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Detailed knowledge of human B-cell development is crucial for the proper interpretation of inborn errors of immu-
nity and malignant diseases. It is of interest to understand the kinetics of protein expression changes during develop-
ment, but also to properly interpret the major and possibly alternative developmental trajectories. We have investigated
human samples from healthy individuals with the aim of describing all B-cell developmental trajectories. We validated
a 30-parameter mass cytometry panel and demonstrated the utility of “vaevictis” visualization of B-cell developmental
stages. We used the trajectory inference tool “tviblindi” to exhaustively describe all trajectories leading to all develop-
mental ends discovered in the data. Focusing on Natural Effector B cells, we demonstrated the dynamics of expression
of nuclear factors (PAX-5, TdT, Ki-67, Bcl-2), cytokine and chemokine receptors (CD127, CXCR4, CXCRS5) in relation to
the canonical B-cell developmental stage markers. We observed branching of the memory development, where follic-
ular memory formation was marked by CD73 expression. Lastly, we performed an analysis of two example cases of
abnormal B-cell development caused by mutations in RAG-1 and Wiskott-Aldrich syndrome gene in patients with pri-
mary immunodeficiency. In conclusion, we developed, validated, and presented a comprehensive set of tools for the
investigation of B-cell development in the bone marrow compartment.

Keywords: B-cell development - Mass cytometry - Trajectory inference - CD73 - RAG-1 - WAS

Additional supporting information may be found online in the Supporting Information section
at the end of the article.

Introduction

Prof. Tomac Kalina and Dr. Jan Stuchly
e-mail: tomas.kalina@lfmotol.cuni.cz; jan.stuchly@lfmotol.cuni.cz
B-cells, together with T-cells, are adaptive immunity constituents

responsible for antigen-specific responses and immune system
memory. Mature and terminally differentiated B-cells produce
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high-affinity antibodies. B-cells develop from hematopoietic stem
cells in the bone marrow, exit to peripheral blood, enter the
secondary lymphoid organs upon antigen encounter to mature
in the germinal center and recirculate to peripheral blood and
eventually home back to the bone marrow as antibody-secreting
cells.

These principles, key developmental stages, and molecular
mechanisms are largely known and surface molecule expression
defining the immunophenotype of each stage is published exten-
sively [1].

B-cell-development abnormalities or complete blocks are
found as a result of monogenic lesions in primary immunodefi-
ciency disorders (PIDD) [2]. Leukemia and lymphoma of B-cell
origin is the most common neoplasia in children, defects in B-
cell development and regulation are frequent causes of immune
dysregulation diseases in children and adults, making the B-cell
development and function an attractive therapeutic target. As B-
cell targeted therapies (e.g. anti-CD20 monoclonal antibodies,
anti-CD19 CAR-T) become available and their usage increase,
iatrogenic B-cell developmental failures are becoming common
conditions [3].

However, our understanding of the particularities of B-cell
developmental abnormalities in those conditions is still incom-
plete. We currently lack detailed knowledge of the dynamics of
additional, noncanonical molecules (new phenotype markers, sig-
naling molecules, therapeutic targets, in vivo response to ther-
apy markers). Second, we lack detailed insight into within-a-stage
changes, details of transitions, or intermediate stages. Third, we
lack tools to disclose additional, alternative, or nondominant tra-
jectories potentially present in human patients.

Recent advances in single-cell analysis extended the capabil-
ities of clinical flow cytometry beyond 10 parameters, and in
another quantum leap forward, spectral [4] or mass cytometry
[5] enabled us to investigate 40 parameters on each cell [6]. In
a proof of principle work of Bendall et al. [7], the Wanderlust
algorithm was applied to B-cell developmental mass cytometry
data, showing the assembled progression of markers in a single
pathway. We have previously proven that a single 10-color flow
cytometry tube is capable of describing the crucial stages of B-
cell development and its abnormalities found in PIDD with mono-
genic lesions in the scope of the EuroFlow consortium standard-
ized protocol [8]. This knowledge is essential since the inherent
assumption of a single-cell trajectory inference is that data contain
all markers needed to distinguish all stages and their transition
points. Recently, Saelens et al. [9], benchmarked 45 trajectory
inference algorithms out of 70 available, concluding that only sev-
eral would allow for multiple endpoints discovery. Most are built
for single-cell RNA data, where the number of cells analyzed is
low (10,000) but the number of parameters is high, which con-
trasts with the mass cytometry dataset, where tens of millions of
cells are analyzed with several dozens of parameters. Our objec-
tive was to limit the amount of prior information to the start-
ing cell subset, generate all putative random walks, and allow for
their graphical and user-friendly interrogation and in-depth anal-
ysis of the selected trajectories.

