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Abstract
Consider a set of shuffled observations drawn from a fixed probability distribution
over some instance domain. What enables learning of inductive generalizations which
proceed from such a set of observations? The scenario is worthwhile because it
epistemically characterizes most of machine learning. This kind of learning from
observations is also inverse and ill-posed. What reduces the non-uniqueness of its
result and, thus, its problematic epistemic justification, which stems from a one-to-
many relationbetween the observations andmany learnable generalizations?Thepaper
argues that this role belongs to any complexity regularization which satisfies Norton’s
Material Theory of Induction (MTI) by localizing the inductive risk to facts in the
given domain. A prime example of the localization is the Lottery Ticket Hypothesis
(LTH) about overparameterized neural networks. The explanation of MTI’s role in
complexity regularization of neural networks is provided by analyzing the stability
of Empirical Risk Minimization (ERM), an inductive rule that controls the learning
process and leads to an inductive generalization on the given set of observations. In
cases where ERM might become asymptotically unstable, making the justification of
the generalization by uniform convergence unavailable, LTH and MTI can be used to
define a local stability. A priori, overparameterized neural networks are such cases and
the combination of LTH and MTI can block ERM’s trivialization caused by equaliz-
ing the strengths of its inductive support for risk minimization. We bring closer the
investigation of generalization in artificial neural networks and the study of inductive
inference and show the division of labor betweenMTI and the optimality justifications
(developed by Gerhard Schurz) in machine learning.
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1 Introduction

An epistemic justification of the inductive generalization in artificial neural networks
can be achieved by connecting the state-of-the-art approaches (Bengio et al., 2021;
LeCun et al., 2015; Schmidhuber, 2015) to recent theories of inductive inference
(Norton, 2003, 2021; Schurz, 2019). If machine learning is considered as a kind of
induction, then the epistemic justification is missing in machine learning as well as in
epistemology debates.

In Sects. 2 and 3, the paper connects complexity regularization of (deep) artifi-
cial neural networks, the Lottery Ticket Hypothesis (Frankle & Carbin, 2019), and
the Material Theory of Induction (Norton, 2003, 2014, 2021) to show that success-
ful machine learning of inductive generalizations is epistemically justifiable by the
localization of inductive risk. Sections 4 and 5 provide important qualifications to
this epistemic justification, using Norton’s work on the incompleteness of calculi of
inductive inference (2019) to distinguish between asymptotic and local stability of
inductive rules that facilitate the generalization learning in neural networks.

The Material Theory of Induction argues that retrodictive/predictive successes of
induction stem from adapting general inductive schemas to material facts found in
local domains, thus achieving the schemas’ localization. The paper shows that neural
network pruning described by the Lottery Ticket Hypothesis adapts a general archi-
tecture to a given local domain. By this, it transports the inductive risk from a schema
(architecture) to local facts populating the evidence (training data), thus accomplish-
ing the localization. If the requirements of statistical learning theory are met (i.i.d.
[independent and identically distributed] samples from a fixed distribution over some
instance domain, see Sect. 4), then any regularization method, satisfying the Material
Theory of Induction by moving the inductive risk to local facts, can provide the induc-
tive generalization in (deep) artificial neural networks with an epistemic justification.
In case the requirements are not met, then local facts become unstable. The Material
Theory of Induction can no longer provide the epistemic justification, which should
be replaced with an optimality-based justification from the framework developed by
Gerhard Schurz (see the conclusion of Sect. 5; also, Schurz, 2019, 2024; Spelda &
Stritecky, 2021). This distinction shows a division of labor between John Norton’s and
Gerhard Schurz’s theories of inductive inference (cf. Schurz & Thorn, 2020) and the
limitation of the former theory in the machine learning context.

1.1 Themotivation for an epistemic justification of inductive generalizations

Statistical learning theory treats training of a machine learning model as function
estimation from a limited sample of training data (Vapnik, 1995). This means that
instead of identifying the truemodel by estimating the function entirely, the truemodel
is being ‘imitated’ (cf. Cherkassky &Dhar, 2015) by estimating the function at a given
finite set of points of interest (Vapnik, 1995, pp. 167–170). Therefore, an epistemic
justification for the ability of machine learning models to generalize is required.

To generalize is to perform correct inferences on new (yet unobserved) samples out-
side of training data by establishing a certain kind of connections among the observed
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samples (training data). Formally (Definition 1), ‘r% of all so far observed Fs has
been Gs, hence, with high (subjective) probability, approximately r% of all Fs are
(will be) Gs’ (Schurz, 2019, p. 2). Using this definition of inductive generalization,
Gs are successful inferences by a machine learning model on new samples, provided
all Fs are (will be) i.i.d. from a fixed distributionD on some domain Z . Any function
f from the class F expressible by a machine learning model is not estimated in full
during training but rather it is estimated only at a given finite set of points of interest.
A deductive inference from the entire function estimation to the points of interest thus
cannot be performed (cf. Vapnik, 1995, p. 169, Fig. 6.1), motivating the desirability
of an epistemic justification for the generalization capability of the trained model.

Determined by the classF , different function estimations are possible on any finite
training dataset, which leads to different generalization capabilities of the model. The
problem of selecting the correct level of complexity of the model, determining its
generalization performance via the fit to data (i.e., selecting f ∈ F), is central. This is
our core concern regarded as the one-to-many relation between the evidence (training
data) andmany learnable generalizations. The expressivity of artificial neural networks
is not foundationally limited, since the universal approximation theorem established
that multilayer feedforward neural networks using sigmoidal hidden layer activation
functions are universal approximators (Cybenko, 1989; Hornik et al., 1989). Borel
measurable functions from one finite dimensional space to another can be approxi-
mated to an arbitrary degree of accuracy if the network is large enough [see Barron
(1993) for bounds on the sizes of single hidden layer networks for the approximation
of various function classes, relatedly also Kůrková (1992); Schmidt-Hieber (2021) for
more than single hidden layer ReLU networks). For various classes of functions, deep
networks can improve the approximation efficiency, decreasing the number of hid-
den units while increasing the generalization performance (Goodfellow et al., 2016,
pp. 192–95; Yarotsky, 2017; DeVore et al., 2021, pp. 398–423). Treating simplicity as
a uniform guiding principle for selecting a function f from the classF is epistemically
problematic, because simplicity depends on the local context, i.e., on the facts found
in the training data (cf. Norton, 2021, Chap. 6; Roche, 2018).

