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Abstract
A random 2-cell embedding of a connected graph G in some orientable surface is obtained by choosing

a random local rotation around each vertex. Under this setup, the number of faces or the genus of the
corresponding 2-cell embedding becomes a random variable. Random embeddings of two particular graph
classes – those of a bouquet of n loops and those of n parallel edges connecting two vertices – have been
extensively studied and are well-understood. However, little is known about more general graphs despite their
important connections with central problems in mainstream mathematics and in theoretical physics (see [Lando
& Zvonkin, Graphs on surfaces and their applications, Springer 2004]). There are also tight connections with
problems in computing (random generation, approximation algorithms). The results of this paper, in particular,
explain why Monte Carlo methods (see, e.g., [Gross & Tucker, Local maxima in graded graphs of imbeddings,
Ann. NY Acad. Sci 1979] and [Gross & Rieper, Local extrema in genus stratified graphs, JGT 1991]) cannot
work for approximating the minimum genus of graphs.

In his breakthrough work ([Stahl, Permutation-partition pairs, JCTB 1991] and a series of other papers),
Stahl developed the foundation of “random topological graph theory”. Most of his results have been unsurpassed
until today. In our work, we analyze the expected number of faces of random embeddings (equivalently, the
average genus) of a graph G. It was very recently shown [Campion Loth & Mohar, Expected number of faces in
a random embedding of any graph is at most linear, CPC 2023] that for any graph G, the expected number of
faces is at most linear. We show that the actual expected number of faces F (G) is almost always much smaller.
In particular, we prove the following results:

(1) 1
2 ln n − 2 < E[F (Kn)] ≤ 3.65 ln n + o(1). This substantially improves Stahl’s n + ln n upper bound for
this case.

(2) For random graphs G(n, p) (p = p(n)), we have E[F (G(n, p))] ≤ ln2 n + 1
p

.

(3) For random models B(n, ∆) containing only graphs, whose maximum degree is at most ∆, we obtain
stronger bounds by showing that the expected number of faces is Θ(ln n).

1 Introduction
1.1 Random embeddings of graphs in surfaces Every 2-cell embedding of a graph G in an (orientable)
surface can be described combinatorially up to homeomorphic equivalence by using a rotation system. This is
a set of cyclic permutations {Rv | v ∈ V (G)}, where Rv describes the clockwise cyclic order of edges incident
with v in an embedding of G in an oriented surface. We refer to [33] for further details. In this way, a connected
graph G, whose vertices have degrees d(v) (v ∈ V (G)), admits precisely

∏
v∈V (G)(d(v) − 1)! nonequivalent 2-cell

embeddings.
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Graph embeddings are of interest not only in topological graph theory but also within several areas of pure
mathematics, physics and computing. They are a fundamental concept in combinatorics (products of permutations,
Hopf algebra, chord diagrams), algebraic number theory (algebraic curves, Galois theory, Grothendiek’s “dessins
d’enfants”, moduli spaces of curves and surfaces), knot theory (Vassiliev knot invariants) and theoretical physics
(quantum field theory, string theory, Feynmann diagrams, Korteweg and de Vries equation), we refer to [29] for
details. Every embedding of a graph can be described by a combinatorial map. Random maps with a given number
of vertices have been the subject of much recent study. They have links with representation theory (conjugacy class
products [11, 34]) and probability theory (the Brownian map, see [30] and the references therein). They also have
applications in theoretical physics, via quantum gravity and matrix integrals, see [21, 45] for introductions to these
fields. We will study the random maps obtained by randomly embedding a fixed graph or random graph. Despite
these being natural models in random graph theory and probability theory, they have received less attention.

Existing work on random embeddings of graphs in surfaces is mostly concentrated on the notion of the random
genus of a graph. By considering the uniform probability distribution on the set Emb(G) of all (equivalence classes
of) 2-cell embeddings of a graph in (orientable) closed surfaces, we can speak of a random embedding and ask
what is the expected value of its genus. The initial hope of using Monte Carlo methods on the configuration
space of all 2-cell embeddings to compute the minimum genus of graphs [18, 20] quickly vanished as empirical
simulations showed that, in many interesting cases, the average genus is very close to the maximum possible genus
in Emb(G). The work of Gross and Rieper [18] also showed that there can be arbitrarily deep local minima for the
genus that are not globally minimum. That result rules out traditional local-search algorithms. However it does
not exclude search methods that have more significant random component, like the popular simulated annealing
heuristic [42]. Our results show that for almost all graphs, starting with a random embedding we would be very
far from a minimum with extremely high probability. Therefore, any heuristic with strong randomness will with
high probability lead toward an embedding with only a few faces (and so of large genus). Hence, our work gives
strong theoretical evidence that such methods are very unlikely to be successful. Of course, if we restrict inputs to
a particular graph class such algorithms may still work. We conclude this paragraph with phrasing one of the
main outcomes of our work; This paper provides a formal evidence that the Monte Carlo approach cannot work
for approximating the minimum genus of graphs.

Unlike most previous works, we will not discuss the (average) genus but instead the (average) number of faces
in random embeddings. Although the two variables are related linearly through Euler’s formula, it turns out that
the study of the number of faces yields a more appreciative view of certain phenomena that occur in this area.

1.2 State-of-the-art Random embeddings of two special families of graph are well understood. The first one is
a bouquet of n loops (also called a monopole), which is the graph with a single vertex and n loops incident with
the vertex. This family was first considered in a celebrated paper by Harer and Zagier [22] using representation
theory. Several combinatorial proofs appeared later [7, 19, 23, 25, 43, 44]. By duality, the maps of the monopole
with n loops correspond to unicellular maps [7] with n edges. The second well-studied case is the n-dipole, a
two-vertex graph with n edges joining the two vertices; see [1, 8, 9, 12, 24, 25, 28, 35]. A more recent case gives
an extension to the “multipoles” [4] using a result of Stanley [41]. Random embeddings in all these cases are in
bijective correspondence with products of permutations in two conjugacy classes. A notable generalization of these
cases appears in a paper by Chmutov and Pittel [11]. Another well-studied case includes “linear” graph families,
obtained from a fixed small graph H by joining n copies of H in a path-like way, see [17, 39] and references therein.