© 2024 The Author(s). European Journal of Immunology published by
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In the current study, we set out to develop a mass cytometry
protocol and analytical tools that would allow us to interrogate
the B-cell developmental pathways in the bone marrow in more
detail. We use the 10-color EuroFlow tube as a benchmark. We
interrogate the pathways of development leading to terminal cell
types expressing either k light chain or A light chain across two
tissue types.

Materials and methods

Sample cohort composition and preparation

Fresh human bone marrow samples (n = 4) were obtained
from pediatric patients with excluded hematological disease
or immunological disorder or (n = 1) from fully recovered
patients 1 year after successful B-cell precursor leukemia ther-
apy. Only leftover part of the clinical material was used
where Informed consent was given. The study was conducted
within a project approved by Motol University Hospital’s ethi-
cal board. B cells were isolated from the samples using Rosette-
Sep Human B-cell Enrichment Cocktail (Stemcell Technolo-
gies) following the manufacturer’s instructions. Isolated bone
marrow B cells and precursors were cryopreserved in fetal
bovine serum containing 10% DMSO in liquid nitrogen. Cry-
opreserved bone marrow samples without pre-enrichment were
used from patients with PIDD (RAG1 compound heterozygot
c.256_257delAA (p.Lys86ValfsX33), c.2210G>A (p.Arg737His),
female, age 1 years, and Wiskott—-Aldrich syndrome (WAS) hem-
izygot ¢.397G>A, male, age 1.5 months). Peripheral B cells were
isolated using the same method either from fresh human periph-
eral blood (n = 2) or from buffy coats (n = 3), washed with Max-
Par Cell Staining Buffer (Standard BioTools), and used immedi-
ately for staining. Bone marrow B cells were thawed for 1 min in
a 37°C water bath, rested for 30 min in RPMI medium at 37°C in
an incubator, and washed. Individual samples were barcoded [10]
with a combination of anti-CD45 and anti-HLA-I metal-tagged
antibodies listed in Supporting Information Table S1, as described
previously [11], pooled and further processed in individual tubes.

Sample staining and acquisition

Metal-tagged antibodies were either purchased (Standard
BioTools) or conjugated in-house using Maxpar X8 Antibody
Labeling Kit (Standard BioTools) according to the manufacturer’s
instructions. Antibodies were validated and titrated for the appro-
priate concentrations and are listed in Supporting Information
Table S1. The samples were stained as described previously [12]
and according to the MaxPar Nuclear Antigen Staining with Fresh
Fix (Standard BioTools) protocol as described by the manufac-
turer. Mass cytometry sample acquisition was performed on Helios
and CyTOF XT instruments (Standard BioTools, CyTOF 6.7.1014
and 8.0 software) after preparation according to the manufac-
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turer’s recommendation. Flow cytometry measurement of B-cell
precursors was performed exactly as in Wentink et al. [8].

Data analysis

Acquired samples were exported into FSC format and analyzed
manually using sequential bivariate gating in FlowJo (v10.5,
FlowJo LLC) software. First, we gated nucleated cells positive
for DNA intercalator tagged with 191/193Ir and next the cells
positive for particular CD45 and MHC-class I antibody reagent
combinations were gated to resolve the barcodes of the individ-
ual bone marrow or peripheral blood samples. Next, cell pop-
ulations for both mass and flow cytometry panels were defined
as described previously [8], [13], [14], gating strategy is shown
in Supporting Information Fig. S1 and S2. When markers dif-
ferently expressed by subsets were sought, we used “population
comparison” tool in FlowJo, with probability binning and Cox
chi-square statistics. The raw FCS dataset is available on GitHub
https://github.com/tomas-kalina/B-cell-developmentFCS.

