characterised as
CD8+CD45RA+CD27+CD161+ T cells. Analysis of previ-
ously published scRNA-seq data confirmed this identified
population and hinted at its possible cytotoxic and pro-
inflammatory properties. Together, this represents the
first application example of using Seurat as a complete
flow cytometric analysis workflow and demonstrates its
robust analytical performance. It emerges as a simple and
easy-to-use toolkit for cytometric data analysis, particu-
larly for its pre-existing wide scRNA-seq user community.
Seurat also features as a single platform but with various
supplementary tools and plugins facilitating single-cell
analysis of both protein and RNA data, as well as their
comparisons and cross-validation. This represents a novel
unbiased discovery tool for complex single-cell data anal-
ysis in clinical immunology.

MATERIALS AND METHODS

Sample preparation and flow cytometry
experiments

PBMCs from AB samples and CBMCs from CB samples
(Table S1) were prepared as described in Supporting
Information S1.1. For flow cytometry experiments, cells
were processed, barcoded, and stained as Supporting
Information S1.2 and S1.3. and analysed using the 5-laser
Aurora Spectral cytometer (Cytek Biosciences, USA) on
the same day.

Cytometric data was unmixed with SpectroFlo and
analysed using FlowJo (BD Life Science) based on the
gating strategy in Figure S1A. The CD3+CD4+ and
CD3+CD8+ T-cell populations were manually gated
and exported as CSV files with their scaled values for fur-
ther computational analysis in RStudio using Seurat and
Spectre.

High-dimensional flow cytometry data
analysis

Data preparation

For analysis using Seurat 4.3.0 and Spectre 1.0.0, the
exported CSV files of the gated populations of interest
were loaded in RStudio (v4.1.2). Next, data tables for each
sample were merged together using Spectre’s do.merge.
files() function. The data then underwent a hyperbolic
arcsine (arcsinh) transformation (co-factor = 2000) using
Spectre (do.asinh). To avoid bias and skewing due to dif-
ferent cellularity, the processed cytometric data was first
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randomly downsampled to the same number among
samples before analysis.

Analysis using Seurat

After reading in the downsampled data matrix generated
in Data preparation, along the conventional Seurat analy-
sis workflow [23–26], procedures such as QC and normal-
isation originally for transcriptomic data were skipped.
Furthermore, to preserve the transformed flow cytometry
data structure for analysis, the data scaling process was
bypassed by selecting “do.scale = FALSE, do.center =

FALSE” in the ScaleData() function. All features were
selected as variable features for further analysis.

After that, principal component analysis (PCA) was
performed. Based on the PCA scores, the top PCs contrib-
uting to 99% of variance were selected for the subsequent
cluster analysis using the FindNeighbors() and FindClus-
ters() functions and dimensional reduction with the
RunUMAP() function. We utilised the DotPlot() and
VlnPlot() functions in Seurat to visualise the expression
of various markers in different clusters.

A detailed workflow for analysing flow cytometry data
using Seurat is available in the Supporting Information S1.4.2.

Analysis using Spectre

For analysis with Spectre, input data were first down-
sampled and then analysed following [10], except a 5 � 5
self-organising map (SOM) was used. The final clustering
numbers were also adjusted to the same as Seurat’s
results for comparison.

scRNA-seq analysis

Preprocessed scRNA-seq data was downloaded from
Gene Expression Omnibus from a previous study [27]
(GEO accession: GSE158493). Since the original dataset
was grouped based on sample origins (foetal spleen, full-
term umbilical CB and adult peripheral blood), the
LIGER package was used to re-integrate the data with
different origins to eliminate potential batch effects [28].
After that, the data were analysed with Seurat 4.3.0.
[23–26]. Marker genes were identified using Seurat’s
FindMarkers() function based on its default settings, with
thresholds for differentially expressed genes defined as
p < 0.05 and log2(fold change) higher than 0.5 or lower
than �0.5. Gene ontology (GO) analysis and gene set
enrichment analysis (GSEA) was run with package fgsea
and ClusterProfiler following their tutorials [29, 30].

Statistics

Statistical analysis was performed with GraphPad PRISM
10 or in RStudio using Seurat. Mann–Whitney U test
was used for comparison between the two groups. Differ-
ences were considered to be statistically significant
when p < 0.05.

RESULTS

Seurat is a reliable tool for high-
dimensional flow cytometry data analysis

Analysis of human peripheral blood, and the heteroge-
nous T-cell compartments therein, is of great importance
considering the availability of blood samples and its ubiq-
uitous use in medical research and clinical diagnosis.
Here, we established a 20-marker antibody panel
(Table 1) to comprehensively characterise the functional
profiles of CD4+ and CD8+ T cells in human PBMCs.
Details about the markers and their functions are
described in Table 1. They cover various aspects of T-cell
biology, including maturation, activation, migration and
function.

PBMCs from healthy adult individuals were collected
and processed based on the workflow in Figure 1a. To
reduce antibody wastage as well as minimise the inter-
sample variations caused by batch effects introduced dur-
ing experimental processes, which is an intrinsic problem
for clinical studies involving flow cytometry, we utilised a
barcoding system leveraging the anti-CD45 labelling. In
the current study, PBMC samples were stained with our
20-colour antibody panel and analysed by spectral cyto-
metry. After demultiplexing, the resulting cytometric
data were manually gated for CD4+ and CD8+ T-cell
populations (Figure S1A).