Here we discuss random graphs, including dense cases. One special case, which is of particular importance, is
that of complete graphs. Looking at the small values of n, K3 has only one embedding, which has two faces. It is
easy to see that K4 has two embeddings of genus 0 (with four faces) and all other embeddings have genus 1 and
two faces. A brute force calculation using a computer gives the numbers for K5 and K6. They are collected in
Table 1. The genus distribution of K7 has been computed only recently [3, 37] and there is no data for larger
number of vertices. The computed numbers for Kn show that for n ≤ 7 most embeddings have a small number of
faces. The results of this paper show that, similarly to the small cases, most embeddings of any Kn will have large
genus and the average number of faces is not only subquadratic but it is actually proportional to ln n.2 This is a
somewhat surprising outcome, because the complete graph Kn has many embeddings with Θ(n2) faces. In fact,

1This value was computed explicitly in [37, Table 3.1].
2We use ln n to denote the natural logarithm.
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n 3 4 5 6
emb(Kn) 1 24 65 246

g = 0 1 2 0 0
g = 1 0 14 462 1,800
g = 2 0 0 4,974 654,576
g = 3 0 0 2,340 24,613,800
g = 4 0 0 0 124,250,208
g = 5 0 0 0 41,582,592
E(g) 0 0.875 2.24 4.082

(a) Genus distribution

n 3 4 5 6 7
emb(Kn) 1 24 65 246

F = 1 0 0 2,340 41,582,592
F = 2 1 14 0 0
F = 3 0 0 4,974 124,250,208
F = 4 0 2 0 0
F = 5 0 0 462 24,613,800
F = 6 0 0 0 0
F = 7 0 0 0 654,576
F = 8 0 0 0 0
F = 9 0 0 0 1,800
E(F ) 2 2.25 2.517 2.836 3.12651

≈ 2 ln n 2.2 2.77 3.22 3.58 3.89

(b) Face distribution

Table 1: Data obtained by exhaustive computation concerning Kn for n ≤ 6

it was proved by Grannell and Knor [16] (see also [14] and [15]) that for infinitely many values of n there is a
constant c > 0 such that the number of embeddings with precisely 1

3 n(n − 1) faces is at least ncn2 . All these
embeddings are triangular (all faces are triangles) and thus of minimum possible genus. When we compare this
result with the fact that

| Emb(Kn)| = ((n − 2)!)n = nΘ(n2),

we see that there is huge abundance of embeddings of Kn with many more than logarithmically many faces.
Stahl [38] introduced the notion of permutation-partition pairs with which he was able to describe partially

fixed rotation systems. Through the linearity of expectation these became a powerful tool to analyze what happens
in average. In particular, he was able to prove that the expected number of faces in embeddings of complete
graphs is much lower than quadratic.

Theorem 1.1. (Stahl [40, Corollary 2.3]) The expected number of faces in a random embedding of the
complete graph Kn is at most n + ln n.

Computer simulations show that even the bound given in Theorem 1.1 is too high. In fact, Mauk and Stahl
conjectured the following.

Conjecture 1.1. (Mauk and Stahl [32, page 289]) The expected number of faces in a random embedding
of the complete graph Kn is at most 2 ln n + O(1).

For general graphs, a slightly weaker bound than that of Theorem 1.1 was derived by Stahl using the same
approach as in [40]; it had appeared in [39] a couple of years earlier.

Theorem 1.2. (Stahl [39, Theorem 1]) The expected number of faces in a random embedding of any n-vertex
graph is at most n ln n.

The n ln n bound of Stahl was improved only recently. Campion Loth, Halasz, Masařík, Mohar, and Šámal [4]
conjectured that the bound should be linear, which was then proved in [6].

Theorem 1.3. (Campion Loth and Mohar [6, Theorem 3]) The expected number of faces in a random
embedding of any graph is at most π2

6 n.

The bound of Theorem 1.3 is essentially best possible as there are n-vertex graphs whose expected number of
faces is 1

3 n + 1, see [6].
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1.3 Our results The first main contribution of this paper is the proof of Conjecture 1.1 with a slightly worse
multiplicative factor.

Theorem 1.4. Let n ≥ 1 be an integer and let F (n) be the random variable whose value is the number of faces in
a random embedding of the complete graph Kn. The expected value of F (n) is at most 10 ln n + 2. For n sufficiently
large (n ≥ ee16) the multiplicative constant is even better, namely:

E[F (n)] ≤ 3.65 ln n.

We complement our upper bound with a lower bound showing that our result is tight up to the multiplicative
factor.

Theorem 1.5. For all positive integers n, we have

E[F (n)] > 1
2 ln(n) − 2.

In order to prove Theorem 1.4, we split the proof into ranges based on the value of n and use a different
approach for each range. In fact, we provide two theoretical upper bounds using a close examination of slightly
different random processes. The first one is easier to prove, but it gives an asymptotically inferior bound. However,
it is useful for small values of n. In the bound, we use the harmonic numbers Hk :=

∑k
j=1

1
k , whose value is

approximately equal to ln n.

Theorem 1.6. Let n ≥ 10 be an integer. Then

E[F (n)] < Hn−3Hn−2.

Note that proof of Theorem 1.6 also works for n ≥ 4, but yields a slightly worse bound (see Equation (3.1)),
which we have not stated above. Moreover, we used Equation (3.1) to estimate values for n ≤ 242 using computer
and this implies Theorem 1.4 (E[F (n)] ≤ 5 ln n + 5) for this range; see [5, Section 5] for the details.

The next theorem is our core result that implies Theorem 1.4 for n > 40748.