The generalization capability measured as the error rate on new samples does not
depend on a uniquely ordered sequence of the training data. For neural networks,
learning starts from random initial conditions followed by a succession of epochs,
each iteratively introducing the model to batches of randomly drawn samples from
the training data (Goodfellow et al., 2016, pp. 270–73). This procedure is known as
the minibatch method, during which the network’s parameters (weights) are updated
after evaluating its predictions on samples from a minibatch instead of on all sam-
ples to avoid costly updates based on processing the whole dataset (ibid.; an epoch
is concluded once the network ran through the entire training dataset). Samples in
minibatches and individual minibatches should be independent from each other to
avoid updating the network’s weights based on biased gradient estimates caused by
potential dependencies between samples (ibid.). In practice, the training dataset is
usually shuffled to simulate the effects of independence, and if several epochs are
executed over the shuffled dataset, starting with the second epoch (assuming there no
copies among the samples), estimates of the generalization error on minibatches will
be biased (Goodfellow et al., 2016, pp. 273–75). The minibatch method is different
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from the cross-validation or holdout method (Arlot & Celisse, 2010) because the latter
require sample independence to estimate the generalization error in an unbiasedway in
order to serve as an epistemically justifiable model selection procedure. Theminibatch
methods have different objectives, e.g., balancing efficient training and overfitting.

This kind of learning does not distinguish among epistemic-temporal locations
(indices) of the samples. It can be thus described as an ill-posed inverse problem of
learning inductive generalizations from samples produced by not necessarily known
empirical processes. De Vito et al. (2005) and Kůrková (2005) established an early
connection between statistical learning theory and ill-posed inverse problems, building
a formal link between learning from observations of some empirical process and
complexity regularization. For perspectives on this kind of generalization learning
from the causal inference point of view, one may refer to Kilbertus et al. (2018), Pearl
(2019) or Schölkopf et al. (2021).

For ill-posed inverse problems, regularizationmethods seek to stabilize the learning
algorithm by controlling the complexity of the machine learning model in terms of the
expressible hypotheses/functions (cf. Shalev-Shwartz & Ben-David, 2014, Chap. 13).
The stability is achieved if small variations in the inputs do not cause significant
changes in the outputs the machine learning model (ibid.). Sections 4 and 5 ana-
lyze the difference between asymptotic and local stability to establish a connection
between the latter and the Material Theory of Induction and thus unpack its impact
on neural networks. Therefore, the epistemic problem lies in the one-to-many relation
between a training dataset and many learnable generalizations, making the justifica-
tion of selecting one of them by regularizing the network challenging. Next, we show
that an epistemic justification of common regularization principles is not easy, which
means that the same applies to the generalizations learned by overparameterized neural
networks.

2 The epistemic justification of complexity regularization and its
challenges

Most attempts to choose the representational capacity of a machine learning model in
the hit-or-miss manner produce two outcomes. First, the selected version of the model
underfits the evidence (training data) because its capacity (complexity) is too low, leav-
ing the generalization underdetermined (cf. Goodfellow et al., 2016, pp. 107–113).
Second, the model might overfit the evidence because its capacity is sufficient to cap-
ture insignificant patterns in data, leaving the generalization overdetermined (cf. ibid.).
The least favorable outcome prevents the generalization capability because the model
can capture negligible patterns, possibly culminating in the evidence memorization.
In the case of overparameterization, which allows training ‘modern’ interpolating net-
works (Belkin, 2021), only overfitting is relevant, since the bias-variance trade-off
transforms into a double descent generalization curve (ibid.). Overparameterization
raises a contradiction in explaining the generalization capability (of networks per-
fectly fitting [noisy] training data) by uniform convergence. Sections 4 and 5 resolve
the contradiction in a different way than the emerging theory of interpolation (cf.
ibid.).
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Regularization principles impose a priori constraints which limit the number of
learnable generalizations by prohibiting certain kinds of generalization-establishing
connections that can be formed among the pieces of evidence (cf. Wahba, 1995,
p. 426). By impeding some connections to stimulate alternative ones, epitomized by
the constraints, regularization seeks to prevent overdetermined generalizations. Such
a priori constraints target the cases of overfitting emerging from the eliminated kinds
of generalization-establishing connections (cf. ibid.). The constraints help to address
the one-to-many relation, which makes an epistemic justification of the generaliza-
tions challenging. The epistemic justification of the constraints behind complexity
regularization is, thus, important.

Regularization terms appended to loss functions used to train the models can also
represent expert (domain) knowledge (Borghesi et al., 2020a, b; Lombardi et al., 2020;
Silvestri et al., 2020). A regularized loss function then balances the accuracy of per-
formed inferences and the level of satisfaction of the constraints, converted into a
regularization term, that represent prior knowledge to ensure the resulting general-
ization possesses the desired properties (Borghesi et al., 2020a, pp. 5–6). Obtaining
such a result directly from data might be difficult and the constraints help to achieve
sample efficiency while ensuring that the generalization does not support improper
inferences, considering the solutions allowed in the given domain (ibid.).1

The most common assumption about complexity regularization suggests that its
effects come from smoothness and simplicity of function approximation (Chen
& Haykin, 2002, p. 2792). Smoothness is accomplished by the generalization-
establishing connections that create local stability (Goodfellow et al., 2016,
pp. 152–153). The constraint seeks to encourage a stable decision boundary among
individual pieces of the evidence to facilitate correct inferences on yet unobserved
similar samples (ibid.). A good model for an evidence-task pair learns a function
approximation that does not change rapidly in a small region (ibid.) to avoid increasing
the estimation error by overfitting. The regularization effects of smoothness depend on
the complexity of the selectedmodel (i.e., a function f from the classF), since anygen-
eralization is the result of a trade-off between the estimation error,EL( fn)− inf

f ∈F
L( f ),

and approximation error, inf
f ∈F

L( f ) − L∗, controlled by complexity regularization of

the class F (Bartlett et al., 2002).2

Norton (2003, pp. 655–657) and others (e.g., Roche, 2018) showed the difficulties
of maintaining a uniform (global) definition of simplicity. Thus, we need to ask how
to epistemically justify complexity penalties when simplicity derives from local facts.
Simplicity treated globally connected parsimony to the likelihood of achieving non-
overdetermined generalizations for evidence-task pairs (cf. Sober, 2015, pp. 148–152,
where the discussed fundamental epistemic goal is to learn a good generalization for

1 It is important to note that in this case the regularization term does not score how simple is the hypothesis
expressed by the network at the current step but rather whether the generated solution meets the application
requirements expressed by the constraints; see, data-driven approaches for solving constrained problems
with neural networks, for example, the Partial Latin Square completion problem (Silvestri et al., 2020).
2 L, L∗—loss and loss of the optimal prediction rule respectively; fn ∈ F—a predictor with L as close
as possible to L∗ (Bartlett et al., 2002). The predictor is learned using an i.i.d. set {z1, . . . , zn} from an
unknown distribution D over some domain Z (ibid.).
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the given evidence-task pair). Since the epistemic goal is to learn generalizations that
support correct inferences on yet unobserved samples, a goal which is distinct from
training models as simple as possible, parsimony as a global principle should not be
invoked to justify complexity regularization. This casts doubt on the epistemic indis-
pensability of tools like Ockham’s Razor and its variations, which are usually counted
among the fundamental principles of regularization theory (cf. Chen & Haykin, 2002,
p. 2832) and treat simplicity as a global rather than local matter.