For proof-of-concept, the CD8+ T-cell data was ana-
lysed with Seurat and compared with Spectre, based on
the 12 functional markers out of the total 15 surface
markers, excluding lineage markers such as CD45, CD3
and CD8. The results were validated through manual gat-
ing as well.

Seurat clustered the adult CD8+ T-cell compartment
into 14 clusters (Se1-14) and projected them onto the 2D
UMAP plot, as shown in Figure 1b. Historically, T cells
are gated into four populations based on expression of
CD45RA and CD27. The CD45RA+CD27+ population is
defined as naïve, the CD45RA�CD27+ population as cen-
tral memory (CM), the CD45RA�CD27� population as
effector memory (EM) and the CD45RA+CD27� is effec-
tor memory that re-express CD45RA (EMRA) [31]. Com-
paring Seurat’s results to this classification, we found
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 13652567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

m
.13803 by C

ochrane C
zech R

epublic, W
iley O

nline L
ibrary on [04/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



that Se1, Se2 and Se8 were naïve, Se4, Se5 and Se7 were
CM, Se11 and Se13 were EM, and Se12 was EMRA. Inter-
estingly, Seurat clustering retrieved populations exhibit-
ing intermediate expression levels of CD45RA and CD27,
such as clusters Se3, Se6, Se9, Se10 and Se14
(Figure 1c,d), which did not necessarily fall into any of
the four conventional gates mentioned above. This
implies that the conventional gating strategy based only
on positive or negative expression of markers is incom-
plete. Seurat, on the other hand, can provide a more com-
prehensive analysis for multiple markers and thus enable
the discovery of previously unidentified subsets.

Feature markers identified by Seurat and the poten-
tial functional properties of each cluster are summarised

in Table S4. Clusters with naïve phenotypes (Se1, Se2 and
Se8) expressed different levels of integrin β7, indicating
differential gut-homing potentials [33]. Two CM clusters,
Se4 and Se7, were also high in integrin β7, however, they
could be separated based on CXCR-5 and CD161 expres-
sion, as markers for follicular T cells and cytotoxic T
cells, respectively. The CM cluster Se5 uniquely featured
the skin-homing marker, CLA. Cluster Se6 and Se9 both
expressed intermediate levels of CD161, but Se6 also had
intermediate expression of integrin β7 while Se9 did not
express integrin β7 at all. Se3 exhibited a similar profile
to Se6, except for the absence of CD161. In addition, their
intermediate expression of CD45RA implied that they
might represent the transitional state between EM and

TAB L E 1 A 20-marker antibody panel for comprehensive profiling of T cells in human peripheral blood mononuclear cells (PBMCs).

Marker target Staining Markers/functional implications References

CD45 Surface Leukocytes (excludes erythrocytes and platelets)

CD3 Surface T lymphocytes

CD4/CD8 Surface Helper T cells/cytotoxic T cells

CD45RA Surface High expression identifies naive T cells [31, 32]

CD27 Surface Highly expressed in naïve T cells but lost in fully
differentiated cells after persistent antigen
stimulation

[31]

Integrin β7 (β7) Surface Gut-homing marker. [33]

CD161 Surface Type 17 responses and cytotoxic functions. [34, 35]

PSGL-1 (CLA) Surface Skin-homing marker. [36]

CXCR-5 Surface Follicular T cell marker. [37]

LAG-3 Surface Inhibitory receptor upregulated in recently
activated lymphocytes.

[38]

FcERI (FCER1A) Surface High affinity receptor for IgE. [39]

CD49b Surface Integrin (α2β1) that binds to collagen and
modulates T cell stimulation, cytokine production
and survival.

[40, 41]

CD137 Surface Costimulatory receptor, promoting proliferation
and survival, upregulated in activated
lymphocytes.

[42]

CRTH2 Surface Type 2 responses. [43]

CD40L Surface Costimulatory ligand expressed on activated T
cells.

[44]

T-box protein 21 (T-bet) Intracellular Type 1 responses and effector CD8+ cells
differentiation

[45]

GATA-3 Intracellular Type 2 responses and cytotoxic CD8+ function [46]

BCL-6 Intracellular Involved in follicular helper T cell differentiation.
Involved in granzyme B production and memory
differentiation in CD8+ T cells.

[47, 48]

Forkhead box protein P3 (FoxP3) Intracellular Transcription factor expressed by regulatory T
cells.

