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Abstract—A key parameter in the analysis of wage inequality is the elas-
ticity of substitution between skilled and unskilled labor. We show that the
empirical literature is consistent with both publication and attenuation bias
in the estimated inverse elasticities. Publication bias, which exaggerates the
mean reported inverse elasticity, dominates and results in corrected inverse
elasticities closer to zero than the typically published estimates. The im-
plied mean elasticity is 4, with a lower bound of 2. Elasticities are smaller
for developing countries. To derive these results, we use nonlinear tests for
publication bias and model averaging techniques that account for model
uncertainty.

I. Introduction

THE elasticity of substitution between skilled and un-
skilled workers ranks among the most frequently esti-

mated parameters in labor economics: we found 682 esti-
mates reported in 77 studies. The parameter commands the
predictions of the canonical model of skill differentials, es-
pecially the effect on the skill premium of a changing ratio
of skilled workers and biased technological change (for in-
stance, Katz & Murphy, 1992; Acemoglu, 2002; Ciccone &
Peri, 2005). It is also important for other questions, includ-
ing the usefulness of cross-country heterogeneity in educa-
tion for explaining differences in labor productivity (Klenow
& Rodriguez-Clare, 1997). Unlike many important parame-
ters in economics, for which often little consensus exists and
calibrations vary by the order of magnitude, the elasticity
of skill substitution is with extraordinary consistency com-
monly calibrated at 1.5. As Cantore et al. (2017, p. 80) put
it: “Most of [the] estimates [of the elasticity] range between
1.3 and 2.5, with a consensus estimate around 1.5.” In this
paper we show that the literature is instead consistent with
an elasticity around 4.

The observation by Cantore et al. (2017) is based on
key papers (Katz & Murphy, 1992; Ciccone & Peri, 2005;
Autor et al., 2008) but, at first glance, holds for the litera-
ture as a whole: the 682 estimates we collect have a mean of
1.8. Nevertheless, figure 1 illustrates that individual studies
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estimating the elasticity disagree more than what is often ac-
knowledged in the applications of the estimates. Elasticities
larger than 1 (suggesting that skilled and unskilled labor are
gross substitutes) dominate the literature and also frequently
include values around 4. Elasticities smaller than 1 (suggest-
ing that skilled and unskilled labor are gross complements)
are not rare. So the literature is consistent with a wide range
of calibrations, though of course the first moment is key in
informing them. The problem is that the mean estimates re-
ported in many fields of economics are routinely distorted
by publication bias (Brodeur et al., 2016; Bruns & Ioanni-
dis, 2016; Card et al., 2018; Christensen & Miguel, 2018;
DellaVigna et al., 2019; Blanco-Perez & Brodeur, 2020;
Brodeur et al., 2020; Ugur et al., 2020; Xue et al., 2020;
Imai et al., 2021; Neisser, 2021; Stanley et al., 2021; Brown
et al., 2022; DellaVigna & Linos, 2022; Iwasaki, 2022; Stan-
ley et al., 2022), often by a factor of 2 or more (Ioannidis
et al., 2017).

Publication bias stems from the tendency of authors, edi-
tors, or referees to prefer statistically significant or theory-
consistent results. Negative estimates of the elasticity are
inconsistent with the canonical model, and zero or infinite
estimates are unintuitive. Few researchers are eager to inter-
pret such estimates, though negative, insignificant, or huge
elasticity estimates will appear from time to time given suffi-
cient imprecision in data and methods. The analysis of pub-
lication bias in this context is complicated by the fact that
while some researchers estimate the elasticity directly, most
estimate the (negative) inverse elasticity by regressing the
skill premium on the relative supply of skilled labor. The
two groups of studies cannot be combined in an analysis of
publication bias because the inversion necessary for such a
combination violates the assumptions of many tests. Since
in most plausible situations the relative supply represents the
treatment and the skill premium represents the outcome, in
the main text we only focus on the studies estimating the
negative inverse elasticity, which are more likely to identify
the underlying causal relationship. In the online appendix,
we explain in detail why we find direct estimates, yielded by
reverse regressions, less persuasive (appendix B), and pro-
vide tests of publication bias for these estimates separately
(appendix C). The direct estimates are consistent with little
to no substitutability between skilled and unskilled labor.

McCloskey and Ziliak (2019) liken the problem of pub-
lication bias and p-hacking1 to the Lombard effect in

1Conceptually, publication bias and p-hacking are distinct terms. The lat-
ter denotes researchers’ effort to produce statistically significant results,
and often stems from publication bias. However, it is unfeasible in empir-
ical work to separate these two effects, as they tend to be observationally
equivalent. Applied meta-analysts thus typically use the term publication
bias more generally to also include p-hacking, and we follow this practice.
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1188 PUBLICATION AND ATTENUATION BIASES IN MEASURING SKILL SUBSTITUTION

FIGURE 1.—MANY STUDIES DEFY THE CONSENSUS OF 1.5 ELASTICITY

The vertical axis shows the median estimate of the elasticity of substitution reported in individual studies. The horizontal axis shows the median year of the data used in the studies. Outliers are omitted from the
figure for ease of exposition but included in all tests. The figure, as well as all other figures, tables, and numbers in the main text, only considers elasticities implied by regressions of the skill premium on the relative
supply of skilled labor, not elasticities implied by reverse regressions (see text and online appendix B for details).

psychoacoustics, in which speakers intesify their vocal ef-
fort in response to noise. So, too, can researchers intensify
specification searching in response to noise in their data and
try a different setup to obtain a negative inverse elasticity
larger in magnitude, ideally an estimate significantly differ-
ent from zero. Most of the techniques we use for publication
bias correction (including Ioannidis et al., 2017; Andrews &
Kasy, 2019; Bom & Rachinger, 2019; Furukawa, 2020) are
explicitly or implicitly based on the Lombard effect and as-
sume that, in the absence of the bias, there is no correlation
between estimates and standard errors. The assumption is
common but strong, and we show that the correlation exists
even among estimates unlikely to suffer from the bias. Con-
sequently we use the inverse of the square root of the number
of observations as an instrument for the standard error (Stan-
ley, 2005) and employ tests by Gerber and Malhotra (2008)
and Elliott et al. (2022) that do not require the assumption.