Simplicity is often replaced with compression, which is understood in the identi-
cally global manner. Compression was used to connect regularization to complexity
developed in information theory and its algorithmic variant (Chen & Haykin, 2002,
pp. 2821–2823; pp. 2817–2818). By relying on the Kolmogorov complexity-based
minimumdescription length, the latter theory expresses complexity as the length of the
shortest program able to reconstruct the input object, with the intuition that increasing
fidelity of the reconstruction accompanied by the decreasing program length creates
regularization effects, i.e., reduces overfitting and thus the generalizations’ overdeter-
mination (Chen &Haykin, 2002, pp. 2817–2818). The former theory utilizes Shannon
entropy and rate-distortion to show that entropyminimization has regularization effects
which control the models’ complexity (Chen & Haykin, 2002, pp. 2821–2823). It is
expected that minimizing the conditional entropy between the evidence and the gen-
eralization creates sparse connections among the pieces of evidence (ibid.). Learning
should spread out the generalization-establishing connections among a limited number
of the network’s hidden units, reducing its complexity (cf. ibid.).

Both theories imply that successful generalization learning minimizes the amount
of information needed to produce a good model for the given evidence-task pair. This
relationship between generalization and compression is described by the information
bottleneck theory, positing a positive relation between maximizing the information
about the task at hand and keeping the information about the evidence sparse (Tishby
et al., 1999). Given an evidence-task pair, mutual information between the evidence
and the generalization emerges from compression in an information bottleneck, repre-
senting a good model for the evidence-task pair. Considering the regularization’s role
in the model selection, compression can act as a drop-in replacement for simplicity
treated globally, insomuch as it, too, offers a global remedy for overfitting and, thus,
the generalizations’ overdetermination.

Models which are best at compression, i.e., keep complexity at bay by minimizing
the amount of information which needs to be retained to perform well on the given
evidence-task pair, should be selected. Such a refocus from simplicity creates merely
another general inductive inference schema (cf. Schurz, 2010, p. 269 [2]). Rather than
seeking to perform correct inferences on yet unobserved samples, under this schema,
uniformly, the best model outperforms all other models at compressing the evidence.

Empirically, simplicity and compression treated globally as uniform principles
depend on non-local facts. To produce an epistemic justification for the complexity
regularizationbasedon simplicity or compression treated globally, every local andnon-
local evidence-task pair would have to confirm that simplicity or compression is the
reliable guide for obtaining good models able to generalize in any environment. While
promising a general inductive inference schema, the presupposition which underpins
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it (simplicity or compression treated globally being the reliable guide) remains for-
mal/abstract (cf. ibid.) by depending on unavailable non-local facts populating remote
or unreachable epistemic locations. Hence, the epistemic justification for complexity
regularization of neural networks cannot be obtained in this way because it remains
incomplete or circular, i.e., completion by an epistemically unjustifiable inductive
inference. It is also helpful to notice that if simplicity does not equal compression
(both treated globally as uniform principles), then the epistemic justification of com-
plexity regularization would face an additional puzzle of meta-selecting among these
two and possibly other global principles. Since the selection process would be guided
by predictive success ofmodels developed according to the available global principles,
it could be implemented asmultiple-favoritemeta-induction (Schurz, 2008, 2019) over
the generalization success of candidate models. The selection based on past predictive
successes provides optimality justification for the applied complexity regularization
according to the foundation-theoretic epistemology by Gerhard Schurz (2022, 2024).

Here, we focus on situations in which the requirements of statistical learning theory
are satisfied (i.i.d. samples from a fixed distribution over some instance domain),
which justifies object-level induction but leaves open the epistemic justification of
complexity regularization allowing overparameterized models to generalize. Norton’s
(2003) Material Theory of Induction is used to accomplish this. We also explain the
distinction between local and optimal justifications in machine learning, depending
on the satisfiability of the requirements of statistical learning theory.

3 The lottery ticket hypothesis

Deep artificial neural networks possess representational capacities which often suffice
for memorization of the training data (Zhang et al., 2017). Yet when performing
inferences on so far unobserved samples drawn from the same distribution on the
instance domain that produced the training data, they generalize well. Hence, due to
implicit and/or explicit regularization, the networks avoid overfitting even though their
initial complexity invites it. Despite the lack of robust complexitymeasures (Dziugaite
et al., 2020) that would provide reliable and accurate bounds on the generalization
error,3 experimentation uncovered the likely reason for why overparameterization
does not hurt generalization and is, in fact, rather beneficial (Frankle & Carbin, 2019).
During training, an overparameterized network can undergo principled or unstructured
prune-expand cycles, producing a version of the network that generalizeswell (Gordon
et al., 2018; Frankle & Carbin, 2019 respectively, also Hoefler et al., 2021). The Lotter
Ticket Hypothesis posits that a large network can morph into or contains a winning
ticket whose structure fits the local facts found in the evidence and the altered network
reinforces the inductive biases vital for the task at hand. The cycles that prune and
(re)create parts of the network establish a local inference schema as close as possible to
the optimal model. The regularized schema resulting from the ‘prune-expand lottery’
is the basis of the networks’ generalization capability.

3 The generalisation error equals the error rate of the inductive inference that underlies Definition 1 of
inductive generalisation, i.e., 1 − r .
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Prune-expand cycles, morphing the initial networks into winning tickets, reflect
Norton’s notion of inductive risk localization (cf. Norton, 2003, pp. 664–665). First, a
human expert forms a conjecture based on their experience and selects a neural network
whose architecture represents a reasonable starting point for the given evidence-task
pair. This architecture has been perhaps successfully applied to similar problems and
it is regarded as generic enough to cover a broad range of learning scenarios. At this
point, the inductive risk depends on the generic architecture and is not yet localized.
Only guarantee regarding its generalization capability stems from non-local domains
and from the intuition that networks with the right level of complexity generalize.
Following Norton, in such a situation the inductive risk remains separated from the
local domain (evidence) and ‘resides within the schema’ (Norton, 2003, p. 665).

Further, since it is difficult to come up with just the right complexity at the
schema-level, reduction of the risk becomes difficult as well. Vacuous bounds on the
generalization error of overparameterized neural networks support Norton’s insight
that it is hard to assess the involved inductive risk at the schema level (ibid.). Select-
ing a network from some family and predicting the correct level of the network’s
complexity that leads to a low generalization error before performing any localization
of the inductive risk is hard. One way of achieving this is via scaling laws that can
predict the generalization error from parameter counts, resulting from the density,
depths, and width of neural networks from some family and for a dataset (Rosenfeld
et al., 2021). Scaling laws and their parameters were derived using iterative magni-
tude pruning (ibid.), a kind of complexity regularization (see Sect. 5), which localizes
the inductive risk. A scaling law fitted to a family and dataset can be used to find
a network that minimizes the parameter count given a generalization error constraint
without experimentation (ibid.). This predictive capability is epistemically justified by
prior experiments that identified invariance, i.e., a local fact, among different networks
in terms of their density, depth, and width, sharing the same generalization error on
a dataset (ibid.). If this local fact holds, then re-localization of the inductive risk is
unnecessary and inferences by the scaling law on the generalization capability of the
candidate networks are epistemically justified. If the local domain changes, e.g., a dif-
ferent architecture-dataset pair, then re-localization of the inductive risk is necessary
to find a new version of the invariance, a different local fact as per Norton, justifying
the inductive inferences on the generalization error. It is important to note that not all
the samples from the dataset impact the generalization error equally. The localization
of inductive risk can be influenced not only by pruning the network but also by pruning
the dataset (Paul et al., 2021).