[49]

Nur77 Intracellular Transcription factor indicative of T cell activation. [50]

A UNIQUE T-CELL SUBSET IDENTIFIED BY FLOW CYTOMETRIC ANALYSIS WITH SEURAT 5
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F I GURE 1 Adapting Seurat for high-dimensional flow cytometric data analysis retrieved robust results on adult blood (AB) peripheral

blood mononuclear cells (PBMCs), confirmed by Spectre and manual analysis. (a) An overview of the adult blood (AB) study design. PBMCs

were isolated from blood samples from healthy adult and then were first labeled with anti-CD45 antibodies with different fluorophores or

their combinations for barcoding. After that, PBMCs were pooled together and stained with our 20-marker antibody panel and analysed with

spectral cytometry. Next, the resulting data were first demultiplexed based on their CD45 marker signals and then subject to analysis with

Seurat, Spectre and manual gating. (b) Uniform manifold approximation and projection (UMAP) plots visualising the clustering results from

Seurat (left) and Spectre (right) based on the adult PBMC CD8+ T-cell experiment. One colour represents one cluster. (c) Dot plots

visualising the clusters identified by Seurat (left) and Spectre (right) and their marker expression profiles. The size of the dot corresponds to

the percentage of cells expressing the corresponding markers and the colour gradient reflects the average normalised expression of the

corresponding markers. (d) Projection of 14 clusters identified by Seurat based on the adult PBMC CD8+ T-cell experiment onto the two-

dimensional (2D) plot comparing their expression of CD27 and CD45RA. The dashed lines denote the average normalised expression of

CD27 and CD45RA for all cells. (e) Venn diagram comparing the clustering results from Seurat and Spectre. Both methods were set to

generate 14 clusters and 11 out of 14 clusters could be identified by both methods, while Se1, Se8 and Se10 could only be identified by Seurat

and Sp1, Sp8 and Sp10 could only be identified by Spectre. (f) Bar chart comparing the proportions per sample within the total CD8+ T-cell

compartments of the clusters identified by Seurat or retrieved by manual gating. N = 5 per group and data are presented as mean ± s.e.m.
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EMRA [51]. For EM-like and EMRA-like clusters, Se13 and
Se12, but not Se11, they expressed high levels of integrin β7.
Finally, Se14 was characterised by its high level of LAG-3, a
marker for early T-cell activation, while Se10 might be a
transitional population during the T-cell activation and
maturation, considering its intermediate expression of both
CD45RA and CD27. Other markers in our panel, including
CD49b and FCER1A, were expressed at relatively low levels
in T cells in the absence of stimulation. These subtle differ-
ences could still be detected by Seurat and confirmed with
manual analysis (Figures 1c and S2A,B). For example,
CD49b, a collagen-binding integrin, showed the highest
level in the skin-homing population Se5, while FCER1A
expression inversely correlated with CD27 expression, as
exemplified in Se3, Se6, Se9, Se11 and Se12. Considering
their relatively low level of expression, further research is
required to evaluate whether such mild differences are of
biological significance.

In parallel, we applied Spectre’s workflow to analyse
our dataset, manually defining 14 clusters as the final clus-
tering output to cross-validate the findings from Seurat. A
comparison of the Seurat and Spectre results revealed that
their outcomes were similar, with 11 of the 14 clusters
being identified by both approaches, displaying compara-
ble cluster sizes and feature marker expression
(Figures 1c,e and S2C). This indicated the robust and reli-
able performance of Seurat. As for their discrepancies, the
Sp2 identified by Spectre was divided into three distinct
clusters by Seurat, Se1, Se2 and Se8 (Figure S2D). In con-
trast, Se4 in Seurat analysis was split into Sp1 and Sp4 by
Spectre (Figure S2D). In an independent comparative
study, we also found that most cells were grouped into the
same cluster by both methods, with minor discrepancies
(Figure S3 and Supporting Information Materials and
Methods S1.4.3). Together, these results indicated that
clustering analyses from Seurat and Spectre were compa-
rable and since they adopted different algorithms for their
analyses, some differences were potentially to be expected.

Importantly, we further validated the results from Seu-
rat with manual gating. As shown in Figure S4, all 14 Seurat
clusters could be gated out according to their marker
expression on 2D FACS plots. Projection of Seurat and
Spectre clustering results on the 2D FACS plots showed
similar distributions compared to the manual gating results
(Figures S5–S7). Furthermore, the proportion of each popu-
lation in the total CD8+ T cells were also comparable
between manual gating and Seurat clustering (Figure 1f).

Finally, we similarly applied the workflow to the
gated CD4+ T cells and retrieved 15 clusters with Seurat
(Figure S8A,B). These subsets could also be similarly con-
firmed by manual gating and cross-validated with Spec-
tre, which identified 12 out of the 15 subsets obtained by
Seurat (Figure S8C,D).

Together, these results demonstrated that Seurat, a
tool originally developed for scRNA-seq data analysis, is
also applicable and robust for high-dimensional flow
cytometric data analysis. Its analysis helps to characterise
the CD8+ T cells in PBMCs in more detail, retrieving
novel T-cell sub-clusters.

Comparative profiling of CD8+ T cells in
AB and CB

Human circulatory T cells are plastic across the human
lifespan and might be linked to differential disease sus-
ceptibility across human lives [52]. We next aimed to
compare the profiles of the T-cell compartments from the
CB and AB using Seurat.

As shown in Figure 2, PBMCs from AB and CBMCs
from CB were first analysed based on our 20-parameter
antibody panel with manual gating. Next, the high-
dimensional data were analysed by Seurat and Spectre
(Figures 3 and 4).