Theorem 1.7. For n ≥ ee16 , E[F (n)] ≤ 3.65 ln(n). For n ≥ e30, E[F (n)] ≤ 5 ln(n). For e10.6 ≈ 40748 ≤ n < e30,
E[F (n)] ≤ 10 ln(n) + 2.

For small values of 243 ≤ n ≤ 40748 we used a computer-assisted proof which is based on our general
estimates given in the proof of Theorem 1.7 combined with pre-computed bounds for smaller values of n and
Markov inequality. We will give more details on our computation in [5, Section 5]. We summarize the results of
computer-calculated upper bounds in the following proposition. Note that having a small additive constant for
small values of n helps us to keep smaller additive constants for middle values of n as our proof is inductive.

Proposition 1.1. For 1 ≤ n ≤ 40748, E[F (n)] ≤ 5 ln(n) + 5.

In summary, the proofs of the above results for complete graphs are relatively long. A “log-square” improvement
of Stahl’s linear bound is not that hard, but the O(ln n) bound appears challenging and shows all difficulties that
arise for more general dense graph classes.

In the second part of the paper, we turn to more general random graph families. Let F (n, p) be the random
variable for the number of faces in a random embedding of a random graph in G(n, p). We will first show a bound
on the expectation of this variable which holds for any value of p.

Theorem 1.8. (♠3) Let n be a positive integer and p ∈ (0, 1] (p = p(n)). Then we have:

E[F (n, p)] ≤ H2
n + 1/p.

Theorem 1.8 gives a “log-square” general bound which can be improved in the sparse regime as well as in the
dense regime (for multigraphs). First, we state a general result for random embedding of random maps with fixed
degree sequence. In other words, we will investigate random embeddings of random multigraphs possibly with
loops sampled uniformly out of multigraphs with the same fixed degree sequence. Some results of this flavor have
been obtained earlier in the setup of “random chord diagrams”, see [10, 31].
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Theorem 1.9. (♠) Let d = (t1, t2, . . . , tn) be a degree sequence for an n-vertex multigraph (possibly with loops)
where ti ≥ 2 for all i. Let E[Fd] be the average number of faces in a random embedding of a random multigraph
with degree sequence d. Then E[Fd] = Θ(ln n).

However, we are mostly interested in simple graphs. For larger degree sequences, the majority of random
embeddings generated in the model of Chmutov and Pittel [10, 31] will not be simple. Therefore, we will be
focusing on degree sequences with bounded parts while we allow n to grow to infinity. Given a degree sequence
d = (t1, t2, . . . , tn), let

md = 1
2

∑
i

ti and λd := 1
2md

n∑
i=1

(
ti

2

)
.

Janson [27] showed that a random multigraph with degree sequence d is asymptotically almost surely not simple
unless λd = O(1). This means, for example, that the probability of a d-regular multigraph on n vertices being
simple is bounded away from 0 only if d is constant (while n grows arbitrarily). Restricting our attention to the
case where vertex degrees are bounded by an absolute constant, Janson’s result tells us that simple graphs make
up a nontrivial fraction of all multigraphs with a given degree sequence. In fact, this special case of Janson’s result
was obtained over 30 years earlier by Bender and Canfield [2]. We prove that, in the case of random simple graphs
with constant vertex degrees, we preserve logarithmic bounds on the expected number of faces.

Theorem 1.10. (♠) Let d ≥ 2 be a constant, ε > 0 (a constant within Θ depends on ε), and let d = (t1, t2, . . . , tn)
be a degree sequence for some n-vertex simple graph with 2 ≤ ti ≤ d for all i, and such that md ≥ (1 + ε)n. Let
E[F s

d] be the average number of faces in a random embedding of a random simple graph with degree sequence d.
Then E[F s

d] = Θε(ln n).

In the light of the above theorems and our Monte Carlo experiments, we conjecture that a logarithmic upper
bound should be achievable for any usual model of random graphs. However, extending our proof of Theorem 1.4
to arbitrary random graphs seems to require further ideas.

Conjecture 1.2. Let p = p(n) be the probabillity of edges in G(n, p). The expected number of faces in a random
embedding of a random graph G ∈ G(n, p) is

(1 + o(1)) ln(pn2).

We refer to Section 6 for further discussion on conjectures and open problems that are motivated by our
results.

Structure of the paper. Before we dive into proofs we will present our common strategy and formalization
used in Theorems 1.6 and 1.7 in Section 2. First, we present the easier proof of Theorem 1.6 in Section 3. Our
main result (Theorem 1.7) on complete graphs can be found in Section 4 with full details avalable in [5]. We
conclude the complete graph sections with a short proof of our lower bound (Theorem 1.5) in Section 5. In
Section 6, we discuss conjectures and open problems.

1.4 Preliminaries
Combinatorial maps. To describe 2-cell embeddings of graphs we need a formal definition of a map. A

combinatorial map (as introduced in [26, 36]) is a triple M = (D, R, L) where

• D is an abstract set of darts;

• R is a permutation on the symbols in D;

• L is a fixed point free involution on the symbols in D.

Combinatorial maps are in bijective correspondence with 2-cell embeddings of graphs on oriented surfaces, up to
orientation-preserving homeomorphisms. See [33, Theorem 3.2.4] for a proof. We give details of this correspondence.
Let G = (V, E) be a graph on n vertices, where V = {v1, . . . , vn}.
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• For i ∈ [n], let Di be the set of all pairs (vi, e) where e is an edge incident with vi. Note that |Di| = ti is the
degree of vi. Let D = D1 ∪ · · · ∪ Dn be the set of all darts.

• For each i ∈ [n], we let Ri be a unicyclic permutation of darts in Di, in clockwise order as they emanate
from vi on the surface. So, Ri(d) is the dart following d in the clockwise order given by Ri, and conversely
R−1

i (d) is the dart preceding d in this cyclic order. We let R = R1R2 · · · Rn, and call R a rotation system.

• We let L be a permutation of D consisting of 2-cycles swapping (vi, e) with (vj , e) for each edge e = ij. We
call L an edge scheme.