The possible expand phase following the regularization (pruning) of the neural net-
work challenges the role of sparsity as a uniform principle. The goal is not to produce
the sparsest network but one which is regularized to satisfy additional requirements on
the generalization. Often, an optimal model is required to generalize within a certain
computational budget. Apart frommeasuring how well the network performs the task,
there might be a limit on the number of computational operations per inference (Gor-
don et al., 2018). In case real-time reactions are required, every inference needs to fit
a narrow time window. If, by using more operations, the inference misses the window,
then the underlying generalization no longer serves its purpose. Relatedly, for embed-
ded systems, lower energy consumption might be preferred to the network’s accuracy
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(Banbury et al., 2021). In this case, the process of localization of inductive risk can be
cut off after reaching a certain number of operations per inference. This threshold then
translates into a reduced generalization capability. However, given the task at hand, the
generalization capability might be still sufficient. Since a rapid growth in the number
of machine learning applications is anticipated, gratuitous generalization capabilities
at the expense of increased energy consumption would make the localization of induc-
tive risk dissipative. Principled prune-expand cycles that support multi-objective risk
localization can lead to favorable trade-offs between the inductive risk and the energy
consumption and/or latency of the inferences.

For example, pruning can be used to identify and eliminate parts of the neural
network consuming the optimized resource unproductively (Gordon et al., 2018). If we
aim at the number of operations per inference, then such an ablation induces rewiring
of the network that reduces the computational demands while most likely hurting
its generalization capability. The network might become too sparse and localize the
inductive risk only imperfectly. In turn, during expand phases the network receives a
targeted boost of representational capacity by re-growing some of the ablated parts
(ibid.). The expansion aims at the effective parts of the network (ibid.) to ensure that the
increase in its generalization capability does not come from a growth of the resource
consumption that is being minimized. By repeating the prune-expand cycle several
times, the network undergoes localization of inductive risk, and the resulting inference
schema supports a balanced generalization at a reasonable cost.

The MorphNet algorithm (Gordon et al., 2018) is a good example of the cycle.
The prune phase can, for instance, target inference costs (floating point operations per
second) by using a regularizer that removes neurons (the neural network’s nodes) or
even whole layers according to their computational costs (ibid.). This will decrease
the network’s performance. To compensate for it, a width multiplier adds neurons
uniformly to all layers (ibid., e.g., expands each layer by 40%). Heavily pruned layers
will, thus, grow less than the important ones which were not severely impacted by
pruning. This leads to a better distribution of resources in the network because its
efficient parts will receive a boost at the expense of the rest of the network.

Localization of inductive risk can be also obtained by unstructured pruning of the
neural network’s weights. We focus on this type of pruning, please refer to Sect. 5,
pages 24–25, and to Algorithms 1 and 2 for a detailed explanation. According to
the Lottery Ticket Hypothesis (Frankle & Carbin, 2019), overparameterized networks
contain ‘winning tickets’ (sparse subnetworks) responsible for the generalization capa-
bility, which should not be possible given the network’s initial complexity. A winning
ticket is produced by pruning negligible parts of an overparameterized network during
complexity regularization that localizes the inductive risk and creates a local schema.
To recover the generalization error of the overparameterized network, the winning
ticket depends on the initialization lottery (ibid.).When trained in isolation, theweights
of connections in the winning ticket subnetwork cannot be reinitialized but have to be
reset to the values at or close to the initialization of the overparameterized network
(ibid., more on the Reset and Rewind algorithms in Sect. 5). As a result, sparsity alone
is insufficient to localize inductive risk and cannot epistemically justify complexity
regularization.
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Section 5 shows when iterative magnitude pruning of neural network connections
satisfies theMaterial Theory of Induction and becomes an epistemically justified com-
plexity regularization that does not depend on unjustifiable inductive inferences about
the regularizing effects of simplicity. Since according to common complexitymeasures
Empirical Risk Minimization is a priori asymptotically unstable for overparameter-
ized networks, the epistemic justification for regularization is vital because uniform
convergence is no longer certain. The uncertainty comes from uninformative bounds
on the generalization error of overparameterized networks. In this situation, as will be
explained, Empirical Risk Minimization (ERM) suffers from trivialization identical
to one prescribed by Norton’s No-Go theorem for inductive logic (2019), although in
each case the cause for trivialization is different. For this reason, we speak about a
No-Go-ERM result to distinguish it from the general No-Go result by Norton (2019).
The two following sections show that as the general No-Go result can be blocked by
the Material Theory of Induction, the same applies to No-Go-ERM, which opens a
way for the desired epistemic justification of complexity regularization. Limits of the
justification are discussed as well.

4 No-Go results for empirical risk minimization

The Material Theory of Induction (MTI) blocks No-Go results that follow from pos-
sible asymptotic instabilities of Empirical Risk Minimization (ERM; Vapnik, 1995,
pp. 33–45 for the consistency conditions of learning processes) applied to overparam-
eterized neural networks under increasing the size of the training dataset (increasing
in the number of observations). Due to the possible asymptotic instabilities, two-sided
uniform convergence of empirical risks to risksmight fail to hold. In such a case, ERM,
considered as an inductive rule, can become trivialized in the same way as inductive
rules facing disjunctive refinements under Norton’s No-Go theorem (2019). The trivi-
alization of ERM, following from the absence of uniform convergence, can be blocked
by MTI even though the trivialization is caused by evidence strengthening instead of
disjunctive refinements discussed by Norton (2019). Instead of solving the asymptotic
instability by ‘flattening’ (equalizing) all strengths of inductive support to allow trivial
convergence (cf. Norton, 2019, pp. 1131–32), the No-Go-ERM result can be blocked
by an external inductive supplement (Norton, 2019, pp. 1133–34). In the present case,
it is the preference for the local context consisting of an overparameterized neural net-
workwhich contains a winning ticket for the data distribution at hand. For such tickets,
ERM establishes the strength of inductive support only locally, without requiring the
asymptotic stability for learnability under the general setting (Vapnik, 1995, p. 18),
which invites the No-Go-ERM result and trivialization of inductive rules.

To this end, we proceed as follows. First, Vladimir Vapnik’s and Alexey Cher-
vonenkis’s work on the necessary and sufficient conditions for two-sided uniform
convergence (1971) is linkedwith Norton’s No-Go theorem for inductive logic (2019).
It is shown thatwhen two-sided uniformconvergence fails because asymptotic instabil-
ities cannot be ruled out, ERM becomes an instance of Norton’s incomplete inductive
rule that is unable to escape trivialization. Second, empirical consequences of the
Lottery Ticket Hypothesis (LTH, and of other principles discussed in the previous
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section) are identified as the external inductive supplement delivered by MTI to block
the No-Go-ERM result caused by evidence strengthening. Therefore, global uniformi-
ties like simplicity or compression cannot block the No-Go-ERM result because they
require a possibly trivial asymptotic stability (by equalizing the strengths of ERM’s
inductive support across different training dataset sizes) to secure two-sided uniform
convergence on any data distribution D. Any such requirement, trivial or otherwise,
was shown to be violated for non-trivial learning problems that are learnable without
uniform convergence (Shalev-Shwartz et al., 2010).