The proportion of CD4+ and CD8+ T cells among
total lymphocytes showed no difference in PBMCs and
CBMCs (Figure S1B). As previously shown [16], there
were more naïve T cells and fewer EM T cells in both
CD4+ and CD8+ compartments from CBMCs compared
with PBMCs (Figure 2b–d). Reflective of a mature pheno-
type, adult PBMCs had higher proportions of CD4+ CM
T cells and CD8+ EMRA T cells (Figure 2c,d). Our com-
prehensive 20-parameter antibody panel enabled an in-
depth characterisation of the functional status of T cells.

As shown in Figure 2e, CD4+ T cells in adult PBMCs
had higher proportions of cells expressing T-bet, CLA
and CXCR-5, while more CD4+ T cells from CB
expressed CD27, β7, and LAG-3. Similarly, CB CD8+ T
cells had a higher expression of CD27, β7, alongside
FoxP3, whilst adult CD8+ T cells had higher proportions
of cells expressing CD161, CLA, CXCR-5 and T-bet
(Figures 2f and S9A,B). These findings are consistent
with previous reports of the higher gut-homing potential
of CBMCs, whilst PBMCs are more likely to migrate to
the skin [16, 52–54]. Moreover, the lower expression of
T-bet and overall naïve-biased phenotype of CB T cells
coincides with their reduced IFN-γ, IL-4 and IL-13 pro-
duction compared to AB T cells (Figure S9C,D) [55].

Analysis of AB and CB CD8+ T cells with
Seurat identifies a unique CB
CD8+CD45RA+CD27+CD161+ T cell subset

Conventional manual gating workflows are empirical
and subject to bias. Such analysis is less likely to
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potentially reveal new cell populations. Focusing on the
CD8+ T-cell compartment, we, therefore, performed
unsupervised PCA on the AB and CB combined dataset
based on expression levels of the 12 surface markers used
for clustering (Figure 3a). As expected, PBMC samples
were distinctly separated from CBMC samples along the
first PC (PC1, accounting for 18.0% of the variance),
which was consistent with the differential expression of
various T-cell functional markers in AB samples relative
to CB samples (Figure 2e,f).

Next, Seurat was used for more in-depth analyses,
identifying 13 sub-populations from the combined AB
and CB dataset (Figure 3b). Seurat clustering distin-
guished three naïve (Clusters 1, 2 and 8), three CM
(Clusters 3, 4 and 7), one EM (Cluster 11), and two
EMRA clusters (Clusters 5 and 12), with the remaining
clusters exhibiting intermediate expression levels of
CD45RA and/or CD27 (Clusters 6, 9, 10, 13)
(Figure 3c,d). Details about feature markers and potential
functional properties of the identified CD8+ T-cell sub-
sets are summarised in Table S5. Clusters 1 and 2 shared
a naïve phenotype but differed in their expression of
integrin β7 and gut-homing potential, consistent with
previous findings demonstrating an increased expression
of gut-homing receptors in naïve CB lymphocytes [56].
The naïve Cluster 8 was also high in integrin β7 but addi-
tionally expressed CD161, suggesting a cytotoxic pheno-
type. Out of the three CM subsets identified by Seurat,
Clusters 3 and 7 of the CM class, both had high integrin
β7 expression, indicative of a migratory preference to the
gut. Cluster 7 differed from Cluster 3 through its low
expression of CD45RA and high expression of the follicu-
lar T-cell marker, CXCR-5. Opposed to gut-homing, the
CM cluster 4 did not express integrin β7 but instead
highly expressed the skin-homing marker CLA and integ-
rin CD49b. Integrin β7 levels could also distinguish the
EMRA-like Clusters 5 versus 12 as well as Clusters 6 ver-
sus 9, with Clusters 6 and 9 also expressing CD161.
Finally, cluster 13 featured high levels of LAG-3 and
CXCR-5.

We again compared the analyses from Seurat and
Spectre based on the combined AB and CB dataset. Both
methods identified 13 clusters, of which 11 were com-
monly shared, with comparable feature markers and
cluster sizes (Figures S9E–G, S10B and S11B). Similarly,
Seurat clusters in both AB and CB could also be validated
through manual gating (Figures S10 and S11). These
results again highlighted the robust performance of Seu-
rat for analysing high-dimensional cytometric data.

Striking differences in the abundance of the Seurat
clusters were found comparing AB and CB samples
(Figure 3b and S12A). The naïve Cluster 1 was predomi-
nantly abundant in AB whilst Cluster 2 consisted primar-
ily of CB cells. Seurat cluster analysis was able to
separate these two naïve populations based on the differ-
ential expression of integrin β7 and CD27, which were
enriched in the naïve population from CB (Cluster 2)
[16, 56]. Consistent with previous studies comparing AB
and CB, CD8+ EM populations were almost exclusively
found in AB [57]. This includes all the identified EM
(Cluster 11) and EMRA (Clusters 5 and 12) subsets, in
addition to Clusters 6, 9 and 10. Unlike these EM subsets,
CM populations were present in both AB and CB. Of
note, Cluster 3 was dominant in CB whilst Clusters 4 and
7 were enriched in AB. Finally, the LAG-3+ Cluster
13 was equally abundant in both AB and CB.