We have noted that publication bias has been identified in
many fields. In most cases, however, it is probably moder-
ated by attenuation bias in the opposite direction. According
to the “iron law of econometrics” (Hausman, 2001), most
estimates are biased towards zero because the independent
variable is almost always measured with error. The interplay
between publication and attenuation biases must be ubiqui-
tous in economics, but to our knowledge has not been ex-

plored before. The literature on skill substitution recognizes
the measurement error problem, since data on labor sup-
ply can be notoriously noisy, and attenuation bias is men-
tioned frequently (for example, by Katz & Murphy, 1992;
Angrist, 1995; Borjas, 2003; Bound et al., 2004; Borjas &
Katz, 2007; Autor et al., 2008; Card, 2009; Behar, 2010; Ver-
dugo, 2014; Kawaguchi & Mori, 2016; Bowlus et al., 2022).
A classical measurement error can arise in the relative labor
supply for at least three reasons. First, survey responses may
contain noise. Second, migrants’ degrees may be incompara-
ble to natives’ degrees due to cross-country differences in the
quality of the educational system. Third, the mapping from
degrees to skills may be noisy due to time differences in the
quality of education and selection into student cohorts. We
exploit the fact that part of the literature uses instrumental
variables (IV) to address the attenuation bias and other en-
dogeneity biases, while other studies either use simple OLS
or have access to arguably exogenous variation in relative la-
bor supply (natural experiments). The differences in results
reported for studies based on OLS, IV, and natural experi-
ments are informative on the extent of attenuation bias.

Our results are consistent with both publication and at-
tenuation bias. After correcting for the former, the estimated
negative inverse elasticity declines in magnitude from the
reported mean of −0.6 to an interval between −0.3 and
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0.1, depending on the publication bias correction method.
Concerning the latter, the publication bias corrected mean
estimates are close to zero for both OLS and natural exper-
iments, but around −0.25 for IV. Under the assumption that
the instrumental variables in the literature are generally spec-
ified well, this result suggests that attenuation bias or other
endogeneity biases are important on average (the difference
between OLS and IV is substantial) and that attenuation bias
in particular matters (the difference between IV and natu-
ral experiments is substantial, too). Our preferred estimate
of the mean elasticity is thus 4, a value approximately cor-
rected for both publication and attenuation bias.

The results are corroborated by a model that controls for
24 characteristics that reflect the context in which the esti-
mates were obtained (for example, variable definition, data
characteristics, design of the production function, estima-
tion technique, and publication characteristics). To address
the resulting model uncertainty we use Bayesian (Raftery
et al., 1997; Eicher et al., 2011) and frequentist (Hansen,
2007; Amini & Parmeter, 2012) model averaging, both su-
perbly surveyed in Steel (2020). For the former, we also em-
ploy the dilution prior (George, 2010) that alleviates poten-
tial collinearity. Finally, we create a hypothetical study that
uses all estimates in the literature but assigns more weight
to those that are better specified (using Card, 2009; Autor,
2014; and Carneiro et al., 2022, as benchmarks). The im-
plied mean estimate of the elasticity is 4 with the 95% cred-
ible interval of (2, 20). The implied elasticity for the United
States is 6, and for developing countries it is 2. We also find
that publication bias is smaller for IV estimates and develop-
ing countries, likely because for them the underlying inverse
elasticity estimates are significantly distinct from zero even
in the absence of publication selection.

The remainder of the paper contains an analysis of pub-
lication bias (section II) and heterogeneity (section III); at-
tenuation bias is analyzed in both sections. The online ap-
pendix provides details on the dataset and estimation of the
elasticity (appendix A), discussion of the studies estimat-
ing the elasticity directly (appendix B), additional material
on publication bias analysis (appendix C), additional mate-
rial on heterogeneity analysis (appendix D), and diagnos-
tics and robustness checks of the Bayesian model averag-
ing analysis (appendix E). Data and code are available at
meta-analysis.cz/skill.

II. Publication Bias

An intuitive quality of the elasticity of substitution be-
tween skilled and unskilled labor is its nonnegativity. As
Kearney (1997, p. 33) remarks on his negative estimates:
“The implied coefficients . . . violate standard economic
theory.” Some researchers, such as Bowles (1970, p. 73)
“exclude [negative estimated] values [of the elasticity] . . . as
implausible on a priori grounds.” As we have noted, we fo-
cus on studies that estimate the (negative) inverse elasticity.
An inverse elasticity of zero, implying infinite elasticity of

substitution, is theoretically possible but often deemed im-
plausible and rarely interpreted. What follows is a tendency
in the literature to discriminate against positive and insignifi-
cant values of the negative inverse elasticity. Hence the mean
estimate of the negative inverse elasticity is probably biased
towards a negative value larger in magnitude. Such publi-
cation bias is natural, inevitable, and does not require any
ulterior motives on the side of authors, editors, or referees. It
is a task for those who review and interpret the literature to
correct for the bias. As far as we know, no one has attempted
to do so in the case of the elasticity of skill substitution.

Most tests of publication bias assume that in the absence
of the bias there is no correlation between reported estimates
and their standard errors. The correlation can capture publi-
cation bias for two reasons. First, researchers (or editors or
referees) may prefer statistically significant results. Given
some imprecision in their data and methods, researchers
may try, for example, different combinations of control vari-
ables until they obtain an estimate large enough to offset the
standard error. Second, researchers may prefer an intuitive
sign of the estimates and discard those with the opposite
sign. Then correlation between estimates and standard er-
rors arises due to heteroskedasticity: with lower precision,
estimates will be more dispersed on both sides of the under-
lying mean elasticity. When positive estimates of the nega-
tive inverse elasticity are discarded, a regression of estimates
on standard errors will yield a negative slope coefficient.