MTI overcomes the possible trivialization of ERM by replacing the asymptotic
stability with a locally derived strength of inductive support for the strictly local con-
vergence of the empirical risk to the risk given a fixed data distributionD and a sample
S ∼ Dm of the size m. Therefore, the locally winning lottery tickets block the No-
Go-ERM (trivialization) result for ERM. Further, it is assumed that S ∼ Dm consists
of i.i.d. (independent and identically distributed) instances z1, . . . , zm drawn fromD.
The i.i.d. requirement can be replaced with a less restrictive notion, i.e., exchangeabil-
ity defined as invariance of the underlying ground-truths under changing conditions,
allowing permutations of the instance indices (cf. Arjovsky et al., 2019), where the
instances are drawn from a mixture of multiple data distributions and are no longer
required to be i.i.d. MTI blocks the No-Go result in both situations. The following
focuses on the i.i.d. presupposition due to its prevalence in the literature concerned
with uniform convergence and two-sided uniform convergence bounds. The exposi-
tion assumes that D is fixed and unknown in line with the classical presuppositions
of Statistical Learning Theory (Vapnik, 1999, p. 988). For an optimality-based jus-
tification of inductive rules under distribution shifts, one may refer to Spelda and
Stritecky (2021), utilizing the work of Gerhard Schurz (2008, 2019) on the optimality
of meta-induction which delivered the well-known result concerning Hume’s Problem
of Induction (1739/1978).

4.1 The absence of uniform convergence and the No-Go-ERM result

We begin with Definition 2 of two-sided uniform convergence by Shalev-Shwartz
et al., (2010, pp. 2639–40), providing a common notation for the original result (cf.
Vapnik, 1995, Chap. 2):

sup
D

ES∼Dm

[
sup
h∈H

∣∣R(h) − R̂S(h)
∣∣] m→∞→ 0

where H represents a hypothesis class, h a particular hypothesis, R(h) =
Ez∼D[L(h; z)] the risk of the hypothesis h (i.e., the risk of the trained network esti-
mated on a test set), and R̂S(h) = 1

m

∑
z∼SL(h; z) the empirical risk of the hypothesis

h (i.e., the empirical risk of the network on the training set). Additionally, D refers to
a probability distribution over the input domain Z comprised of instances z. Further,
S is a set of samples S = {z1, . . . , zm} resulting from m draws from the distribution
D, that is S ∼ Dm .
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For a binary classification problem, involving a fixed unknown distribution D on
an instance domain Z = X × {0,1} and the 0− 1 loss function {h(x) �=y}, where h ∈ H
and h : X �→ {0,1}, uniform convergence and, thus, learnability follows from H’s
finite VC dimension (Vapnik & Chervonenkis, 1971; Shalev-Shwartz et al., 2010,
p. 2640). VC dimension of the hypothesis class H is a combinatorial measure ofH’s
capacity, which captures the number of possible separations of S ∼ Dm between
{0,1} realizable by hypotheses from the classH (Vapnik & Chervonenkis, 1971). VC
dimension can be used inD-independent uniform convergence bounds which depend
only on the hypothesis classH expressible by a givenMLmodel (ibid.; Chervonenkis,
2015). However, the values of VC dimension for overparameterized (state-of-the-
art) deep artificial neural networks are large while R(h) remains stable or decreases
(cf. Valle-Pérez & Louis, 2020, pp. 13–15; Zhang et al., 2017, 2021). As a result,
the core component of D-independent uniform convergence bounds, i.e., a ratio of
the value of a D-independent complexity measure to the sample size m, becomes
vacuous and disconnected from the trend of R(h). Therefore, ERMundergoes a special
case of trivialization where the two-sided uniform convergence from Definition 2
becomes bounded by a trivial (large) limit which does not guarantee the conditions
for convergence of R̂S(h) to R(h). By modifying Definition 2 accordingly, we obtain
Definition 3 of a two-sided uniform convergence bound (cf. Nagarajan&Kolter, 2019,
p. 5):

∀DPrS∼Dm
[
suph∈H

∣∣R(h) − R̂S(h)
∣∣ ≤ εunif(m, δ)

] ≥ 1 − δ

where εunif(m, δ) becomes trivial (large) considering the loss L, with δ expressing the
probability of drawing an abnormal S ∼ Dm (ibid.). As an inductive rule, ERM is
trivialized by a weak strength of inductive support for two-sided uniform convergence
whichmight fail due to possible asymptotic instabilities of ERMwithin the loose upper
bound εunif(m, δ) from Definition 3. This D-independent No-Go result for ERM can
be blocked by replacing the asymptotic stabilitywith a local stability ofwinning tickets
drawn from overparameterized networks to fit the data at hand (as prescribed by LTH).
MTI blocks the No-Go result (trivialization) by justifying a strictly local convergence
of R̂S(h) to R(h) in a winning ticket, which does not require the D-independent
asymptotic stability of ERM.

Considering D-dependent uniform convergence bounds, the situation is equally
problematic. Nagarajan and Kolter (2019) showed that uniform convergence bounds
based on weight norms (e.g., the distance of the network’s weights from their initial-
ization) of fixed deep networks trained with stochastic gradient descent (SGD, batch
size 1 or generally small) grow with the sample size m. Schematically, considering a
particular D, the harmful growth occurs on the right side of the following inequali-
ty—Definition 4 [cf. Nagarajan & Kolter, 2019, p. 4; for the full definition of the left-
and right-side terms, cf. Nagarajan’s and Kolter’s equation (2019)]:

R(h) − R̂S(h) ≤ O
(

some weight norms√
m

)
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To serve as a non-trivial uniform convergence bound on generalization error
R(h) − R̂S(h), the numerator of the right-hand side ratio must show an inverse trend
to the value of the denominator (Nagarajan & Kolter, 2019, pp. 3–4). However, it
has been observed that the opposite is the case, i.e., norm-based uniform convergence
bounds increase with the sample size m because weight norms of a trained network
(the numerator of the ratio on the right-hand side of Definition 4) increase with the
sample sizem (Nagarajan&Kolter, 2019). As a result, the uniform convergence bound
on generalization error evolves in the opposite direction to the observed generalization
error—the former increases as the latter decreases with the growing sample size m
(ibid.).