Moreover, we also documented the differential
expression of various markers between the clusters from
AB and CB. Reflective of their naïve phenotype and lack
of antigenic exposure, several CB CD8+ T-cell popula-
tions (Clusters 1, 2, 3, 4, 7, 8, 9) exhibit higher expression
of CD27 compared to their adult equivalents (Figure 3e).
In contrast, the expression of CXCR-5 in Clusters 7 and
13 alongside CLA expression in Cluster 4 was higher in
adult CD8+ T cells compared to CB (Figure 3e).

Intriguingly, our clustering analysis identified a popu-
lation (Cluster 8) that is almost exclusive to CBMCs
(7.11% of CD8+ T cells in CB vs. 0.19% in AB)
(Figure 4a–c). This cluster is characterised as
CD8+CD45RA+CD27+CD161+, partly overlapping with

F I GURE 2 Comparative analysis of T-cell profiles in peripheral blood mononuclear cells (PBMCs) from adult blood (AB) and cord

blood mononuclear cells (CBMCs) from cord blood (CB). (a) An overview of the AB and CB study design. PBMCs and CBMCs were isolated

and then were first labeled with anti-CD45 antibodies with different fluorophores or their combinations for barcoding. After that, PBMCs

were pooled together and stained with our 20-marker antibody panel and analysed with spectral cytometry. Next, the resulting data were

first demultiplexed based on their CD45 marker signals and then subject to analysis with Seurat and manual gating. (b) Representative flow

cytometric plots of CD4+ and CD8+ T cells from AB and CB to identify naïve (CD45RA+CD27+), central memory (CM; CD45RA�CD27+),
effector memory (EM; CD45RA�CD27�) and effector memory cells re-expressing CD45RA (EMRA; CD45RA+CD27�) subsets. (c, d) Scatter
bar charts for the proportions of naïve, CM, EM and EMRA subsets within CD4+ (c) and CD8+ (d) T cells from AB and CB. (e, f) Bar charts

for the log2(fold change) comparing AB versus CB for the proportions of populations expressing the corresponding markers among CD4+

(e) and CD8+ (f) T cells. The asterisks denote the populations whose proportions are significantly different between AB and CB. N = 5 per

group and data are presented as mean, with *p < 0.05 and **p < 0.01 by unpaired Mann–Whitney U test.
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a previously reported but not fully characterised
CD8+CD161+ T-cell population found in CB [58, 59].
Analysis based on our 20-parameter panel provided an
unprecedented functional overview of the CD8+

CD45RA+CD27+CD161+ T-cell subset. We discovered
that this newly identified population had high integrin β7
expression (Figure 4b,d) as well as higher CLA, BCL-6,
T-bet and GATA-3, but lower FoxP3 levels compared to
its CD161� counterpart (Figure 4e). No differences in
LAG-3, CXCR-5, Nur77, CD137 and FCER1A were found
between the CD8+CD45RA+CD27+CD161+ and CD8+

CD45RA+CD27+CD161� T cells (Figure 4e). Upon stim-
ulation with PMA and ionomycin, this subset predomi-
nantly produced IFN-γ and IL-4 but lowly expressed IL-5,
IL-10 and IL-13. It only differed significantly in IL-10 pro-
duction relative to the CD161� counterpart (Figures 4f
and S12B). Based on these results, the CD8+

CD45RA+CD27+CD161+ sub-population (Cluster 8)
appeared to be a pro-inflammatory and cytotoxic T-cell
subset.

In summary, using our high-dimensional antibody
panel and Seurat analysis, we thoroughly profiled the
CD8+ T-cell compartment in AB versus CB. This revealed
a unique CD8+CD45RA+CD27+CD161+ T-cell subset in
CB which we characterised.

Cross-validation and further
characterisation of the
CD8+CD45RA+CD27+CD161+ T-cell subset
using scRNA-seq

To validate our findings and further characterise the pop-
ulation identified by Seurat in CBMCs, we leveraged a
recently published scRNA-seq dataset for naïve CD8+ T
cells, which analysed 18 513 cells across different devel-
opmental stages and compartments [27]. This dataset
covers naïve T cells from foetal spleen, umbilical CB and
adult peripheral blood. As shown in Figures 5a and

S13A, the overall naïve CD8+ T-cell population (sorted as
CD8+CD45RA+CD27+CCR7+CD95�) was further clus-
tered into four subsets. Cluster0 expressed high levels of
RGS1, which is linked to T-cell exhaustion [60]; cluster1
was high in IL7R and SELL, indicative of a naïve pheno-
type; and cluster2 was marked by MT2A and RPS4Y1,
which might be potentially linked to a memory T-cell
phenotype [61, 62]. Intriguingly, Cluster 3 exhibited simi-
lar features to the population we identified, characterised
by its expression of KLRB1 (gene encoding CD161)
(Figure 5b). Differentially expressed gene analysis with
DESeq2 [63] found 93 genes upregulated in Cluster
3 compared with the other naïve CD8+ T cells, while
2 genes were downregulated (Figure 5c). Cluster
3 expressed higher levels of GZMA and GZMK, linked to
cytotoxic T-cell features. Together with MAFF, they
represented the core signature genes upregulated by
CD161 in T-cell lineages reported previously [34,
58, 64, 65]. This again highlighted the close similarity,
if not equivalence, between Cluster 3 and the
CD8+CD45RA+CD27+CD161+ T-cell subset we identi-
fied. There were other additional inflammation-related
genes upregulated, such as ID1 [66] and CMC1 [67].
Interestingly, CCL5, related to a memory phenotype, was
also significantly upregulated in Cluster 3. Moreover, sev-
eral chemokine receptors were also increased, such as
CXCR3 and CXCR4.