It is helpful to evaluate the relationship visually using
the so-called funnel plot: a scatter plot of estimates on the
horizontal and their precision (1/SE) on the vertical axis.
Based on the intuition described in the previous paragraph,
an asymmetry of the funnel plot suggests publication bias,
and the top of the funnel serves as an indication of the un-
derlying mean elasticity corrected for the bias. This is the
case because under the assumption that all studies estimate
the same underlying elasticity the most precise estimates are
likely to be close to the underlying mean; moreover, because
of their high precision they tend to be highly significant and
less prone to publication bias. Figure 2 shows evidence con-
sistent with implicit or explicit discrimination against esti-
mates with the unintuitive (positive) sign. The most precise
estimates are concentrated around zero, which is consistent
with perfect substitutability between skilled and unskilled
labor.

We use two groups of tests more formal than the funnel
plot. First, we regress estimates on their standard errors and,
to address heteroskedasticity, weight the regressions by in-
verse variance in the spirit of Stanley (2008), Doucouliagos
and Stanley (2013), and Stanley and Doucouliagos (2015).
Second, we use recent techniques that do not rely on the
linearity assumption. Regarding the linear meta-regression,
a nonzero estimated slope suggests publication bias. Under
the assumption that publication selection is a linear func-
tion of the standard error and there is no heterogeneity in the
literature, the intercept can be interpreted as the true mean
elasticity corrected for the bias (the top of the funnel). The
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1190 PUBLICATION AND ATTENUATION BIASES IN MEASURING SKILL SUBSTITUTION

FIGURE 2.—THE FUNNEL PLOT SUGGESTS PUBLICATION BIAS

In the absence of publication bias the funnel plot should be symmetrical. Outliers are excluded from the figure for ease of exposition but included in all statistical tests. SE = standard error.

linearity assumption, however, cannot be expected to hold
in general, as explained by Andrews and Kasy (2019) in the
appendix to their paper (pp. 30–31).

Regarding nonlinear models, the technique with the most
rigorous foundations is the selection model of Andrews and
Kasy (2019), which estimates the probability of a result
being reported and uses the probability to re-weight the
observed distribution of results. We have to specify the
thresholds for the t-statistic associated with changes in pub-
lication probability, and we choose −1.96, 0, and 1.96.2 We
assume that effects have a t-distribution and we cluster stan-
dard errors at the study level. The other nonlinear specifica-
tion that we employ is the endogenous kink model by Bom
and Rachinger (2019), which builds on Stanley and Doucou-
liagos (2014). It assumes that the relation between estimates
and standard errors is linear up to a certain point until when
precision is high enough for all estimates to be published
and the relation disappears. The endogenous kink technique
represents the latest incarnation of tests based directly on the
funnel plot.

While the nonlinear techniques do not use the problem-
atic assumption that publication selection is a linear function

2We report only the probability related to the −1.96 threshold for neg-
ative inverse estimates; some of the remaining groups (especially posi-
tive estimates of the negative inverse elasticity) have a limited number of
observations.

of the standard error, they share the strong assumption that
estimates and standard errors are independent or at least un-
correlated in the absence of bias. Andrews and Kasy (2019)
state the independence assumption explicitly, while the en-
dogenous kink technique implicitly assumes that more pre-
cise estimates are less biased and closer to the true value.3

The assumption is unlikely to hold in economics because
data and method choices can influence both estimates and
standard errors systematically. Table C6 in the online ap-
pendix shows that estimates and their standard errors are cor-
related even among estimates with a p-value below 0.005,
where publication bias is less likely. The correlation appears
in most cases even if we divide the literature to subsamples
according to the main differences in data and methods. How-
ever, it is also possible that even these highly significant es-
timates are plagued by publication bias.

Table C7 in the online appendix presents a direct specifi-
cation test, introduced by Kranz and Putz (2022) on the sug-
gestion of Isaiah Andrews, of the Andrews and Kasy (2019)
technique. The table shows, for various subsets of the lit-
erature, the correlation coefficient between the logarithm of

3If there is, for example, a positive relationship between estimates and
standard errors in the absence of publication bias, highly precise estimates
will be smaller than the true underlying mean. If some researchers re-
duce standard errors (for example, via changes in clustering) in response
to small point estimates, high reported precision can be spurious.
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the absolute value of the estimated inverse elasticity and the
logarithm of the corresponding standard error, weighted by
the inverse publication probability estimated by the Andrews
and Kasy (2019) model. If all the assumptions of the model
hold, the correlation should be zero. In our case the corre-
lation is substantial for almost all subsets of the literature,
which means that some of the assumptions (including the
key independence assumption) are probably violated.

As a partial solution to the likely violation of the inde-
pendence assumption invoked by nearly all meta-analysis
techniques, we run a simple meta-regression where the stan-
dard error is instrumented by the inverse of the square root
of the number of observations (Stanley, 2005; Havranek,
2015). Comparing this IV estimate with other linear and
nonlinear estimators tells us something about the practical
importance of the independence assumption for measuring
the magnitude of publication bias and the corrected effect.
Following Andrews et al. (2019), we report the two-step
weak-instrument-robust 95% confidence interval based on
the Stata package by Sun (2018) and the idea of Andrews
(2016) and Andrews (2018).

In the main text, we focus on 5 bias-correction estimators
that we consider most informative in the context of skill sub-
stitution: linear meta-regression with study-level fixed ef-
fects, between-effects meta-regression, IV meta-regression,
the Bom and Rachinger (2019) endogenous kink model, and
the Andrews and Kasy (2019) selection model. In the on-
line appendix we also report the results of three additional
techniques: OLS meta-regression, the weighted average of
adequately powered estimates introduced by Ioannidis et al.
(2017), and the stem-based technique by Furukawa (2020).
The results of these three techniques generally do not alter
our conclusions. Each of the 5 estimators that we focus on
has a different strength: the fixed-effects model allows us
to filter out idiosyncratic study-level effects, the between-
effects model gives each study the same weight, the IV meta-
regression directly addresses potential endogeneity, the
endogenous kink model is the most advanced nonlinear esti-
mator based on the funnel plot and performs well in Monte
Carlo simulations (Bom & Rachinger, 2019), and the An-
drews and Kasy (2019) model is the one most rigorously
founded, although, as we have noted, in the case of skill sub-
stitution probably not well specified.