This divergence causes the second type of No-Go results for ERM. Since the bound
grows with the sample size m, the necessary and sufficient condition for ERM’s con-
sistency, guaranteeing the uniform convergence of R̂S(h) to R(h), is violated. If we
repeatedly grow m to increase the size of the training dataset S ∼ Dm , the asymp-
totic stability does not hold because the strengths of ERM’s inductive support do not
converge to a single value,4 guaranteeing two-sided uniform convergence of R̂S(h) to
R(h). To reinstate the asymptotic stability in this situation requires to set a (trivial)
limit equalizing all strengths of inductive support reflected by different values of the
right-hand side of Definition 4 for each S ∼ Dm . Imposing such a limit would bring
the asymptotic stability back, however, at the cost of trivializing ERM as an inductive
rule, thus bringing about the second type of the No-Go-ERM result. For overparam-
eterized networks under global uniformities such as simplicity or compression, the
necessary and sufficient condition for two-sided uniform convergence can be brought
back only if all strengths of inductive support become flattened to an arbitrary limit.
This, however, defeats the purpose of speaking about ERM’s consistency in the first
place. Assigning to each value of the bound an equal prior probability of bringing
about uniform convergence (the indifference principle) leads to equiprobability issues
that will make ERM trivial or asymptotically unstable [for a foundational exposition as
to why the indifference principle cannot be used to provide a non-circular justification
for inductive rules see Gerhard Schurz (2019, Sect. 4.5)].

MTI can be once again used to block the No-Go result by turning ERM into a
local inductive rule (cf. Schurz, 2010, pp. 268–69), where the strengths of its induc-
tive support derive from a local stability. In terms of LTH, the local stability results
from drawing a winning ticket from an overparameterized network such that the win-
ning ticket fits a training dataset S ∼ Dm at hand and generalizes well. Therefore,
the epistemic justification of ERM is recovered by abandoning the two-sided uni-
form convergence of R̂S(h) to R(h) via the ERM’s asymptotic stability which invites
trivialization and the No-Go results.

To bring together both No-Go results for ERM identified in the literature, we can
express the two discussed two-sided uniform convergence bounds on generalization

4 In this case, strengthening of the evidence (iteratively growing m) has the same effect on ERM as
disjunctive refinements on non-trivial inductive rules—trivialization of convergence. While the effect is
identical, the No-Go-ERM result is caused by conjunctively increasing the sample size while Norton’s
No-Go theorem (2019) is caused by disjunctive refinements of a partition of the evidence. We are grateful
to a referee for the journal for helping us to fully set these situations apart.

123



   74 Page 14 of 24 Synthese           (2024) 204:74 

error as a function of the sample size m. For the first failure mode, concerning the D-
independent two-sided uniform convergence bound (VC dimension-based), the bound
decreases with increasing m at the O( 1

m

)
rate (cf. Bousquet et al., 2021). For the sec-

ond failure mode, concerning theD-dependent two-sided uniform convergence bound
(weights norm-based), the bound increases with increasing m at the �

(
m0.68

)
rate

(Nagarajan & Kolter, 2019, p. 4–5). In the former case (D-independent), where in
practice we observe a decreasing generalization error R(h) − R̂S(h) with an increas-
ing m, the two-sided uniform convergence bound does not follow the trend due to
the unfavorable upper bound on the rate of the learning curve convergence. In the
latter case (D-dependent), where in practice we observe a decreasing generalization
error R(h) − R̂S(h) with an increasing m, the two-sided uniform convergence bound
increases due to the non-decaying lower bound on the rate of the learning curve con-
vergence. In both cases, the consistency condition for ERM is not satisfied because
the bounds on the learning curves convergence do not guarantee the asymptotic stabil-
ity of ERM. Therefore, ERM can be de-trivialized by LTH and other principles with
regularizing effects that satisfy MTI. Well-performing models are then produced by
local empirical risk minimization, which does not require the asymptotic but merely a
local stability. Such a stability becomes free of any dependence on global uniformities
such as simplicity or compression.

5 The local stability under LTH andMTI

We now take a closer look at the explanations of LTH that guarantee a local stability
of ERM for overparameterized networks and de-trivialize ERM under MTI. We rely
on the fact that LTH and its core component, i.e., iterative magnitude pruning (IMP)
of neural networks’ weights (Frankle & Carbin, 2019) playing the regularization role,
satisfies the MTI’s requirements for inductive risk localization as explained in Sect. 3.
The aim of this section is to provide a characterization of the strengths of ERM’s
inductive support in the local stability regime and its ability to deliver good models
fitting training datasets at handwhile generalizing well. The section is divided into two
parts. First, the works connected to the instability analysis of lottery tickets (Frankle
et al., 2020a), a major development following LTH (Frankle & Carbin, 2019), are
reviewed to provide a measurable concept of local stability. Second, examples of LTH
in various empirical contexts are given, including natural language processing (Chen
et al., 2020; Yu et al., 2020), computer vision (Chen et al., 2021; Morcos et al., 2019),
and reinforcement learning (Yu et al., 2020), to show that the local stability leads to
successful local inductive schemas in different empirical contexts. Table 1 lists the
results from both parts.

The original explanation behind the LTH’s success builds on the assumption that
with the increasing size of a neural network increases the likelihood that the network
contains a winning ticket (cf. Frankle & Carbin, 2019). That is, as outlined in Sect. 3,
a subnetwork trainable to the test accuracy of the original network if the parameters
(weights of the connections between nodes) of the former are reset to their values at
initialization of the latter (ibid.).
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Table 1 An overview of recent LTH results

Paper Result

Frankle and Carbin 2019 LTH & Reset Algorithm (Algorithm 1)

Frankle, Dziugaite, Roy, and Carbin 2020 Instability Analysis & Rewind Algorithm
(Algorithm 2)

Frankle, Schwab, and Morcos 2020 Early Phase Training Dynamics and its relation to
LTH, considering Algorithms 1 and 2

Renda, Frankle, and Carbin 2020 Comparison of Rewind Algorithm, including
Learning Rate Schedules Rewinding, and
Network Fine-Tuning

Frankle, Dziugaite, Roy, and Carbin 2021 Critical Investigation of Pruning at Initialization

Paul, Chen, Larsen, Frankle, Ganguli and
Dziugaite 2023

What is Encoded in Pruning Masks?

Morcos, Yu, Paganini, and Tian 2019 Transferability of Winning Tickets

Yu, Edunov, Tian, and Morcos 2020 Winning Tickets for Reinforcement Learning and
Natural Language Processing

Chen, Frankle, Chang, Liu, Zhang, Carbin, and
Wang 2021

Matching Subnetworks in Pre-Trained Computer
Vision Models, using Supervised and
Self-Supervised Pre-Training

Chen, Frankle, Chang, Liu, Zhang, Wang, and
Carbin 2020

Matching Subnetworks in Pre-Trained Language
Models

Before we characterize the process of finding subnetworks in overparameterized
networks, for which we are seeking ERM’s local instead of asymptotic stability, we
provide basics on the pruning method (IMP). IMP falls into the unstructured pruning
category (Blalock et al., 2020). Compared to structured pruning strategies, which
remove entire neurons (the network’s nodes), unstructured pruning targets individual
parameters, that is, the neural network’s weights (ibid.). Considering Algorithms 1
and 2 below, each pruning iteration removes a fraction of the smallest magnitude,
non-zero weights, which results in removing some connections between individual
neurons located in different layers (ibid.). This creates the so-called pruning mask.
At each iteration, the pruning mask delimits a sparse subnetwork by masking some
connections between neurons by removing the fraction of the smallest magnitude,
non-zero weights.