Projection with vaevictis

For visualization of the mass cytometry data, we used a deep
learning-based dimensionality reduction technique using the vae-
victis model [15], one of the autonomous modules integrated into
our recently developed computational framework tviblindi. For
the projection, healthy bone marrow (n = 4) and peripheral blood
(n = 4) samples were manually debarcoded and exported as indi-
vidual FCS files. Next, only cells defined as CD34" or CD19" were
concatenated into one FCS file and subsequently used for training
the vaevictis algorithm, where all panel markers were used for the
calculation. Such a trained vaevictis model was then applied sep-
arately to either the set of bone marrow or the set of peripheral
blood cells.

Trajectory inference in tviblindi

For trajectory inference (TI), we used our recent framework called
tviblindi [15], an algorithm integrating several autonomous mod-
ules — pseudotime inference, random walk simulations, real-
time topological classification using persistence homology, and
autoencoder-based 2D visualization using the vaevictis model.
For the TI, the same concatenated FCS file as for the vae-
victis projection was used. As a point of origin, stem cells
(CD19°CD79a TdT-CD34%) were used. In total, 5000 random
walks were probed across the single cell space. Endpoints for fur-
ther investigation were selected in tviblindi graphical user inter-
face (GUI). Topological landmarks were selected in the persis-
tence homology graph in the GUI. Next, walks clustering together
were selected on the dendrogram of persistence homology and
visually inspected on the vaevictis plot. The pseudotime vs. marker
line plots were created and exported from the tviblindi GUI. For

© 2024 The Author(s). European Journal of Immunology published by
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manual analysis of the data in FlowJo, an enhanced FCS file was
exported from the tviblindi GUI containing all calculated parame-
ters.

Results

In order to study bone marrow human B-cell development, we
designed a 30-parameter mass cytometry panel allowing for
simultaneous measurement of B-cell-specific phenotypic surface
markers and functional intracellular proteins (Supporting Infor-
mation Table S1). We validated the correct assignment of the B-
cell precursor subsets by the Euroflow 10-parameter flow cytome-
try diagnostic panel [8]. We found a similar distribution of B-cell
subsets (gated as in Supporting Information Fig. S1) measured in
four bone marrow samples by mass cytometry and Euroflow flow
cytometry, confirming that the mass cytometry panel can describe
the basic stages of the B-cell development in the bone marrow
(Supporting Information Fig. S3).

Next, we visualized the B-cell precursor subsets using vaevictis,
a representation learning dimensionality reduction tool built for
development visualization. We could observe that the expected
main features of the B-cell precursor to mature B-cell develop-
ment were apparent in four bone marrow and four peripheral
blood samples (Fig. 1). Vaevictis plots of all of the samples individ-
ually can be found in Supporting Information Fig. S4. Using infor-
mation from all 30 markers, vaevictis positioned the mature B-cells
adjacent to the B-cell precursors (Fig. 1A and B), where the afore-
mentioned gated subsets were ordered from the progenitors to
mature cell types. Also, the light chain expression highlighted the
k and A branching (Fig. 1C). Progression of the canonical markers
(CD34, TdT, CD10, surface IgM (sIgM), k chain, X\ chain, IgD, and
CD27) in the plot corresponds with the expected course of B-cell
development (Fig. 1C).

Thus, the B-cells and their precursors measured by mass
cytometry panel and visualized using vaevictis provided bases for
interpretation of the putative trajectories of B-cell development.

On the concatenated dataset we selected the developmental
point of origin at CD34" stem cells. The tviblindi algorithm [15]
was tasked to construct 5000 random walks directed away from
the origin (CD34" stem cell) with respect to the calculated pseu-
dotime on the nearest neighbor graph (KNNg) of all single-cell
events. As the KNNg is directed by the pseudotime, endpoints
are automatically detected when a random walk reaches a ver-
tex (single-cell event) with no out-going edges. Sixteen endpoints
were located in the 6 B-cell subsets corresponding to mature naive
(alternatively PreGC), natural Effectors (alternatively unswitched
memory or MZ-like), and switched memory B cells expressing
either k or \ light chain (Fig. 2A). We have selected all end-
points leading to each subset individually. Next, we assembled
random walks into different coherent trajectories leading to nat-
ural effector k and )\ (Fig. 2B and C) and to switched memory
k and \ (Fig. 2D and E) on dendrograms of groups of walks,
grouped with respect to the persistent homology classes (Sup-
porting Information Fig. S5 and S6). In parallel, we visualized
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Figure 1. Vaevictis dimensionality reduction of B-cell precursors (BCPs) and B cells in bone marrow and peripheral blood. (A) Healthy bone marrow
(n = 4, concatenated) and (B) peripheral blood (n = 4, concatenated) BCPs and B cells with manually gated populations were applied to the visual-
ization in color, with annotation and counts of the individual subsets. Dotted arrows highlight kappa and lambda B cells (compare to panel C) (C)
Visualization of the entire merged data with the expression of chosen canonical markers using a heatmap color gradient where green represents

the lowest expression and red the highest.