In the online appendix (table C1), we test publication bias
for the entire sample of negative inverse elasticity estimates.
All techniques find substantial publication bias and, with the
exception of the Andrews and Kasy (2019) model, yield es-
timated mean inverse elasticities close to zero.4 Even for the

4For the sample of direct elasticity estimates, we also find strong publi-
cation bias and zero mean corrected coefficient. Thus both groups of stud-
ies suggest little correlation between the wage premium and relative labor
supply. However, inference regarding the elasticity is the opposite for the
two groups. As explained in online appendix B, we find less persuasive the
identification arguments used by studies estimating the elasticity directly.
Moreover, there are not enough IV and natural experiment studies on direct
estimates to allow us examine attenuation bias for direct estimates.

Andrews and Kasy (2019) model, the implied mean elas-
ticity of substitution exceeds 3. In the main text, we ana-
lyze publication bias separately for different methods used in
the primary studies and divide the studies into three groups:
OLS (typically time series studies that either ignore en-
dogeneity or argue that it is not a major issue), IV (typ-
ically cross-sectional studies with shift-share instruments),
and natural experiments (studies that exploit arguably ex-
ogenous variation in relative skill supply induced either by
migration or expansions of higher education).

Correcting for publication bias in individual subsamples
separately has three advantages. First, the aggregate analysis
may confound publication bias with heterogeneity. Second,
previous meta-analyses have shown differences in publica-
tion bias between OLS and IV estimates in economics. For
example, Ashenfelter et al. (1999) find that IV estimates of
the return to schooling suffer more from publication bias be-
cause researchers have a harder time producing statistically
significant estimates given the imprecision brought by IV.
Third, differences in the corrected means for OLS, IV, and
natural experiments are informative on the extent of attenu-
ation bias. If IV studies are well specified, they correct for
attenuation bias and other endogeneity biases. Natural exper-
iments correct for other endogeneity biases, but in general
not for attenuation bias.

Table 1 shows the results. For natural experiments we only
have 40 estimates taken from 6 studies, so the power of the
tests is low for this group, but all techniques suggest strong
publication bias and negligible corrected effects. Natural
experiments as a whole are thus consistent with no causal
effect of relative skill supply on the skill premium and there-
fore with infinite elasticity of substitution. We obtain sim-
ilar results for OLS estimates—with the exception of the
Andrews and Kasy (2019) model, which is in this context
less aggressive in correcting for publication bias. However,
IV estimates of the negative inverse elasticity are different:
they show less publication bias and larger corrected inverse
elasticities, implying the elasticity of substitution around 4.
The results are consistent with attenuation bias in the liter-
ature (IV estimates of negative inverse elasticities are larger
in magnitude than OLS estimates) and little additional en-
dogeneity bias (OLS estimates are similar to estimates from
natural experiments). Nevertheless, even our preferred esti-
mate of 4 is much larger than the uncorrected mean implied
elasticity of 1.8, a difference which shows that publication
bias dominates attenuation bias. In contrast to Ashenfelter
et al. (1999), we find that IV estimates suffer less from pub-
lication bias than OLS estimates.5 This is the case because
the underlying inverse elasticity is much farther from zero
for IV relative to OLS estimates, which means that with

5Our findings also contrast those of Brodeur et al. (2020), who find
that IV estimates are more biased than other techniques commonly used
in economics. However, note that Brodeur et al. (2020) only examine
(quasi)experimental techniques (IV, difference-in-differences, regression
discontinuity design, randomized control trials), not OLS.
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TABLE 1.—IV ESTIMATION OF THE NEGATIVE INVERSE ELASTICITY SHOWS LESS BIAS AND A LARGER CORRECTED EFFECT IN MAGNITUDE COMPARED

TO BOTH OLS AND NATURAL EXPERIMENTS

Panel A: OLS estimates

FE BE IV EK SM

Publication bias −5.804∗∗∗ −4.277∗∗∗ −6.962∗∗∗ −5.465∗∗∗ P = 0.468
(1.999) (1.266) (1.694) (0.540) (0.139)

[−11.770, −2.494]
{−11.972, −3.133}

Effect beyond bias −0.0207 −0.0965 0.0103 −0.0361∗∗ −0.289∗∗
(0.103) (0.0627) (0.104) (0.0191) (0.113)

[−0.331, 0.214]
First-stage robust F-stat 46.17
Observations 347 347 251 347 347

Panel B: IV estimates

FE BE IV EK SM

Publication bias −2.287∗∗ −0.923 −0.553 −1.485∗∗∗ P = 0.336
(0.843) (1.365) (0.681) (0.268) (0.093)

[−1.913, 1.078]
{−1.991, 0.748}

Effect beyond bias −0.149 −0.297∗∗ −0.400∗∗∗ −0.252∗∗∗ −0.333∗∗∗
(0.109) (0.115) (0.114) (0.0246) (0.058)

[−0.719, 0.175]
First-stage robust F-stat 69.98
Observations 264 264 212 264 264

Panel C: Natural experiment estimates

FE BE IV EK SM

Publication bias −3.557∗∗∗ −1.874∗ −3.176∗∗∗ −3.115∗∗∗ P = 0.187
(0.0178) (0.682) (0.853) (0.343) (0.075)

[−4.854, −1.407]
{−4.653, −1.444}

Effect beyond bias 0.0496∗∗∗ −0.121 −0.00307 0.00302 −0.009
(0.00246) (0.0824) (0.0297) (0.0280) (0.066)

[NA, NA]
First-stage robust F-stat 260.41
Observations 40 40 40 40 40

The first three specifications regress estimates on standard errors (weighted by inverse variance). Standard errors, clustered at the study level, are in parentheses. FE = study fixed effects. BE = study between effects.
IV = the inverse of the square root of the number of observations is used as an instrument for the standard error. In square brackets, we show the 95% confidence interval from wild bootstrap (Roodman et al., 2018);
in curly brackets we show the two-step weak-instrument-robust 95% confidence interval based on Andrews (2018) and Sun (2018). EK = endogenous kink method by Bom and Rachinger (2019), SM = selection
model by Andrews and Kasy (2019), P denotes the probability that estimates insignificant at the 5% level are published relative to the probability that significant estimates are published (normalized at 1). ∗ p < 0.1,
∗∗ p < 0.05, and ∗∗∗ p < 0.01.