• The cycles of the permutation R ◦ L give the faces of the embedding.

Conversely, starting with a combinatorial map M = (D, R, L), we define the graph whose vertices are the
cycles of R, and whose edges are the 2-cycles of L.

Random embeddings. Fix an arbitrary edge scheme L. It is well known that all the 2-cell embeddings of
G, up to homeomorphism, are given by the set of all (D, R, L) over all rotation systems R. We call an embedding
chosen uniformly at random from the set of these maps a random embedding of G.

Now fix some rotation system R. Intuitively, given G we know what vertices are connected by an edge, say
uv ∈ E(G), but within the dart model, we do not know what particular dart incident with u connects to a
particular dart of v. Hence, we argue that we can model a random embedding of G just by picking what darts
form the edges uniformly at random. Indeed, a simple counting argument shows that for G with degree sequence
t1, . . . , tn, there are t1!t2! . . . tn! possible edge schemes. Moreover, each embedding of G is given by t1t2 · · · tn

different edge schemes. In particular, each embedding is given by the same number of edge schemes. Therefore we
may also obtain a random embedding of G by fixing some rotation system R and picking a uniform at random
edge scheme. This is the model we will use in Sections 3.

Thirdly, we may vary both the local rotation and the edge scheme. Picking a uniform at random rotation
system and edge scheme also gives a random embedding of G. This is the model we will use in Section 4.

Partial maps and temporary faces. Our proofs will involve building up a map step by step. Therefore
we will need a notion of a partially constructed map. A partial map is defined in the same way as a map (D, R, L),
except L need not be fixed point free. We define the darts that are in 2-cycles in L as paired darts and the darts
that are fixed points in L as unpaired darts.

The faces of the implied embedding of a map M = (D, R, L) are given by the orbits of R ◦ L. One of our
main interests in this paper will be the number of faces. In a partial map, each cycle in R ◦ L may contain some
number of unpaired darts and/or paired darts. For a partial map (D, R, L), a cycle of R ◦ L is a completed face if
it contains only paired darts, and a temporary face if it contains at least one unpaired dart. In particular, we say a
temporary face is k-open if it contains precisely k unpaired darts. We say that a temporary face f is strongly
2-open if f is 2-open and the two unpaired darts in f are incident with different vertices.

Our proofs are often stated in terms of facial walks. For a completed face, this is simply a walk around the
boundary of the face. For temporary face, this is a walk where we travel along the paired darts which make up
edges, but walk through any unpaired dart. Let f be a k-open face and let d1, d2, . . . , dk be the unpaired darts
that belongs to f in their anti-clockwise order of appearance on a facial walk around f . For each i (1 ≤ i ≤ k), we
call the segment of a facial walk around f from di to di+1 the partial facial walk (partial face) with initial dart di

and ending dart di+1. (We also say that this partial face leads from di to di+1. Note that each unpaired dart is
the initial dart for precisely one partial face and is also the ending dart of precisely one partial face.

Now, we introduce a theorem describing fast convergence of Hn. Note that the lower bound works also for
n = 0 since H0 = 0 ≥ ln

( 1
2
)

+ γ + 1
24 .

Theorem 1.11. (Fast convergence of Hn [13]) For every n ≥ 1, we have

Hn = ln
(
n + 1

2
)

+ γ + εn,

where 1
24(n+1)2 ≤ εn ≤ 1

24n2 and γ ≈ 0.57721 is the Euler–Mascheroni constant.
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2 Our proof strategy for complete graphs
We give two proofs of a bound on E[F (n)]. One gives an asymptotically worse bound, but will be useful to give
the best estimates for small values of n. The other one is more involved and requires rather tedious computation.
Here we present an intuition on both proofs and introduce a bit more terminology.

Log-square bound. For this proof, we will fix an arbitrary rotation system and pick a uniform at random
edge scheme. We will work with a random process that builds a random edge scheme step by step. First, we
order the vertices of a graph G arbitrarily. We represent the ordering as v1, v2, . . . , vn, and we process vertices one
by one, starting with vn. When processing a vertex vk, since we fixed a rotation system, the cyclic rotation of
darts in Dk is fixed. We process the darts incident with vk in this fixed order. At each step we either keep this
dart unpaired or pick another random dart to pair this dart with to make a 2-cycle in L, as defined precisely in
Random Process A. An analysis of this process in Section 3 will give Theorem 1.6.

Logarithmic bound. In this proof, we use a more refined random process to generate a random rotation
system, and a random edge scheme. We then conclude by rather complicated computation. In a similar manner to
the previous description, we process vertices one at at time, and process darts one at a time at each vertex.

When we process vk, we refer to it as step k. For each k ∈ [n − 2], we define the following terminology. Let V ↑

be vertices vn, . . . , vk+1 and DV ↑ be set of their darts. Recall that dart d is unpaired if L(d) is undefined. Now,
we make the following random choice. For each i > k we choose uniformly at random an unpaired dart di ∈ Di

and we define L(di) := d for some unpaired dart d ∈ Dk. We call all such newly paired darts active for this step.
Observe that k − 1 darts remain unpaired at vertex vk in this step.

We then study how many of various types of active darts we expect to obtain from this random choice. Based
on this, we randomly build a rotation system at vk. We do this step by step: we fix some processing order of the
darts in Dk. Then for each dart d in this order, we randomly choose a value of R(d). This will be defined precisely
as Random Process B. Analysing the probability of adding a completed face to the embedding when assigning
each value of R(d) will give the proof of Theorem 1.7.

3 Log-square bound—proof of Theorem 1.6
We start by proving Theorem 1.6.

Theorem 1.6. Let n ≥ 10 be an integer. Then

E[F (n)] < Hn−3Hn−2.

We will use a similar approach for the proof of Theorem 1.8 in [5, Section 7]. Refer to Figure 1 for an example
of this random process.

Random process A.