them on the vaevictis plot. Since tviblindi algorithm and vaevic-
tis visualization operate independently in the dataset, we have
prioritized abundant walks with particular topology in all dimen-
sions (selected on persistent homology diagram and dendrogram)
and those that were transiting through expected cell subsets in a
logical sequence (compare Fig. 2B-E with Fig. 1A). Upon expert
analysis, we noticed that Plasma cells were not detected as an
endpoint. This was caused by the inability of the antibody panel
to adequately capture the long distance between Stem cell and

© 2024 The Author(s). European Journal of Immunology published by
Wiley-VCH GmbH

Plasma cells, finding an illegitimate pseudotime shortcut instead
(note the color gradient in Fig. 2A). We modified the pseudo-
time calculation in tviblindi and introduced the option to set the
endpoints manually. This modification allows investigation of the
relationship between any two sets of cells within the data. We,
therefore, expertly chose and set the Plasma cells k and A as addi-
tional endpoints (square gates, Fig. 2F) and thus forced the pseu-
dotime inference to follow the full development accordingly (yel-
low to red gradient, Fig. 2F) and to detect additional trajectories
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Figure 2. B-cell developmental endpoints and trajectories leading to Natural Effector and Switched memory « and i B cells constructed by tviblindi.
(A) Groups of endpoints (1-6) represented as gray dots are located at naive (1;4), natural effector (2;5), and switched memory (3;6) cells in the vaevictis

plot colored by pseudotime. Yellow color indicates the earliest pseudot

ime and bright red color indicates the latest pseudotime. The purple dot

indicates the point of origin at gated CD34" Stem cells. Vaevictis plot with displayed trajectories to (B) natural effector « and (D) x cells and (C)

switched memory k and (E)  cells constructed by tviblindi (the selection

of random walk groups shown in Supporting Information Fig. S5 and S6).

(F) Expert-added endpoints located at Plasma cells (PC) are shown as square gates PC k and PC %, with pseudotime recalculation (in color) on the

vaevictis plot. Trajectories to (G) PC k and (H) PC » are displayed on the
Information Fig. S7).

from Stem cells to Plasma cells (Fig. 2G and H, Supporting Infor-
mation Fig. S7).

For further analysis, we selected the trajectory leading to nat-
ural effector k. We aimed to investigate changes in expression of
the markers along the selected developmental trajectory manu-
ally. The tviblindi interface (GUI, Supporting Information Fig. S8)
allowed us to add all calculated parameters (vaevictis 1, vaevic-
tis 2, pseudotime, cell assignment to trajectory) and manually
investigate the enhanced FCS file for the expression of selected

© 2024 The Author(s). European Journal of Immunology published by
Wiley-VCH GmbH

vaevictis plot (the selection of random walk groups shown in Supporting

markers along the pseudotime of the selected trajectory (k, A and
iTdT markers shown; Supporting Information Fig. S9). Next, we
aligned the relative expression values of iTdT, CD10, and sIgM
in manually gated (as in Supporting Information Fig. S2) popu-
lations of B-cell development (Fig. 3A) to their expression over
the course of pseudotime in the trajectory (Fig. 3B). In agree-
ment between manual analysis and pseudotime inference, we
found the maximum level of nuclear iTdT in Pro-B/PreB-I stage,
CD10 in PreB-I stage and sIgM in Transitional B-cells (Fig. 3B);
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Figure 3. Detailed analysis of the trajectory leading to natural effector « cells. (A) Median expression of iTdT (orange), CD10 (yellow), and sIgM
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with manually gated populations overlaid in color. Pseudotime line plots showing the average expression of markers upregulated in the (C) early,
(D) mid, and (E) late phases of the development, manually annotated by the gated stages.

however, the pseudotime plots showed single-cell data with all
gradual transitions. Thereafter, we examined the dynamics of
expression of other markers in the early (stem cells to pre-BII;
Fig. 3C), mid (pre-BII to transitionals; Fig. 3D), and late (tran-
sitionals to natural effectors; Fig. 3E) phases of B-cell develop-

© 2024 The Author(s). European Journal of Immunology published by
Wiley-VCH GmbH

ment. See Supporting Information Fig. S10 for a continuation of
the expression to the switched memory subset.