IV less effort is needed to obtain plausible estimates for
publication.

In the online appendix (tables C3–C5), we test and correct
for publication bias in other variously defined subsamples
of the literature: elasticities estimated for developed coun-
tries versus elasticities for developing countries, elasticities
estimated at the country level versus elasticities at the re-
gional level, and elasticities estimated using a one-level CES
function versus a multilevel CES function. The results sug-
gest that elasticities tend to be larger for developed coun-
tries (above 4) than developing countries (around 2.5), and
once again publication bias is stronger for the group which
displays a corrected inverse elasticity closer to zero. The
cross-country differences in elasticities are discussed, for
example, by Behar (2010). A plausible explanation for the
finding is that in many developing countries access to higher
education is still limited, and therefore selection effects are
stronger within cohorts. In addition, the unskilled labor ag-
gregate contains workers of limited literacy. Next, our re-

sults suggest that elasticities estimated at the country level
are smaller than those estimated at the regional level, but
there are only 93 estimates for the latter group. Finally, both
one-level and multilevel CES functions seem to yield similar
estimated elasticities.

In addition to bias-correction methods, we use the caliper
test for the distribution of t-statistics by Gerber and Malho-
tra (2008) and two new tests for the distribution of p-values
developed by Elliott et al. (2022). These tests of publica-
tion bias do not need the independence assumption, but are
not designed to estimate the underlying elasticity. Figure 3
provides a motivation: the frequency of reported estimates
drops precipitously when the t-statistic falls short of −1.96
in magnitude. The first block of table 2 examines this drop
using the caliper test (Gerber & Malhotra, 2008). In a nar-
row caliper around −1.96, 62% of the estimates are different
from zero at the 5% level, while only 38% of them are sta-
tistically insignificant. In the histogram of the estimates (fig-
ure A1 in the online appendix), we observe that, in addition
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FIGURE 3.—THE DISTRIBUTION OF t-STATISTICS PEAKS AT −2

The dashed vertical line represents the critical value associated with significance at the 5% level. For ease of exposition we exclude outliers from the figure but include them in all statistical tests.

to 0, −1 is an important threshold. It is unintuitive to sug-
gest that skilled and unskilled labor are gross complements,
and the value −1 itself would mean that skill-biased techni-
cal change has no effect on the skill premium. In the second
block of the table we thus test whether authors prefer to re-
port estimates rejecting a negative inverse elasticity of −1.
In this case the caliper test is inconclusive. Next, we look at
the distribution of inverted elasticities itself, not t-statistics,
and confirm the large drops at 0 and −1 as apparent from
figure A1.

The disadvantage of caliper tests is the necessity to
specify the values where we expect breaks in the dis-
tribution. Elliott et al. (2022) derive two new rigorously
founded techniques that do not require us to define the lo-
cation of the breaks. The techniques rely on the condi-
tional chi-squared test of Cox and Shi (2022). The first tech-
nique is a histogram-based test for nonincreasingness of the
p-curve, the second technique is a histogram-based test for
2-monotonicity and bounds on the p-curve and the first two
derivatives. In their applications, Elliott et al. (2022) only
focus on p-values below 0.15 and use 15, 30, or 60 bins.
Because our dataset is much smaller (especially in subsam-
ples), we include all p-values below 0.2 and use 5–10 bins
depending on the size of the subsample. In most cases we
reject the null hypothesis of no publication bias, with the
exception of natural experiments, regional estimates, and
developing countries. These are also the smallest subsam-

ples, which might suggest that larger datasets than ours are
needed for the tests of Elliott et al. (2022) to have adequate
power.

III. Heterogeneity

The literature on the elasticity of substitution is charac-
terized by significant variation in the reported estimates, as
we have shown in figure 1. While publication bias explains
a part of this variation, individual studies (and individual
specifications within the studies) differ greatly in terms of
the data and methods used. In this section we control for 24
variables that capture the context in which researchers obtain
their estimates. Given the model uncertainty inherent in such
an exercise, we use Bayesian and frequentist model averag-
ing. Our goals are threefold. First, we examine whether the
relation between estimates and standard errors, which serves
as an indication of publication bias, is robust to controlling
for the aspects of study design. This analysis complements
the IV meta-regression approach presented in the previous
section. Second, we aim to identify the aspects that are the
most effective in explaining the differences among the re-
ported elasticities. Third, as the bottom line we create a syn-
thetic study that computes an implied elasticity using all es-
timates but giving more weight to those that are arguably
better identified and correcting for both publication and at-
tenuation bias.
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TABLE 2.—TESTS BASED ON THE DISTRIBUTION OF t-STATISTICS AND p-VALUES

Panel A: Caliper tests due to Gerber and Malhotra (2008)

Threshold for t-statistic: −1.96 caliper: 0.25 0.30 0.35 0.40

Share above threshold minus 0.5 −0.118∗∗ −0.135∗∗ −0.102∗∗ −0.121∗∗∗
(0.0561) (0.0525) (0.0485) (0.0452)

Observations 76 85 103 116

Threshold for adjusted t-statistic t∗ = (estimate + 1)/SE (estimate): 1.96
(relevant for the null hypothesis that the negative inverse elasticity is −1)

caliper: 0.25 0.30 0.35 0.40

Share above threshold minus 0.5 0.090 0.100 0.088 0.096
(0.0798) (0.0739) (0.0696) (0.0656)

Observations 39 45 51 57

Threshold for neg. inv. elasticity: 0 caliper: 0.05 0.10 0.15 0.20

Share above threshold minus 0.5 −0.397∗∗∗ −0.387∗∗∗ −0.379∗∗∗ −0.383∗∗∗
(0.0492) (0.0439) (0.0405) (0.0369)