1. Order the vertices of the graph vn, . . . , v1 arbitrarily and process the vertices in this order.

2. Start with vertices vn and vn−1. They belong to one temporary face and no face has been closed so far.

3. Consider vertex vk for k ∈ [n − 2]. Label the darts of Dk as {d1, . . . , dn−1} arbitrarily. We define Rk as
this cyclic order, that is Rk(di) = di+1 (except Rk(dn−1) = d1). Let Ck := {n, n − 1, . . . , k + 1, u, u, . . . , u}
where there are k − 1 copies of the symbol u representing that the dart choosing u remains unpaired. This is
the multi-set of choices of where the darts may lead at the end of this step.

(a) Process darts in Dk in order d1, d2, . . . , dn−1. If k > 1, give d1 the label u, remove one copy of u from
Ck, and proceed processing d2. If k = 1, start by processing d1.

(b) Consider the dart dℓ which is next in the order. Random choice 1a: Pick a symbol from the set Ck

uniformly at random, then remove this choice from Ck.
• Case 1: The choice was some i ≥ k + 1. Random choice 1b: Then pick an unpaired dart d′

uniformly at random from those at vi. Then add the transposition (d′, dℓ) to the permutation L.
• Case 2: The choice was some u. Then leave dart dℓ unpaired.
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v7 v6 v5

v3

v4

v2 v1

d1

d2
d3

d4

d5
d6

We are at the start of the step
that processes vertex v3. Then
our set of possible labels is
C3 = {7, 6, 5, 4, u, u}. Vertices
v7, v6, v5, v4 have already been
processed.

v7 v6 v5

v3

v4

v2 v1

u

d2
d3

d4

d5
d6

We start by processing dart d1.
Since we are not processing the
first dart at the final vertex v1, we
give this dart the label u and con-
tinue to the next dart. The set of
labels is now C3 = {7, 6, 5, 4, u}.

v7 v6 v5

v3

v4

v2 v1

7
d3

d4

d5
d6

Suppose we pick the label 7 ∈
{7, 6, 5, 4, u}. Then at v7 we pick
one of the unpaired darts and join
it with d2 to make an edge.

u

v7 v6 v5

v3

v4

v2 v1

7
u

d4

d5
d6

At the next step, when process-
ing d3, we have the set of labels
{6, 5, 4, u}. Suppose we pick the
last remaining copy of u, then we
leave dart d3 unpaired and con-
tinue to d4.

u

v7 v6 v5

v3

v4

v2 v1

7
u

d5
d6

When processing d4, we have the
set of labels C3 = {6, 5, 4}. Sup-
pose we pick label 5, then we pair
d4 with a random choice of un-
paired dart at v5. At the next
step we have the set of choices
C3 = {6, 4}.

u

5

v7 v6 v5

v3

v4

v2 v1

7
u

4
6

Finally, we process the last two
darts at this vertex d5 and d6.
One of these will be paired with
an unpaired dart at v6, and one
with an unpaired dart at v4. The
Random Process now continues
by processing the next vertex v2.

u

5

Figure 1: An example of Random Process A, processing vertex v3.
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Continue to the next dart in the order.

Continue to the next vertex in the order. ⌟

For each value of k ≤ n − 2, let Fk (Fk = Fk(n)) be the number of faces completed at step k. By this, we
mean the facial walks that contain vk and no vertex vj with j < k. They were completed at step k and have
stayed unchanged until the end of the process. We need an upper bound on E[Fk]. By linearity of expectation, we
have that E[F (n)] =

∑n−2
k=1 E[Fk(n)].

Suppose we are processing the dart dℓ at step k. Recall that dℓ is contained in two partial faces: one starting
at some dart d and ending at dℓ, and one starting at dℓ and ending at some dart d′. We complete a face at this
step if and only if we pair dℓ with dart d or d′. The dart d′ is an unpaired dart incident with vk with a single
exception when k = 1 and ℓ = n − 1. So pairing dℓ with d′ can not completed a face unless we have this exception.
We have two cases:

Case 1: ℓ = 1, or the previously processed dart dℓ−1 was chosen to be unpaired: Then both darts d and d′ are
incident with vertex vk, so we cannot pair with them. Therefore, we cannot have completed a face when processing
dℓ.

Case 2: dℓ−1 is paired: See Figure 2 for an example of this analysis. We complete a face at this step if and
only if we pair dℓ with d, where d is the dart at the start of the partial face ending at dℓ. The probability we
choose dℓ to lead to vertex vi, for i > k, is at most 1

n−ℓ as we have already chosen ℓ − 1 vertices in Random choice
1a. The probability that we choose dart d (and not another unused dart at vi) to connect with dℓ is 1

k as there
are k unpaired darts incident vertex vi to choose from in Random choice 1b. Therefore, the probability that we
complete the face is at most 1

k(n−ℓ) .
Case 3: k = 1: When processing dn−1, the dart d′ at the end of the partial face starting at dn−1 is not at v1.

Therefore, we can close two faces at this step.
Assume now k > 1. Each dart (except for d1) has probability n−k

n−2 of being paired (as d1 is unpaired). Thus a
dart dℓ (ℓ ≥ 3) has the same probability n−k

n−2 of being Case 2. Therefore, the probability that we close a face by
pairing up dℓ is at most n−k

n−2 · 1
k(n−ℓ) .

For k = 1, all edges are connected to V ↑, thus the probability of closing a face by dℓ (for ℓ ≥ 2 now) is 1
n−ℓ .

Moreover, the last dart dn−1 can close two faces as described in Case 3.
Summing over all values of ℓ we get for k ≥ 2 and n ≥ 4

E[Fk] ≤
n−1∑
ℓ=3

n − k

n − 2 · 1
k(n − ℓ) = n − k

k(n − 2) · Hn−3.

Also,

E[F1] ≤ 1 +
n−1∑
ℓ=2

1
n − ℓ

= 1 + Hn−2.