GO analysis was next carried out with the differen-
tially expressed genes using ClusterProfiler [29, 30] based
on the Gene Ontology pathways [68]. As shown in
Figure 5d, compared with other naïve CD8+ T cells, Clus-
ter 3 was enriched for pathways related to T-cell chemo-
taxis, lymphocyte chemotaxis and T-cell migration,
consistent with the differentially expressed gene analysis
(Figure 5c) and our flow cytometric staining data for β7
and CLA (Figure 4e). On the other hand, this population
was suppressed in pathways related to ribosomes.

The GO analyses were based only on the differentially
expressed genes, and we next conducted GSEA based on

F I GURE 3 Unbiased comparative analysis of CD8+ T-cell profiles in peripheral blood mononuclear cells (PBMCs) from adult blood

(AB) and cord blood mononuclear cells (CBMCs) from cord blood (CB) with principal component analysis (PCA) and Seurat. (a) PCA based

on the marker expression levels on CD8+ T cells from AB and CB samples. (b) Uniform manifold approximation and projection (UMAP)

plot visualising the clustering results from Seurat and the compositional contribution of each cluster from AB versus CB. The donut charts

visualised the proportions of each cluster that are from AB (dark blue) and CB (yellow), and the numbers within denoted the proportions of

the corresponding clusters within the overall CD8+ T cells from both AB and CB. (c) Dot plot visualising the clusters identified by Seurat

and their marker expression profiles. The size of the dot corresponds to the percentage of cells expressing the corresponding markers and the

colour gradient reflects the average normalised expression of the corresponding markers. (d) Projection of 13 clusters identified by Seurat

based on the AB versus CB experiment onto the two-dimensional (2D) plot comparing their expression of CD27 and CD45RA. The dashed

lines denote the average normalised expression of CD27 and CD45RA for all cells. (e) Dot plot comparing the clusters from AB versus CB

identified by Seurat and their marker expression profiles. The size of the dot corresponds to the percentage of cells expressing the

corresponding markers and the colour gradient reflects the average normalised expression of the corresponding markers.
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the overall transcriptomic data using the fgsea pack-
age [69]. GSEA using the Hallmark gene set showed that
Cluster 3 displayed enrichment in inflammatory path-
ways such as TNFα signalling via NFκB, IL2-STAT5 sig-
nalling and IFNγ response (Figure 5e). In addition, they

also showed enrichment in the MAPK signalling pathway
and the T-cell receptor signalling pathway (Figure 5f,g).

In summary, scRNA-seq analysis from an independent
dataset cross-validated the CD8+CD45RA+CD27+CD161+

population identified by our Seurat-based analysis. It also
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F I GURE 4 Seurat analysis identified a unique CD8+CD45RA+CD27+CD161+ T-cell population in cord blood. (a) Overlay of the newly

identified CD8+CD45RA+CD27+CD161+ T-cell subset (Cluster 8) onto the uniform manifold approximation and projection (UMAP) plots

for AB (left) and CB (right) CD8+ T-cell compartments. (b) Manual gating strategies to identify the CD8+CD45RA+CD27+CD161+ T-cell

subset (Cluster 8) from AB (left) and CB (right) CD8+ T-cell compartments. (c) Scatter bar chart for the proportions of

CD8+CD45RA+CD27+CD161+ T-cell subset (Cluster 8) in AB (black) and CB (yellow) CD8+ T-cell compartments. (d) Scatter dot plot of the

proportions of cells expression integrin β7 in CD8+CD45RA+CD27+CD161+ and CD8+CD45RA+CD27+CD161� T-cell subsets. (e) Bar chart

for the log2(fold change) comparing the proportions of populations expressing the corresponding markers among

CD8+CD45RA+CD27+CD161+ and CD8+CD45RA+CD27+CD161� T-cell subsets. The asterisks denote the populations whose proportions

are significantly different between AB and CB. (f) Scatter dot plot of the proportions of cells expressing IFN-γ, IL-4, IL-5, IL-10, and IL-13 in

CD8+CD45RA+CD27+CD161+ and CD8+CD45RA+CD27+CD161� T-cell subsets. N = 5 per group and data are presented as mean, with

*p < 0.05 and **p < 0.01 by unpaired Mann–Whitney U test.
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characterised it as a naïve subset but with a potential pro-
inflammatory and cytotoxic profile.

DISCUSSION

There has been a significant expansion of both the size
and complexity of cytometric data, especially in the field
of clinical immunology. Such high-dimensional and com-
plicated datasets cause great difficulties for conventional
manual analytical strategies, inevitably hampering com-
prehensive and unbiased analyses and interpretation.
Consequently, myriad computational toolkits have been
developed, aiming to address these challenges, but their
effective applications are sometimes restricted, suffering
from a lack of flexibility and interoperability. Recently,
packages such as Spectre [10] and tidyof [70] were devel-
oped, attempting to provide integrative, end-to-end ser-
vices for cytometric data analysis. However, they have
only been sporadically applied, due to them being standa-
lone pipelines, requiring adaptation to completely new
packages, and demanding significant prerequisite coding
knowledge.