Observations 39 53 66 77

Threshold for neg. inv. elasticity: −1 caliper: 0.05 0.10 0.15 0.20

Share above threshold minus 0.5 0.346∗∗∗ 0.368∗∗∗ 0.378∗∗∗ 0.406∗∗∗
(0.0722) (0.0556) (0.0473) (0.0367)

Observations 26 38 49 64

Panel B: Tests due to Elliott et al. (2022)

All OLS IV Natural Developed
inverse method method experiment country

Test for nonincreasingness 0.016 0.037 0.307 1.000 0.098
Test for monotonicity and bounds 0.008 0.050 0.032 1.000 0.110
Observations (p <= 0.2) 586 315 230 39 369
Total observations 654 347 264 40 418

Developing Country Region One-level Multilevel
country estimate estimate CES CES

Test for nonincreasingness 1.000 0.078 1.000 0.000 0.025
Test for monotonicity and bounds 0.930 0.041 0.773 0.000 0.016
Observations (p <= 0.2) 138 491 89 173 403
Total observations 151 555 93 198 444

In panel A, the tests compare the relative frequency of estimates above and below an important threshold for the t-statistic or negative inverse elasticity. A test statistic of −0.397, for example, means that 89.7%
estimates are below the threshold and 10.3% estimates are above the threshold. Panel B reports for different subsamples the p-values of two tests developed by Elliott et al. (2022), which also feature cluster-robust
variance estimators. ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.

TABLE 3.—CHARACTERISTICS USED TO EXPLAIN HETEROGENEITY

Category Variables

Data characteristics Annual frequency, Higher frequency, Lower frequency, Micro data, Sectoral data, Aggregated data, Cross-section
Structural variation United States, Developing country, Manufacturing sector
Design of the production function One-level CES function, Multilevel CES function, Time control, Location control, Macro control, Age control, Capital

control
Estimation technique Dynamic model, Unit fixed effects, Time fixed effects, OLS method, IV method, Natural experiment
Publication characteristics Impact factor, Citations

Details on each variable, including definition, summary statistics, and motivation for inclusion, are available in table D1 and appendix D in the online appendix. In data collection we follow the guidelines compiled
by the Meta-Analysis in Economics Research Network (Havranek et al., 2020).

Table 3 lists the variables that we use; they are described
in more detail, including motivation for their inclusion, in
table D1 and appendix D in the online appendix. We divide
the variables into five groups: data characteristics (such as
data frequency and aggregation), structural variation (differ-
ent countries and sectors), production function design (for
example, one-level versus multilevel specifications), estima-
tion technique (for example, OLS versus IV versus natural
experiments), and publication characteristics (impact factor

of the outlet and the number of citations received per year).
The latter group is included as a proxy for quality not cap-
tured by the data and method characteristics. As explained
in appendix D, some of the dummy variables are used as
reference categories, so they are not all included in regres-
sions. In addition, we include interactions of the standard
error and the dummy variables for IV estimates and devel-
oping countries, respectively, because the results in the pre-
vious section suggest that the corresponding estimates are

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/106/5/1187/2469477/rest_a_01227.pdf by guest on 31 O
ctober 2024



THE REVIEW OF ECONOMICS AND STATISTICS 1195

less affected by publication bias. That leaves 24 variables in
total for all models in this section.

Ideally we would regress the collected inverse elastici-
ties on the 24 variables described above. Given such a large
number of regressors, however, the probability that many
will prove redundant is high, which would compromise the
precision of parameter estimates for the more important
regression variables. In other words, we face substantial
model uncertainty; to address it, we employ model averaging
techniques, both Bayesian and frequentist. The Bayesian ap-
proach allows us to estimate the probability that an indi-
vidual explanatory variable should be included in the un-
derlying model. The frequentist approach is computationally
more cumbersome, but does not require the choice of priors
and serves as a useful robustness check.

The goal of Bayesian model averaging (BMA) is to find
the best possible approximation of the distribution of re-
gression parameters. The method yields three basic statis-
tics for each parameter: posterior mean, posterior variance,
and posterior inclusion probability. In our case BMA is to
run 224 regressions determined by all the possible combi-
nations of the explanatory variables. We simplify this task
by employing the Metropolis-Hastings algorithm of the bms
package for R by Zeugner and Feldkircher (2015), which
walks only through the most likely models. The likelihood
of each model is reflected by posterior model probabilities
(analogous to information criteria in the frequentist setting).
Posterior means are then computed as the estimated coeffi-
cients weighted across all models by their posterior model
probability. The posterior inclusion probability of a variable
is defined as the sum of posterior model probabilities for
all models where this candidate regressor is included (anal-
ogous to statistical significance in the frequentist setting).
For more details on BMA, we refer the reader to Raftery
et al. (1997) and Eicher et al. (2011); BMA has already been
used in meta-analysis by Bajzik et al. (2020), Zigraiova et al.
(2021), Gechert et al. (2022), and Matousek et al. (2022).

BMA requires explicit priors concerning the model
(model prior) and regression coefficients (g-prior). Our base-
line model prior and g-prior reflect our lack of ex ante in-
formation in both areas: we employ a uniform model prior,
which gives each model the same prior probability, and the
unit information g-prior, which provides the same informa-
tion as one observation from the data (suggested by Eicher
et al., 2011). In addition, we employ the dilution prior ac-
cording to George (2010), which accounts for collinearity by
adding a weight that is proportional to the determinant of the
correlation matrix of the variables included in the individual
model.

Furthermore, in the online appendix (appendix E) we
combine the random model prior (following Ley & Steel,
2009) with the hyper-g prior (suggested by Feldkircher &
Zeugner, 2012): while the random model prior assumes that
the distribution of the model size to be beta-binomial (which
reflects the fact that no model size is preferred), the hyper-
g prior sets the prior expected shrinkage factor equivalent

to the BRIC parameter prior (see Fernandez et al., 2001,
suggesting multivariate normal distribution that has a covari-
ance matrix specified depending on the data). In our applica-
tion of frequentist model averaging we use Mallow’s weights
(Hansen, 2007) with orthogonalization of the covariate space
according to Amini and Parmeter (2012) to narrow down the
number of estimated models. Variables enter the model in
descending order by the absolute value of the correlation
coefficient with the estimated inverse elasticity. For more de-
tails and applications of model averaging techniques in eco-
nomics, we refer the reader to the superb survey by Steel
(2020).