Expression of iTdT in the pro-B cells was followed by the
CD127 (IL-7Ra), CXCR4, iPAX-5, iKi-67, and CD10 expression
at pro-B to pre-BI transition. Notably, CD127 rose and declined
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Figure 4. Identification of branching points in trajectories leading to the selected endpoints. (A) Pseudotime line plot showing expression of the «
chain for the selected trajectories leading to naive k (blue) and naive  (red) ends. The green rectangle indicates the branching point of trajectories
and is projected as green dots on the vaevictis plot. (B) Vaevictis plot showing trajectories to naive k (blue) and naive  (red) subsets with a projection
of cells located in the branching point (green). (C) Pseudotime line plot showing the expression of CD73 for the selected trajectories leading to
switched memory % (blue) and natural effector x (red) ends. The green rectangle indicates the branching point of trajectories and is projected as
green dots in the vaevictis plot. (D) Vaevictis plot showing trajectories to natural effector » (red) and switched memory % (blue) endpoints with a
projection of cells located in the branching point (green). (E) Expression of CD73 in the B-cell compartment on the vaevictis plot.

before iKi-67 peaked in Pre-BI while a second (smaller) CD127
peak followed by iKi-67 was seen in pre-BII, in line with the
reported role of IL-7 signaling inducing proliferation in humans
[16]. Similarly, iPAX-5 peak follows the CD127 peak (Fig. 3C).
The iBcl-2 and CD44 present bimodal expression, peaking at
pro-B stage first and again in mature stages in the peripheral
blood (Fig. 3D). CD9 peaks within the Immature stage, followed
by sIgM, while CD20 and IgD peak at transitional B-cell stage
(Fig. 3D). Finally, the CD22 and CXCRS5 increase to their peaks at
Naive and Effector stage (Fig. 3E), respectively, followed by CD73,
which is down modulated in the natural effector cells and upregu-
lated again in the switched memory B cells (Supporting Informa-
tion Fig. S10C). CD27 is known as a B-cell memory marker, but in
fact, has also bi-modal expression with a first peak at pre-BI and
pre-BII stages and a second peak at memory stages. The expres-
sion of CD24 is first elevated in the pro-B to the transitional stage
only to reach its highest level in natural effectors (Fig. 3E).
Analyzing the two compartments separately, we could see
that transitional, naive, and natural effector cells were present
in both the bone marrow and the peripheral blood (Supporting
Information Fig. S11). Their pseudotime position was slightly
different suggesting there is a phenotypic difference. Indeed,

© 2024 The Author(s). European Journal of Immunology published by
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we found higher expression of CXCR4 and lower expression of
CXCRS in the subsets in the bone marrow compartment (Sup-
porting Information Fig. S11). The comparison of the Switched
Memory subsets is shown in Supporting Information Fig. S12.
To prove we can indeed find and describe the branching points
of discovered trajectories we investigated trajectories to naive k
and )\ endpoints against pseudotime (Fig. 4A). As expected, the
branching point was located at the pre-BII to Immature transi-
tion on a vaevictis projection (Fig. 4B). Analogously, we investi-
gated the branching point in the of natural effector and switched
memory cells (selected trajectories in Supporting Information
Fig. S13). We found a branching point at a trajectory segment
where CD73 started to increase on the way to the switched
memory B cells (Fig. 4C). The branching point was topologically
located at the transitional to naive B-cells (Fig. 4D). We identi-
fied two trajectories leading up to natural effector B-cell endpoint,
one devoid of CD73 expression and a second with only transient
increase of CD73 expression (Supporting Information Fig. S14).
The expression of CD73 is variable in the peripheral blood B-
cell compartment, with low expression in the natural effectors
(Fig. 4E), however in the investigated trajectories it was preceded
by CXCRS5, a germinal center homing marker (Supporting Infor-
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Figure 5. RAG-1 and WAS patients’ bone marrow B-cell compartment. (A) RAG-1 patient and (B) WAS patient with an overlay of manual gates on
the vaevictis plot. (C) Relative distribution of B-cell subsets across the bone marrow B-cell precursor and B-cell developmental stages in patients

compared with five healthy donors.