The aim is to find a subnetwork that will have a similar test accuracy as the original
dense network. To achieve this, Algorithm 1 (Frankle & Carbin, 2019) resets the
unpruned weights to their values at initialization of the dense network and trains the
subnetwork to convergence. Pruning, resetting, and training is repeated several times
to reach the final level of the subnetwork sparsity. Because Algorithm 1 was found
to not work in every situation (see below), Algorithm 2 (Frankle et al., 2020a) was
introduced. It replaces weights reset with the ‘rewind’ operation, which sets the value
of unpruned weights in the mask to their value at the rewind point (ibid.). The rewind
point is a state of the network after k training steps.
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Sparse subnetworks produced by Algorithm 1 are considered winning tickets
because they can be trained to the similar test accuracy as the dense network thanks to
‘lucky’ initialization of the weights that identify the subnetwork according to the final
pruning mask (Frankle & Carbin, 2019). Sparse subnetworks produced by Algorithm
2 are considered ‘matching’ instead of winning because the weights in the pruning
mask are not reset but changed back (‘rewound’) to their values at the training step
k > 0 (Frankle et al., 2020a).

Following Frankle and Carbin (2019), and Blalock et al. (2020) for generics on
neural network pruning, the algorithm searching for winning tickets using IMP is
given as follows, starting with definitions:

f (X; W0) is the original neural network, where W0 ∼ DW are its initial parameters;
m = 1|W | is an initialized pruningmask; f (X; m  W0) is a sparse subnetwork created
by applying a pruningmaskm ∈ {0,1}|W0| to the initial parameters W0; f (X; m  Wk)

is a sparse subnetwork created by applying a pruningmaskm ∈ {0,1}|Wk | after training
for k iterations until obtaining the parameters Wk . Finally, X is the training dataset
and  element-wise product operator.

Algorithm 1—Reset (Frankle & Carbin, 2019)
1: create f (X; W0)

2: create m = 1|W |
3: train f (X; W0) to convergence; or for k iterations for Algorithm 2—Rewind

(below)
4: for n ∈ {1, . . . , N } do
5: prune the p

1
n % smallest magnitude parameters, i.e., if W0[i] is pruned, then

m[i] = 0 to get a revised m, and reset the rest of the weights to W0

6: train f (X; m  W0) to convergence
7: end for
8: return m ∈ {0,1}|W0|, W0

Lines 4–6 represent IMP searching for a winning ticket. That is, a non-trivially
sparse subnetwork f (X; m  W0) capable of recovering the test accuracy of the orig-
inal dense network. Such a winning ticket results from the local stability of ERM
delivered by IMP which helps to localize the inductive risk on the dataset at hand
as prescribed by MTI. However, with the increasing complexity of datasets and net-
work architectures, the IMP search for winning tickets becomes challenging—the
subnetworks can recover the test accuracy of the original dense network only at trivial
levels5 of sparsity (Frankle et al., 2020a), threatening to bring back the No-Go results
for ERM. This led to the introduction of the rewind operation (Algorithm 2) together
with the instability analysis of lottery tickets, which identified the cause behind LTH
failures in complex settings (ibid.).

5 The measure of triviality is established by drawing from the original dense network a random subnetwork
matching the IMP subnetwork’s accuracy (Frankle et al., 2020a).
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Algorithm 2—Rewind (Frankle et al., 2020a)
Lines 1, 2, 4 are identical to Algorithm 1; Line 3—train for k iterations to get Wk ,
see Algorithm 1
5: train f (X; m  Wk) to convergence (or for T steps)

6: prune the p
1
n % smallest magnitude parametersa, i.e., if Wk[i] is pruned,

then m[i] = 0 to get a revised m, and rewind the rest of the weights to Wk

7: end for
8: return m ∈ {0,1}|Wk |, Wk

aAlternatively, a fixed pruning ratio can be used, e.g., during each iteration, prune a
fraction of the smallest magnitude, non-zero weights (Paul et al. 2023). In general,
pruning can be based on scoring parameters (weights)—the absolute value approach
is common, but there are alternatives, see Blalock et al. (2020)

The rewind on Line 6, which replaced the reset from Algorithm 1, allows the
algorithm to find sparse subnetworks matching the test accuracies of the original
dense networks in complex settings where Algorithm 1 fails. However, the sparsity
level of the subnetworks will become non-trivial only if they remain robust to SGD
noise (caused by augmentations and shuffling of the dataset between training runs,
random seeds, ibid.). Frankle et al.’s (2020a) instability analysis is based on training
two copies of a network with parameters W 1

k , W 2
k and two different samples of SGD

noise to W 1
T , W 2

T and determining if their training errors remain non-increasing (ibid.).
The robustness to SGD noise is indicated by linear mode connectivity which occurs if
there is a non-increasing path which connects the two minima resulting from training
the pair of networks (ibid.). The aim is to find an iteration k � T at which the network
becomes robust to SGD noise because then, if its parameters are rewound to k and an
appropriate pruning mask m is applied, the resulting IMP network f (X; m  Wk) can
match the test accuracy of the dense network at a non-trivial level of sparsity in large
scale settings (ibid.).

The possibility to distinguish between matching and non-matching IMP subnet-
works via instability analysis provides the necessary condition for the local stability.
That is, the No-Go results for ERM discussed in the previous section become blocked
if the matching subnetworks, identified using MTI-satisfying IMP, are robust to SGD
noise. The robustness guarantees a local risk minimization (i.e., the inductive risk
localization in MTI terms) at non-trivial levels of networks’ sparsity, which removes
the requirement for ERM to be asymptotically stable for overparameterized networks.
Hence, ERM is de-trivialized by removing its dependence on global uniformities that
can no longer be used to guarantee convergence of R̂S(h) to R(h).

We now formally link ERM’s local stability (and de-trivialization that blocks the
No-Go-ERM result) with the condition for the IMP’s success in finding matching
subnetworks.
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IMP does not find a matching subnetwork at a round n if the sparsity level of
the pruning mask prevents the axial subspace from intersecting the LCSS (see, for
example, Paul et al., 2023, Fig. 3). The robustness of SGD to perturbations is still
required, as in Frankle et al. (2020a), but instead of testing linear mode connectivity
between a pair of networks at single level of sparsity, Paul et al. (2023) is testing
linear mode connectivity between subnetworks at successive levels of sparsity. ERM’s
local stability is a feature of the geometry of the IMP error landscape which enables
local convergence of R̂S(h) to R(h) on i.i.d. samples in sparse matching subnetworks
identified by IMP inside overparameterized networks.