In the present study, we repurposed Seurat, a well-
established package for scRNA-seq data analysis, for
high-dimensional flow cytometric data analysis [23–26].
Comparison of Seurat and other currently available ana-
lytical packages are summarised in Table S6. Among
them, Seurat has long shared great popularity within the
field of single-cell analysis. It is community-driven and
well-supported and has more than 20 R packages for
related data processing and analysis. Therefore, it is likely
to be more accessible and easier to use, particularly for
broad users with previous experiences in scRNA-seq

looking to use flow cytometry to complement their inves-
tigative breadth.

Here, we showcased the robust capacity of Seurat,
based on our experiments profiling the T-cell compart-
ments in AB and CB. Overall, Seurat generated similar
results to Spectre, which were also confirmed by manual
gating. Importantly, with our approach, we identified a
unique T-cell subset (CD8+CD45RA+CD27+CD161+)
within CB and cross-validated its functional profiles with
an independent scRNA-seq dataset using Seurat.
Together, these data highlight the great potential of Seu-
rat for cytometric data analysis. It represents a simple sin-
gle platform for the unbiased analysis of both protein and
RNA data at single-cell resolution. This will enable sim-
pler comparison and cross-validation of cytometric and
scRNA-seq studies and facilitate more comprehensive
investigations and discoveries in clinical immunology.

A plethora of state-of-the-art mathematical algo-
rithms or statistical models are used in the field of cyto-
metry computational analysis. These include the
FlowSOM modality used in Spectre, carrying out cluster-
ing based on a SOM method, while Seurat first ran PCAs
on the overall dataset, next constructed a K-nearest
neighbour (KNN) graph, similar to PhenoGraph, another
single-cell analytical tool, and then adopted the Louvain
algorithm to group cells together [10, 23]. Such differ-
ences might account for the discrepancies we observed
when comparing the clustering outcomes from Seurat
and Spectre. Detailed comparisons of these mathematical
methodologies are not within the scope of the current
work, but previous study has shown that FlowSOM and
PhenoGraph were the top-performing unsupervised
methods for mass cytometry data clustering analysis. The
KNN graph model deployed in PhenoGraph excelled in

F I GURE 5 Single-cell RNA sequencing (scRNA-seq) cross-validation and characterisation of the newly identified

CD8+CD45RA+CD27+CD161+ T-cell population. (a) Uniform manifold approximation and projection (UMAP) plot visualising the

clustering results from re-analysis of the scRNA-seq data for naïve CD8+ T cells from GEO: GSE158493. (b) Violin plot visualising the

expression of KLRB1 (encoding CD161) across clusters identified by Seurat from scRNA-seq analysis. Red dots indicate the average

expression of the corresponding group. (c) Volcano plot showing the differentially expressed genes comparing

CD8+CD45RA+CD27+CD161+ and CD8+CD45RA+CD27+CD161� T-cell subsets. The red dots indicate genes upregulated in

CD8+CD45RA+CD27+CD161+ T cells, the blue dots indicate genes downregulated in CD8+CD45RA+CD27+CD161+ T cells, and the black

ones are genes without significant changes. KLRB1, the gene that we used as the population-defining gene for Cluster 3 was specified.

(d) Dot plot for the activated (left) and suppressed (right) pathways in CD8+CD45RA+CD27+CD161+ T-cell subset compared to

CD8+CD45RA+CD27+CD161� T-cell subset analysed by ClusterProfiler. The size of the dot corresponds to the number of genes within the

corresponding pathway, the GeneRatio is calculated by the ratio between the number of genes that are significantly differentially expressed

comparing CD8+CD45RA+CD27+CD161+ and CD8+CD45RA+CD27+CD161� T-cell subsets and the number of total genes involved in the

corresponding pathway, and the colour gradient reflects the adjusted p value for the comparison. (e) The top enriched gene sets of gene set

enrichment analysis (GSEA) comparing CD8+CD45RA+CD27+CD161+ and CD8+CD45RA+CD27+CD161� T-cell subsets based on the

Hallmark gene sets and the representative GSEA plot of the top enriched gene set ‘TNFA SIGNALING VIA NFKB’. (f, g). Visualisation of

differentially expressed genes comparing CD8+CD45RA+CD27+CD161+ T-cell subsets relative to CD8+CD45RA+CD27+CD161� T-cell

subsets that are involved in T-cell receptor (TCR) signalling pathway (f) and mitogen-activated protein kinase (MAPK) signalling

pathway (g).
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its clustering precision, stability and robustness in identi-
fying sub-clusters, relative to other approaches like flow-
Means, DEPECHE and Xshift [71]. Since Seurat shares a
similar KNN model to PhenoGraph, it is reasonable to
expect it could also show robust capacity in more generic
cytometric data analysis. This warrants more systematic
comparisons in future work. On the other hand, differ-
ences in results from Seurat and Spectre highlight that
utilising both methods in tandem will provide a more
complete understanding of complex datasets.