Summing over all steps k assuming n ≥ 4 (apart from the last line) we obtain:

E[F ] = E[F1] +
n−2∑
k=2

E[Fk]

≤ 1 + Hn−2 +
n−2∑
k=2

n − k

k(n − 2) Hn−3

= 1 + Hn−2 + 1
n − 2(nHn−2 − n + 2)Hn−3 − n − 1

n − 2Hn−3

= 1 + Hn−2 + n

n − 2Hn−3(Hn−2 − 1) − n − 3
n − 2Hn−3(3.1)

< Hn−3Hn−2. (for n ≥ 10)
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v7 v6 v5

v3

v4

v2 v1

d1

d2

d3

d4

d5

d6

C5 = {4, 5, 6, u}

v7 v6 v5

v3

v4

v2 v1

d1

d2
d3

d4

d5

d6

C5 = {4, 6, u}

Figure 2: The upper diagram shows the step of Random Process A where we are processing dart d3 at vertex
v3. The partial facial walk is traced in dotted red line, showing the only dart for which pairing with makes a
completed face. At the next step, the only dart for which pairing with makes a completed face is at vertex v5.
However, we have already added the edge from v3 to v5, so 3 is not a valid choice of a label at this step. Therefore,
we cannot add a completed face at this step.
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4 Logarithmic bound—proof of Theorem 1.7
Theorem 1.7. For n ≥ ee16 , E[F (n)] ≤ 3.65 ln(n). For n ≥ e30, E[F (n)] ≤ 5 ln(n). For e10.6 ≈ 40748 ≤ n < e30,
E[F (n)] ≤ 10 ln(n) + 2.

We first introduce more notation that will be needed in the proof. We look more carefully at step k. At this
step the walks in R ◦ L can be split into two categories building on notation defined in Section 1.4:

1. Completed faces: cycles of R ◦ L. Those are closed walks that corresponds to 0-open faces which will not
change any more, and

2. Candidate walks: those are partial faces that originates at an unpaired dart ds and lead to an unpaired dart
de (possibly ds = de).

For each vertex in V ↑, we will pick an active dart randomly from the set of all unpaired darts incident with this
vertex. Observe that if a partial face starts with a dart ds and ends with de, then it can complete a face in step k
only if both ds and de become active. We call such walks active in step k. We further partition the active walks
into

(1) Those for which ds = de. Observe that such are necessarily 1-open faces and so we refer to them as 1-open
active faces, and

(2) All other active walks (i.e., ds ̸= de), which we refer to as potential faces.

An active dart d ∈ Dk is called 1-open if L(d) is the dart incident with some 1-open face. An active dart d ∈ Dk is
called potential if L(d) is incident with some potential face. We will give more intuition on our terminology. We
will show that under certain circumstances, only potential faces may complete a face. Therefore, we call unpaired
darts in Dk together with darts that do not take part in any active walk non-contributing. Let PFk be a random
variable representing the number of potential faces and Ok be a random variable representing the number of 1-open
active faces in step k, after active darts were chosen. Let Fk denote the total number of completed faces added
during step k.

We now describe our random procedure in detail. We refer to Figure 3 for an example of this random process.

Random process B.

1. Label the vertices arbitrarily as vn, . . . , v1 and process them in that order.

2. Start with vertex vn, and fix a uniform at random full cycle Rn. This vertex is incident with n − 1 unpaired
darts.

3. Consider vertex vk for k ∈ [n − 1], starting with n − 1.

(a) Random choice 1: For each vertex in V ↑ we choose uniformly at random one out of k unpaired darts
to lead to vk and update L appropriately. The chosen darts are said to be the active darts at step k.

(b) We treat Dk as an unordered set, and build a local rotation Rk by processing the darts in a special
order σk given by the type of walk the dart describes. Each time we fix Rk(d) for the processed dart d.
We define σk as follows:

i. First, process 1-open darts in arbitrary order.
ii. Next, potential darts follow in arbitrary order.
iii. Last, non-contributing darts are processed, again in arbitrary order.

(c) Random choice 2: For each d ∈ Dk in order σk we choose uniformly at random one dart d′ among all
possible options (those that do not violate the property that Rk will define a single cycle eventually)
and we set Rk(d) := d′. ⌟

Now, we define a function q, which will form an upper bound for the contribution of vertex vk to the expected
number of faces. The function is defined as follows. (Note that H0 = 0.)
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v7 v6 v5

v3

v4

v2 v1

d7 d6 d5

d4

We are at the start of step
3, which processes vertex v3.
In Random choice 1, we select
one unpaired dart at each of
v4, . . . , v7 (marked by red thick
dart) and denoted as d4, . . . , d7.
We update L. Note that R3 is
not yet fixed.

d′7

d′6 d′5
d′4

d′2d′1

v7 v6 v5

v3

v4

v2 v1

d7 d6 d5

d4

d′5
d′4

d′2d′1

Observe that d4 belongs
to a 1-open face and
d5, d6, d7 to a 5-open face.
Therefore, σ3 is defined as
d′4, d

′
7, d

′
5, d

′
6, d

′
2, d

′
1.

v7 v6 v5

v3

v4

v2 v1

d7 d6 d5

d4

d′7

d′6

d′5

d′4

d′2d′1

We start with d′4, the first
element of σ3. In Ran-
dom Choice 2, we pick uni-
formly at random one of
d′5, d

′
6, d

′
7, d

′
2, d

′
1 as R3(d

′
4).

In our example we choose
R3(d

′
4) := d′5.

v7 v6 v5

v3

v4

v2 v1

d7 d6 d5

d4

d′7

d′6

d′5

d′4
d′2

d′1

Next we proceed with d′7,
the first element of σ3. In
Random Choice 2, we pick
uniformly at random one
of d′4, d

′
6, d

′
2, d

′
1 as R3(d

′
7).

In our example we choose
R3(d

′
7) := d′2.

v7 v6 v5

v3

v4

v2 v1

d7 d6 d5

d4

d′7

d′6

d′5

d′4

d′2

d′1

Next we proceed with d′5,
the first element of σ3.
In Random Choice 2, we
pick uniformly at random
one of d′6, d

′
7, d

′
1 as R3(d

′
6).