There is one additional point regarding justification of the local convergence. Let
H be the hypothesis class expressible by an overparameterized neural network f .
ERM can choose several h ∈ H hypotheses with the same test error, recall that each
matching subnetwork achieves an ε-close test error at a different level of sparsity. Since
axial subspaces corresponding to pruningmasks of increasing sparsity are nested (Paul
et al., 2023, Fig. 1), a pruning mask mn produced by IMP already contains a sparser
mask mn+1 which can be used to train a matching subnetwork if the mask’s axial
subspace intersects the LCSS. If we consider each matching subnetwork a hypothesis
hi ∈ H with the same empirical predictions (the subnetworks’ test error is ε-close
to each other), the epistemic justification of local convergence can be improved by
Schurz’s (2024, p. 262) ‘StrengthenedOptimality Principle’ (SOP). Thanks to the i.i.d.
assumption, ERM can find the optimal, that is, matching subnetworks, and since the
axial subspaces defined by the pruning masks are nested, it is possible to use IMP to
discard all but the last pruningmaskwhose axial subspace still intersects the LCSS and
could be, thus, used to train the sparsest matching subnetwork. This characterization
seems to fit SOP, which could give us a reason to believe that ERM de-trivialized by
IMP produces strongly optimal models.6

6 We are grateful to a referee for the journal for guiding us to focus on SOP.
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Further results connected to the local stability include an exploration of the early
phase training dynamics with IMP and the rewind algorithm (Frankle et al., 2020b),
finding details about networks’ non-robustness to weights manipulation, that reveals
the early phase as crucial for winning/matching tickets performance (ibid.). Renda
et al. (2020), by extending the rewind procedure to learning rates during training,
established that not only weights rewinding outperforms network fine-tuning but also
that rewinding of learning rate schedules combined with IMP canmatch or outperform
Algorithm 2. This adds a new perspective on the factors contributing to the local stabil-
ity. Frankle et al. (2021) assess methods attempting to prune networks at initialization,
all of which currently underperform the lottery ticket rewinding, and investigate why
the methods pruning at initialization fall short of IMP applied after training and what
makes their purported justification suspect.

Under MTI, the strengths of ERM’s inductive support derive from instability anal-
ysis within the LTH framework. It is natural to ask about empirical characteristics
of winning/matching tickets in different contexts. Morcos et al. (2019) investigated
the transferability of tickets found using a particular training setup, i.e., a dataset and
an optimizer, to other settings. It was established that if the network topology, the
empirical domain (natural images [standard benchmark datasets]), and the task to be
performed on this domain (object classification) remain fixed, then the tickets iden-
tified using one setup can achieve similar performance in different training setups,
i.e., datasets and optimizers, hence achieving transferability which improves with the
dataset size (ibid.). A locally stable empirical riskminimization helps to learn transfer-
able inductive biases that, as per MTI, remain conducive to good generalization per-
formance as long as the facts in local domains remain stable and allow transferability.

Apart from supervised learning on the domain of natural images, Yu et al. (2020)
established that it is possible to find winning tickets, performing similarly as their
dense antecedents, also for neural network architectures used in natural language pro-
cessing and reinforcement learning, providing evidence that LTH applies beyond the
original empirical setting of Frankle andCarbin (2019) or Frankle et al. (2020a). Impor-
tantly, Chen et al. (2021) discovered that large computer vision networks, pretrained
via supervised or self-supervised learning, contain subnetworks transferable to down-
stream tasks, such as classification or segmentation, that can match the accuracy of
the networks using unpruned pre-trained weights. This second kind of transferability
again shows that if the facts in local domains remain stable enough,MTI can be used to
explain and justify the local stability of ERM. Finally, Chen et al. (2020) made a sim-
ilar observation concerning matching subnetworks and pre-trained language models,
also discerning the factors that limit the downstream transferability of the former.

In sum, instead of relying on global uniformities, such as simplicity or compres-
sion, the combination of MTI and LTH suggests that ERM can become locally stable
if the following conditions are met. An overparameterized network, a training/testing
dataset, and an algorithm, such asAlgorithms 1 or 2, able to identifywinning ormatch-
ing subnetworks (respectively) that localize the inductive risk (refer to comments on
Algorithms 1 and 2 and to Definition 5 of matching subnetworks provided above for
precise information on the identification process). Additionally, for R̂S(h) to converge
to R(h), it is required that S ∼ Dm consists of i.i.d. instances z1, . . . , zm ∈ Z drawn
from a fixed distributionD as prescribed by Statistical Learning Theory (Vapnik, 1999,
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p. 988). The same requirement applies to any subsequent (testing or deployment-time)
samples. Otherwise, it can no longer be epistemically justified that the inductive risk
is localized. This represents a strong inductive inference on data uniformity past exist-
ing observations, which can be also identified at the core of MTI as the required
stability of local facts. Local facts underpin instance domains as well as the prob-
ability distributions over them. What is to be done if the inference on uniformity
cannot be reasonably justified and both the asymptotic and local stability of ERM
as an inductive rule will become violated? The management of inductive risk has to
be taken over by multiple-favorite meta-induction over candidate models inspired by
online learning with expert advice (Schurz, 2008, 2019). Here, instead of expecting
minimization of inductive risk based on predictions about data uniformity, candidate
models are assignedweights according to their past predictive success and the optimal-
ity of multiple-favorite meta-induction maintains the justification for model selection
at each time step without presupposing anything about the data distribution. The rela-
tion of Norton’s MTI to higher-order accounts of induction, which should be applied
if the inference on the uniformity failed [for the sake of sustaining optimal epistemic
justifications (Schurz, 2022, 2024)], was established by Schurz and Thorn (2020) and
its machine learning implications developed by Spelda and Stritecky (2021).

In sum, the inductive support for ERM inferred from uniform convergence, origi-
nally depending on the asymptotic stability of ERM, can be secured by a localization.
The winning/matching subnetworks localize inductive risk, and even contain trans-
ferable inductive biases based on local facts, thus validating MTI under the LTH
framework.

6 Conclusion

Any bound on the generalization error of a neural network indicates the strength of
inductive support for ERM. The bound needs to stable and non-trivial to guarantee
the ERM’s asymptotic stability and uniform convergence that epistemically justifies
the resulting generalization. If the inductive support becomes insufficient because
the bound does not allow an inductive inference to uniform convergence, ERM cannot
avoid the No-Go results. In that case, the asymptotic stability needs to be replaced with
a local stability. It was shown that ERM will not become a stable local inductive rule
by relying on the networks’ simplicity alone. The networks’ weights at or relatively
close to initialization play a significant role in supporting the ERM’s local stability
as well. This reveals two things. First, iterative magnitude pruning is epistemically
justified because it localizes the inductive risk in line with MTI. That is, without
global uniformities for which it is impossible to find a complete inductive support
free of circularity. Second, according to LTH experiments, the localization and the
ERM’s stability depends on ‘lucky’ weights of winning/matching subnetworks at or
relatively close to initialization. The connection between sparsity and luck, together
with a growing interest in robust complexity measures for modern neural networks,
suggests that the investigation of generalization in artificial neural networks evolves
in a direction which can benefit from the ongoing epistemological study of inductive
inference.
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