The results of Bayesian model averaging are visualized
in figure 4. Each column represents an individual regres-
sion model, and the width of the column indicates the cor-
responding posterior model probability: the weight of the
model. The columns are ordered by posterior model prob-
ability from left to right in descending order. Each row of
the figure represents a regression variable. The rows are or-
dered by the posterior inclusion probability from top to bot-
tom in descending order. Each cell with a darker gray color
indicates a positive sign of the posterior mean of the regres-
sion coefficient for the variable in a given model. Each cell
with a lighter gray color indicates a negative sign. If a vari-
able is excluded from the model, the corresponding cell is
blank. The figure suggests that approximately two thirds of
our explanatory variables are, at least to some degree, use-
ful in explaining the heterogeneity in the reported estimates
of the inverse elasticity of substitution; moreover, for these
variables the coefficient signs are robust across virtually all
the models.

The corresponding numerical results are reported in ta-
ble 4. The first specification represents our baseline BMA
exercise. To interpret the posterior inclusion probabilities
(PIPs) of the BMA means, researchers typically follow Jef-
freys (1961), who denotes evidence of an effect as “weak”
for a PIP between 0.5 and 0.75, “substantial” for a PIP be-
tween 0.75 and 0.95, “strong” for a PIP between 0.95 and
0.99, and “decisive” for a PIP larger than 0.99. The other
two specifications in table 4 represent robustness checks:
first, ordinary least squares that exclude all the variables
deemed utterly unimportant by BMA (with PIP below 0.5);
second, frequentist model averaging (FMA) that includes all
the variables we have collected. Thus our baseline estima-
tion technique is purely Bayesian, the first robustness check
uses Bayesian techniques for the selection of variables but
frequentist techniques for estimation, and the second robust-
ness check is purely frequentist. In addition, the online ap-
pendix (appendix E) provides more robustness checks that
focus on different priors for BMA (table E2).

We focus on the variables for which we have the most
robust evidence across the three specifications: at least sub-
stantial posterior inclusion probability in Bayesian model
averaging and, at the same time, significance at least at the
10% level in both frequentist check and frequentist model
averaging. The pre-eminent variable in this respect is the
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FIGURE 4—MODEL INCLUSION IN BAYESIAN MODEL AVERAGING

The variables are sorted according to their posterior inclusion probabilities from the highest at the top to the lowest at the bottom. The horizontal axis measures cumulative posterior model probability. Darker shade
of gray color = the estimated parameter for the variable is positive. Lighter shade of gray color = the estimated parameter for the variable is negative. No color = the variable is not included in the model. Numerical
results are reported in table 4. All variables are described in table D1 in the online appendix.

standard error, which shows the strongest association with
the reported inverse elasticity in all the models we run. Thus
model averaging techniques corroborate our previous find-
ings concerning publication bias, including less evidence for
the bias among IV estimates and estimates for developing
countries (these effects are captured by interactions with the
standard error). The other three variables found important in
all three model averaging techniques are Developing coun-
try, IV method, and Capital control. The former two corrob-
orate our results presented in the previous section. A new
result is the importance of the control for capital, which is
associated with inverse elasticities estimated farther away
from zero. Because changes in the capital stock can affect
the marginal product of both skilled and unskilled labor, ig-
noring capital may introduce a bias.

As the bottom line of our analysis we compute an implied
elasticity conditional on all collected estimates, our base-
line BMA results, and a definition of best practice method-

ology in the literature. Since best practice is subjective, we
choose two distinct strategies. First, we rely on three defi-
nitions from the literature: Autor (2014), Card (2009), and
Carneiro et al. (2022). These are meticulous contributions
that have been published in prestigious journals; moreover,
they represent the three main streams of the literature us-
ing OLS, IV, and natural experiments, respectively. We copy
their data and method characteristics and plug those in the
values of our variables in order to compute the fitted val-
ues from BMA and, hence, the implied (negative inverse)
elasticity. Second, we create a subjective definition of best
practice based on our reading of the literature.

Our subjective definition of best practice is the following.
We plug in zero for the standard error in order to approxi-
mately correct for publication bias. We prefer disaggregated
panel data and annual granularity. We prefer the multilevel
CES structure with all potential control variables included
in estimation; furthermore, we prefer dynamic models
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TABLE 4.—WHY ESTIMATES OF THE NEGATIVE INVERSE ELASTICITY VARY

Bayesian model averaging Frequentist check (OLS) Frequentist model averaging

Response variable: Reported estimate P.M P.SD PIP Coef. SE p-val. Coef. SE p-val.

Constant −0.20 NA 1.00 −0.22 0.11 0.04 0.00 0.21 1.00
Standard error (SE) −3.62 0.84 1.00 −3.60 0.57 0.00 −4.82 1.25 0.00
SE * IV method 2.35 0.48 1.00 2.36 0.74 0.00 2.92 1.18 0.01
SE * Developing country 2.24 0.59 1.00 2.26 0.98 0.02 2.59 1.06 0.01
Data characteristics

Higher frequency 0.00 0.02 0.08 0.00 0.04 1.00
Lower frequency 0.26 0.04 1.00 0.28 0.09 0.00 0.16 0.11 0.14
Micro data 0.06 0.05 0.65 0.09 0.06 0.15 0.00 0.10 1.00
Sectoral data 0.07 0.06 0.61 0.11 0.08 0.18 0.00 0.11 1.00
Cross-section 0.00 0.01 0.10 0.00 0.03 1.00

Structural variation
United States 0.10 0.03 1.00 0.10 0.06 0.11 0.02 0.07 0.79
Developing country −0.21 0.04 1.00 −0.20 0.10 0.05 −0.29 0.14 0.04
Manufacturing sector 0.00 0.02 0.09 0.00 0.03 1.00