mation Fig. S14D). In the trajectories to the plasma cells, we
noticed both: natural effectors skipping and natural effectors pass-
ing trajectories, where the passing trajectories exhibited hetero-
geneous CD73 expression with shifted kinetics (Supporting Infor-
mation Fig. S15). Taken together, the identification of branching
points in logical developmental stages together with the context
of markers changes proved that tviblindi can be used to properly
describe B-cell development.

Finally, we investigated abnormal and abrupt B-cell develop-
ment in the bone marrow in patients with known PIDD-causing
mutations. As expected, the mutation in the RAG-1 gene caused a
developmental block at the PreB-I stage of development (Fig. 5A).
The WAS patient bone marrow showed a high proportion of
CD34" stem cells (initially raising suspicion of malignancy) and a
complete lack of expansion at the PreB-II stage (although iKi67
was as high as in HD). Additionally, we observed a decrease
in the immature cells in the WAS bone marrow (Fig. 5B and
C). In the peripheral blood, the WAS patient showed a higher
proportion of stem and transitional cells and a lack of natural
effector, switched memory, and plasma cells Supporting Informa-

© 2024 The Author(s). European Journal of Immunology published by
Wiley-VCH GmbH

tion Fig. S16). By selecting the full developmental trajectories of
healthy donors, RAG-1, and WAS patients, we were able to super-
impose them and display the marker expression versus pseudo-
time. As expected, the RAG-1 patient presented with high, albeit
dropping iTdT together with decreasing iBcl-2 at the PreB-I stage
prior to the developmental block. The WAS patient’s bone marrow
showed a similar expression pattern for these markers. Interest-
ingly, we observed asynchronously higher expression of iCD79a in
both the RAG-1 and WAS patients at the PreB-I and PreB-II stages
but not in mature B-cell stages (Supporting Information Fig. S17).

Conclusion

We presented a single-cell analysis solution for interrogation of
early B-cell developmental trajectories on multiple samples of rel-
evant tissues (bone marrow and peripheral blood). We designed
and validated a mass cytometry panel capable of evaluating 30
markers plus 5 sample barcodes. We compared its performance to
a benchmark of EuroFlow 10-color cytometry assay. We showed
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a practical, feasible, and scalable vaevictis projection calculation
based on deep learning.

This tool is designed to create a continuous representation of
the data rather than isolated clusters allowing a clear interpre-
tation of the dynamics in the data (as compared with other cur-
rently used methods t-SNE [17] or UMAP [18]). Due to the naive
importance sampling, numerically dominant populations are not
overrepresented in the 2D plot and the running time is basically
insensitive to the size of the original dataset. The deep learning
architecture allows for direct reuse of the trained representation
on a newly acquired sample (if performed in a standardized man-
ner as in this study the additional HD donors’ and PIDD patients’
bone marrows were mapped to the same vaevictis projection as
the healthy bone marrow samples measured and analyzed several
months earlier).

Thus, uniquely, samples of different donors (affected and
unaffected) and multiple tissues (central and peripheral) can be
probed with thousands of putative pathways, that are defined by
a starting point, markers used, and the overall definition of cells
belonging to the pool of relevant cell type (here stem cells and B-
cell lineage). User-defined terminal points can be added if focused
analysis is desired.

All trajectories found are visually presented for interrogation,
diverse terminal ends can be selected and individual trajecto-
ries are assembled into relevant pathways for further exploration.
Recent mathematical apparatus based on persistence homology
calculations is used to quantitatively describe similarities of tra-
jectories that can be assembled together.