In our example we choose
R3(d

′
5) := d′7. By this choice

we closed a face traced by
dashed orange line.

v7 v6 v5

v3

v4

v2 v1

d7 d6 d5

d4

d′7

d′6

d′5

d′4

d′2

d′1

For R3(d
′
6) we choose d′4

out of choices {d′4, d′1}. For
R3(d

′
2) the only possible

choice is d′1 and hence
R3(d

′
1) = d′6 is also fixed.

d′6

d′7

Figure 3: An example of Random Process B, processing vertex v3 to obtain R3. At the end of this step, the darts
d′

1, d′
2 remain unpaired. It is not decided which one will go to v1 and which one will go to v2.
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Definition 4.1. If 1 ≤ t < n and 0 ≤ ξ < n − 1 − t, then

q(ξ, t) :=
t∑

i=1

1
n − ξ − i − 1 = Hn−ξ−2 − Hn−ξ−t−2.(4.2)

If ξ + t = n − 1 then

q(ξ, t) :=
t−1∑
i=1

1
n − ξ − i − 1 + 1 = Hn−ξ−2 + 1.(4.3)

It is easy to observe the following fact about the function q:

Observation 4.1. Let a ≥ 1, 1 ≤ t + a < n, and 0 ≤ ξ − a < n − 1 − t − a. Then

q(ξ, t) ≤ q(ξ − a, t + a).

Now, we state the crucial lemma that is a starting point of the upper bound computation.

Lemma 4.1. (♠) Given PFk = t and Ok = ξ, the average number of faces completed at vertex vk is at most
q(ξ, t). In other words, E[Fk|PFk = t, Ok = ξ] ≤ q(ξ, t).

Note that Ok + PFk is never larger than n − 1 and therefore the value q(ξ, t) is well-defined. Observe that
Ok + PFk = n − 1 if and only if k = 1 as there are exactly n − k edges between vk and V ↑.

We define one more random variable. Let Tn−k represent the number of temporary faces in G[V ↑] in step k
(before vertex vk is added). Note that E[Tn] is, in other words, an average number of faces of Kn. Hence, the
following lemma is the first step in the proof of the main theorem. The rest of the proof will provide an involved
analysis of the right-hand side of Inequality (4.4).

Lemma 4.2. Let n ≥ 3 and let F, PFk, Ok be random variables as defined earlier. Then we have:

E[F ] = E[Tn] ≤
n−2∑
k=1

E[q(Ok, PFk)] =
n−2∑
k=1

n−k∑
i=1

n−k−i∑
j=0

q(j, i) · Pr[Ok = j ∧ PFk = i].(4.4)

Proof. The equalities in (4.4) are clear, so we will only argue about the inequality. We execute Random process
B as defined above. For the first two vertices vn and vn−1 in the order, all choices are isomorphic. We process
each other vertex as described in part 3 of the process description. Hence, the contribution of a single vertex is
upper-bounded by Lemma 4.1

Let 1/2 < ν < 1 be a constant and ν := 1 − ν. We will fix this value later on for different ranges of n in order
to optimise our bound. We split the above triple sum (Equation (4.4) in Lemma 4.2) into several parts:

• S1 will contain the terms where k = 1.

• S2 will contain the terms where j < νn and i < n−k
k .

• S3 will contain the terms where j < νn and i ≥ n−k
k .

• S4 will contain the terms where j ≥ νn.

There γ ≈ 0.57721 denote Euler-Mascheroni constant. We now define S1, S2, S3, and S4. We will also state
the bounds which we derive for each portion of the sum in the forthcoming subsections.

S1 :=
n−1∑
i=1

n−1−i∑
j=0

q(j, i) · Pr[O1 = j ∧ PF1 = i] ≤ Hn−2 + 1 ≤ ln(n) + γ + 1.(4.5)
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For the rest, we first take the terms for which Ok < νn. Let b = b(n, k, i) := min(n − k − i, ⌈νn⌉ − 1). When
writing down the terms for S2, we used the fact that these terms do not occur if n−k

k ≤ 1. Thus we have the
summation range for k only between 2 and n/2.

S2 :=
n/2∑
k=2

⌈ n−k
k ⌉−1∑
i=1

b∑
j=0

q(j, i) · Pr[Ok = j ∧ PFk = i](4.6)

≤ 1
ν

ln(n) + ln
(

νn − 3/2
νn − 1/2 − n

2

)
+ 1

ν
(ln(ν/2) − ln(5ν/2 − 1)) .

S3 :=
n−2∑
k=2

n−k∑
i=⌈ n−k

k ⌉

b∑
j=0

q(j, i) · Pr[Ok = j ∧ PFk = i](4.7)

≤ ln(2νn)
π2

6 − 1
ν2

(
1 + 4

νn − 2

)
+ 1.67 ln n + 5 + 2n

νn − 5/2 .

In case n ≥ ee16 and ν ≥ 999
1000 , we have a stronger estimate:

S3 ≤ 1.6474 ln n − 9.(4.8)

Finally, we take the remaining case where Ok ≥ νn. The corresponding inequality involves an auxiliary (real)
parameter µ ∈ [1, 3], and an integer mא ∈ Z such that E[F (m)] ≤ 5 ln(m) + mא for all 2 ≤ m < n. We denote
aא

b := maxb<i<a iא for 0 < b < a.