In addition to its distinct mathematical nature, as one
of the cutting-edge end-to-end analytical tools for single-
cell data, Seurat has already been widely used in various
research and clinical settings and is vigorously main-
tained and supported by its broad user community. This
contributes to its easy accessibility and high user-
friendliness and might reduce the coding burden as well,
as users, especially those with previous experience in
scRNA-seq, would not need to learn a completely new
package or coding language for analysis. Moreover, the
application of Seurat potentially opens more possibilities
for cytometric data analysis. For example, the built-in
function FindMarkers() in Seurat might facilitate easier
marker identification, particularly for high-dimensional
cytometric data, as the number of markers is expanding
continuously. However, caution should still be taken to
interpret its outcomes. Also, as a popular scRNA-seq
analysis package, Seurat could also act as a wrapper with
favourable interoperability around a wide range of com-
plementary packages or plugins originally developed for
scRNA-seq analysis, such as LIGER and Harmony
for data integration [28, 72]. They might also be applica-
ble to cytometric data, such as for batch correction, and
could provide novel possibilities for high-dimensional
data analyses once validated. Thus, adapting Seurat offers
a single simple platform to analyse, compare and cross-
validate protein and RNA, and even potentially other
multi-omic single-cell data.

Previously, there were a few reports applying Seurat
for protein-level single-cell analysis, such as for cellular
indexing of transcriptomes and epitopes by sequencing
(CITE-seq) [26] and CyTOF [73, 74], and leveraging the
rPCA integration method in Seurat for spectral cytometry
analysis [52, 75]. Recently, there has also been a similar
attempt, adapting Scanpy, a Python-based scRNA-seq
analysis package, to analyse mass cytometry data [76]. To
our knowledge, the present work represents the first
example of applying Seurat as a complete flow cytometric
analysis workflow. Harnessing our 20-colour antibody
panel and the Seurat-based analysis pipeline, we reported
a unique T-cell subset in CBMCs, characterised as
CD8+CD45RA+CD27+CD161+ T cells. This subset partly
overlapped with the previously described CD8+CD161+

T cells [58]. Previously, studies first discovered the differ-
ential (low/intermediate/high) levels of CD161 on CD8+

T cells in AB, which correlated with their various func-
tional activities, including cytokine production, prolifera-
tion, and lytic activity [34]. AB CD8+CD161hi T cells
were predominantly mucosal-associated invariant T
(MAIT) cells [65], while the CD8+CD161int population
represented a memory T-cell subset which was enriched
in the colonic lamina propria [58]. Consistent with this,
our clustering analysis found a CD8+CD161+ population
predominantly existing in AB (Figure 3b), although, with
the current clustering setting, both Seurat and Spectre
failed to further subdivide it into CD161int and CD161hi

subsets. This can be overcome by finetuning the cluster-
ing parameters depending on the particular scientific
question of interest. As for our newly identified
CD8+CD45RA+CD27+CD161+ subset, considering its
naïve phenotype, it is not surprising that it is almost neg-
ligible in AB.

The role of the CD8+CD161+ T cells in CB remains
elusive. Developmentally, it was found that the
CD8+CD161hi T cells in CB might be the progenitor for
post-natal MAIT cells [59, 64, 65]. Functionally, the
CD161hi subset produced IFN-γ and IL-17 [64, 77], while
the CD161int subset, despite expressing markers like
CD45RA and CCR7, still exhibited a preprogrammed
transcriptomic profile reflective of their AB counter-
part [58]. Our current clustering analysis could not fur-
ther separate the population based on CD161 levels, but
adjusting the clustering parameters could potentially help
to differentiate them considering their intermediate to
high CD161 expression (Figure 4b). The naïve phenotype
of this CB-enriched subset, based on the expression of
CD45RA and CD27, is similar to previous reports [58, 77],
and we also confirmed its IFN-γ production. Previously, there
were limited studies investigating the functional surface
markers of CD8+CD161+ T cells, such as CCR6 [65]. Here, we
characterised the CD8+CD45RA+CD27+CD161+ population
as high in integrin β7 but low in CLA expression, implying a
preference to gut over skin-homing. Thus, this CB population
might represent the progenitors for AB CD8+CD161int T cells,
which are enriched within the colon [58]. CD8+CD161+ T cells
in AB are involved in the response to tissue-localised inflam-
mation triggered by intracellular and viral pathogens [58, 65],
while their functional implications in CB remain elusive. Like-
wise, both our flow cytometry and scRNA-seq data suggested
the pro-inflammatory and cytotoxic properties of CB
CD8+CD45RA+CD27+CD161+ T cells. In addition, as CD161
contributes to prenatal immune suppression [78], this subset
might be involved in maintaining tolerance in the semi-
allogenic context of pregnancy.

In summary, we have adapted Seurat, a widely used
scRNA-seq analysis package, for high-dimensional flow
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cytometric data analysis and showcased its performance
through the identification of a unique CD8+CD45RA+

CD27+CD161+ T-cell population in CB. Such a pipeline pre-
sents a novel avenue for comprehensive analysis of high-
dimensional complex cytometric and multi-modal data,
facilitating unbiased data-driven studies and discovery.
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