Notably, trajectories found in our dataset correspond to the
known theory of B-cell development, they logically transit from
the central organ of hematopoiesis (bone marrow) to the periph-
ery (blood). When dissected in detail, they show expected
sequences of canonical markers but add detail to the transition
points and provide dynamic information about the expression
of markers within known stages. For example, CD127 peaking
before PAX-5 is in line with a recent study showing an impor-
tant role of CD127 (IL-7RA) signaling in promoting PAX-5 expres-
sion [16]. While CD27 is conventionally used for the phenotypic
description of memory B-cell subsets in the periphery, we show its
upregulation also in the pre-B stages, as shown earlier by Vaskova
et al. [19]. The transient downregulation of CXCR4 and simul-
taneous CD9 upregulation which we see within the pre-BI stage
is in line with Leung et al. [20], who observed that CD9 lev-
els are enhanced after SDF-1 stimulation suggesting that CD9
plays a role in the SDF-1/CXCR4 axis known to be essential in
HSC/progenitor homing. The expression profile of CD24 along
the calculated pseudotime follows the experimental findings of
studies [21, 22] showing the highest peak of expression in tran-
sitional B cells (followed by a decrease in naive cells) and the
second in memory B cells. While the mature B-cell stages were
immunophenotypically similar in the bone marrow and periph-
eral blood (found in the same regions on vaevictis plot), we could
find quantitative differences in the CXCR4 and CXCR5 expres-
sion, known homing receptors [23, 24]. Our approach allowed us
to investigate multiple developmental endpoints resulting from

© 2024 The Author(s). European Journal of Immunology published by
Wiley-VCH GmbH
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trajectories’ branching. The CD73, a known marker of switched
memory B cells [25] gradually increased until the switched mem-
ory B-cell stage, while it remained negative or only transiently
increased toward the natural effector B-cell stage. While the
branching point was found at the naive B-cell stage, the heteroge-
nous expression of CD73 together with CXCR5 expression sug-
gested that there are still alternative trajectories among the natu-
ral effector B cells. One extrafollicular trajectory seems defined by
the absence of CXCR5 and CD73 (CXCR5 and CD73 negative),
while a second trajectory, defined by a transient expression of
CXCR5, may describe cells that passage transiently in the germi-
nal center. Indeed, the distinction between extrafollicular B cells
and natural effector-B cells is still unclear [26], and our analy-
sis can provide insights into marker definition to dissect distinct
cell fates. Surprisingly, the pathways that pass through the nat-
ural effector stage en route to plasma cells express CD73 at dif-
ferent levels (lower levels or not at all). However, CD73 expres-
sion only peaks after CD27 acquisition, as opposed to CD73 peak-
ing before CD27 acquisition in the switched memory B-cell stage.
In addition, we have previously reported the performance of the
tviblindi algorithm on an artificial dataset with multiple branch-
ings and used it to describe the thymocyte development in the
thymus [15].

Unlike the so far published algorithms that oversimplify the
trajectory inference showing a single dominant trajectory or two
trajectories with a single branching point (e.g. Wishbone [27]),
we could analyze multiple branching points and bring quanti-
tative expression information as well as topological information
about the branching point. The theoretical limitation is the num-
ber of investigated markers and the choice of tissues and samples.
This can be overcome by using tviblindi on a single-cell RNASeq or
better yet CITE-Seq dataset combining the protein markers with
gene expression and enriching the mass cytometry panel in the
next iteration.

We can generalize, that tviblindi algorithm can reliably show
the sequence of expression of surface markers as well as cytoplas-
mic markers and nuclear transcription factors. We also show that
our mass cytometry panel and tviblindi could be used to compare
healthy reference with affected (RAG-1 and WAS patients) devel-
opment to discover alterations in the development. While the
RAG-1 patient presented the expected block at the PreB-I stage,
we could also observe the kinetics of markers before the block
(decreasing iBcl-2, iTdT, and iCD79a). Defective WAS protein
affects motility, BCR-signaling, and class switch in B cells [28].
Similar to our patient, clinical suspicion for juvenile myelomono-
cytic leukemia has been reported as a presenting symptom of
the WAS [29]. Numerical abnormalities in the bone marrow B-
cell subsets were reported before by Castiello et al. [30], where
decreased immature B cells were reported. The stages of bone
marrow B-cell development where WAS patient shows failure to
expand positively selected cells are stages with low antiapoptotic
protein iBcl-2, opening questions of WAS protein role in tuning
antiapoptotic signaling in developing B cells since increased apop-
tosis was described in human WAS patients’ peripheral lympho-
cytes [31].
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These detailed developmental deviations found by tviblindi
could potentially disclose targetable processes for therapy of PIDD
and/or other diseases (such as B-cell neoplasia).
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