S4 :=
n−2∑
k=2

n−k∑
i=1

n−k−i∑
j=⌈νn⌉

q(j, i) · Pr[Ok = j ∧ PFk = i](4.9)

< νn ln(νn)e
−nν2

2 +
ν ln(νn)

(
5 ln n + א

n−⌈ 2
ν

lnµ(n)⌉
⌈νn⌉

)
lnµ(n) +

2 lnµ(n) ln(νn)
(

5 ln n + n−2א
n−⌈ 2

ν
lnµ(n)⌉+1

)
ν2n

(4.10)

Lemma 4.2 together with the above analysis reformulates Theorem 1.7 as the following inductive theorem.
The base case of the induction is computed using the computer analysis formulated as Theorem 1.1. Note
that it is sufficient to assume n ≥ 243 for the next theorem as the smaller values follow from Theorem 1.6
via computer-evaluation which is described later in [5, Section 5]. Observe that if we do not aim for the best
multiplicative constant we can use our ln2 n upper bound (Theorem 1.6) in the place of the inductive argument.
However, it would not be sufficient to use there, for example, the previously known linear bound.

Theorem 4.1. (♠) Let n ≥ 243 be an integer. For 3 ≤ m < n, suppose that E[F (m)] ≤ 5 ln(m) + .mא Then we
have:

E[F (n)] ≤ S1 + S2 + S3 + S4

where S1, S2, S3, S4 are defined above in Equations (4.5), (4.6), (4.7), and (4.9).

Theorem 4.1 gives a proof of Theorem 1.7 after a detailed case analysis. This together with the proof of the
bounds (4.5)–(4.10) on S1, S2, S3, and S4 are available in the full version of our paper [5].

5 Lower bound for complete graphs
In this section, we provide a counterpart to Theorem 1.4—a logarithmic lower bound on the expected number of
faces Theorem 1.5.

Theorem 1.5. For all positive integers n, we have

E[F (n)] > 1
2 ln(n) − 2.
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Proof. We partition the set of possible (oriented) faces according to their length and we only count those that are
easy to count: Let F ′

k be the number of (oriented) faces having k distinct vertices and k edges on their boundary.
There are 1

k n(n−1) · · · (n−k +1) possibilities for such a face. Each of them becomes a face of a random embedding
with probability (n − 2)−k. Together, we get (using Bernoulli’s inequality):

E[F ′
k] = 1

k

k−1∏
i=0

n − i

n − 2 ≥ 1
k

k−1∏
i=0

(
1 − i

n

)
≥ 1

k

(
1 −

k−1∑
i=0

i

n

)
≥ 1

k

(
1 −

(
k
2
)

n

)
= 1

k
− k − 1

2n
.

Let m := ⌊
√

2n⌋. Then F ≥ F ′
3 + F ′

4 + · · · + F ′
m, and

E[F ] ≥
m∑

k=3
E[F ′

k] ≥
m∑

k=3

( 1
k − k−1

2n

)
= Hm − 3

2 − 1
2n (2 + 3 + · · · + (m − 1)) ≥ Hm − 2

= H⌊
√

2n⌋ − 2 ≥ ln(
√

2n) +
(

ln(⌊
√

2n⌋) − ln(
√

2n)
)

− 2 + γ

≥ 1
2 ln(n) + 1

2 ln(2) + ln(1/2) − 2 + γ >
1
2 ln(n) − 2

We have used estimate Hm ≥ ln(m) + γ (implied by Theorem 1.11) and ⌊
√

2n⌋/
√

2n ≥ 1/2.

6 Open Problems
We showed that almost all dense graphs have a polylogarithmic average number of faces. Then, in [5, Section 8]
we showed that random sparse graphs have a logarithmic average number of faces. By Markov’s inequality we
conclude that almost all sparse graphs have a logarithmic average number of faces. This leads us to the conjecture
that this property holds for almost all graphs, without any density condition on the edges.

Conjecture 6.1. For any p(n) : N → [0, 1], almost all graphs in G(n, p) satisfy E[F ] = O(ln(n)).

This conjecture would follow from the stronger statement of Conjecture 1.2. Conjecture 1.2 can also be stated
in terms of the closely related model of random graphs with n vertices and M edges.

Conjecture 6.2. The expected number of faces in a random embedding of a random graph G ∈ G(n, M) is

(1 + o(1)) ln(M).

A main result of the paper was that the complete graph does have a logarithmic number of expected faces. A
large family of examples of graphs on n vertices with E[F ] = Θ(n) are given in [4]. However all of these examples
have maximum degree O(1) with respect to the number of vertices. We were unable to find any examples of dense
graphs with such a large number of average faces, which leads us to the next conjecture.

Conjecture 6.3. Let G be a graph on n vertices with minimum vertex degree Ω(n). Then G satisfies
E[F ] = O(ln(n)).

Theorem 1.7 confirms this conjecture for the complete graph. The multiplicative constant in our bound is not
optimal, we restate the conjecture given in the introduction which suggests a possible optimal constant.

Conjecture 6.4. ([32, page 289]) The expected number of faces in a random embedding of the complete graph
Kn is 2 ln n + O(1).

Another natural line of enquiry would be to extend these results to non-orientable surfaces. One natural way
to define a random embedding of a graph on a non-orientable surface is to randomly choose a rotation system, and
randomly choose a signature for all the edges in the graph, with probability 1/2 of being either sign. From data,
we expect a similar result to hold for non-orientable random embeddings of Kn under this definition.

Conjecture 6.5. The expected number of faces in a non-orientable random embedding of the complete graph Kn

is ln(n) + O(1).
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We think that in general, a similar property should hold for random embeddings of all graphs.

Conjecture 6.6. Let F − be the random variable for the average number of faces in a non-orientable random
embedding of some graph G. Then E[F −] ≤ E[F ].

It is an easy exercise to check this conjecture’s validity on some toy models. In particular, the chain of triangles
joined by cut edges considered in [6] satisfies this property. Also, an analysis of Random Process A gives the upper
bound of E[F −] ≤ 1

2E[F ] + 1 for the dipole, which is the graph with 2 vertices joined by m edges. Computer data
ran on some more general graphs gives evidence for some small values of n.

Lastly, it would be of interest to understand higher moments of F . This is widely open even for a complete
graph. In this paper, we only obtain an upper bound (with respect to k) for the second moment of the number of
potential faces on n − k vertices in Kn.
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