Design of production function
Multilevel CES function 0.05 0.04 0.79 0.07 0.08 0.37 −0.02 0.08 0.83
Time control 0.00 0.01 0.11 0.00 0.00 1.00
Location control −0.10 0.08 0.65 −0.14 0.10 0.15 0.00 0.14 1.00
Macro control 0.19 0.04 1.00 0.21 0.06 0.00 0.04 0.16 0.81
Age control −0.02 0.03 0.36 0.00 0.03 1.00
Capital control −0.39 0.03 1.00 −0.39 0.09 0.00 −0.42 0.13 0.00

Estimation technique
Dynamic model 0.00 0.02 0.07 0.00 0.01 1.00
Unit fixed effects −0.08 0.02 0.99 −0.09 0.04 0.02 −0.02 0.06 0.72
Time fixed effects 0.00 0.01 0.13 0.00 0.02 1.00
IV method −0.12 0.04 0.96 −0.13 0.07 0.06 −0.12 0.05 0.02
Natural experiment 0.19 0.08 0.92 0.18 0.07 0.01 0.13 0.10 0.20

Publication characteristics
Impact factor 0.01 0.01 0.55 0.02 0.02 0.40 0.00 0.02 1.00
Citations 0.00 0.01 0.20 0.00 0.00 1.00

Studies 68 68 68
Observations 654 654 654

P.M = posterior mean, P.SD = posterior standard deviation, PIP = posterior inclusion probability, SE = standard error. In Bayesian model averaging, we employ the combination of the uniform model prior
recommended by Eicher et al. (2011) and the dilution prior (George, 2010), which accounts for collinearity. The frequentist check (OLS) includes the variables found by BMA to have PIP above 0.5 and is estimated
using standard errors clustered at the study level. Frequentist model averaging applies Mallow’s weights (Hansen, 2007) using orthogonalization of covariate space suggested by Amini and Parmeter (2012) to reduce
the number of estimated models. All variables are described in table D1 in the online appendix. Additional details on the benchmark BMA exercise can be found in table E1 and figure E1 in the online appendix.

TABLE 5.—IMPLIED ELASTICITIES

Subjective best practice Autor (2014) Card (2009) Carneiro et al. (2022)

All countries −0.27 −0.13 −0.24 0.05
(−0.48, −0.05) (−0.24, −0.02) (−0.39, −0.09) (−0.12, 0.23)

σ = 3.7 σ = 7.7 σ = 4.2 σ = −18.4
USA −0.16 −0.02 −0.13 0.16

(−0.38, 0.06) (−0.12, 0.07) (−0.28, 0.02) (−0.02, 0.34)
σ = 6.3 σ = 45.0 σ = 7.8 σ = −6.2

Developing countries −0.47 −0.33 −0.44 −0.15
(−0.70, −0.24) (−0.47, −0.19) (−0.60, −0.27) (−0.33, 0.04)

σ = 2.1 σ = 3.0 σ = 2.3 σ = 6.8

The table presents the elasticity of substitution (σ) recovered from the negative inverse elasticity and implied by the results of Bayesian model averaging and (i) our definition of best-practice approach, (ii) the
approach by Autor (2014), (iii) the approach by Card (2009), and (iv) the approach by Carneiro et al. (2022). That is, the table attempts to answer the question what the mean elasticity would look like if the literature
was approximately corrected for publication bias and all studies in the literature used the same strategy as the one we prefer or the ones employed by Autor (2014), Card (2009), and Carneiro et al. (2022). 95% credible
intervals for the negative inverse elasticity are reported in parentheses.

estimated with unit and time fixed effects and accounting for
endogeneity and attenuation bias using instrumental vari-
ables. We also prefer studies published in journals with a
high impact factor and those with a high number of cita-
tions. All other variables (including the ones corresponding
to structural variation) are set to their sample means.

Table 5 reports the results. The first row shows the overall
estimate, the second row shows the estimate for the United

States, and the last row shows the estimate for developing
countries. Our subjective best practice estimate is in all three
cases close to the estimate based on Card (2009). This is be-
cause both approaches rely on IV, while OLS and natural
experiments in the remaining columns bring inverse elastic-
ities generally close to zero. Our preferred estimate of the
implied overall elasticity is 3.7, with the 95% credible inter-
val of (2, 20). The preferred estimate for the United States
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is 6.3; for developing countries it is 2.1. If we ignored any
considerations of attenuation bias and instead preferred evi-
dence from natural experiments, we would have to conclude
that the implied elasticity is, with the exception of develop-
ing countries, close to infinity: a finding even less consistent
with the value of 1.5 commonly used for calibrations.

IV. Conclusion

We collect 682 estimates of the elasticity of substitution
between skilled and unskilled labor reported in 77 studies.
We measure the extent of two biases that affect the reported
inverse elasticity: publication bias (stemming from the un-
derreporting of small estimates) and attenuation bias (stem-
ming from measurement error). Correcting for publication
bias slashes the mean negative inverse elasticity from −0.6
to the vicinity of zero, and the result holds when we relax the
common meta-analysis assumption of conditional indepen-
dence of estimates and standard errors. While publication
bias corrected estimates stemming from OLS and natural ex-
periments remain close to zero, corrected IV estimates are
around −0.25. The result is consistent with attenuation bias
in the literature and an implied elasticity of 4 after correction
for both biases. The interplay of the two biases in labor eco-
nomics evokes Griliches (1977), who finds that in measur-
ing the return to education, attenuation bias almost exactly
offsets omitted variable bias (which is often correlated with
publication bias via specification searching and p-hacking).
In our case, publication bias dominates attenuation bias.

The aforementioned results hold when we control for ad-
ditional 24 variables that reflect the context in which the
estimates were obtained in the primary studies: for exam-
ple, variable definition, data characteristics, design of the
production function, estimation technique, and publication
characteristics. Using so many variables creates model un-
certainty problems, and we address them by using both
Bayesian model averaging and frequentist model averaging.
We find that larger estimated elasticities are associated with
data from developed countries and specifications incorporat-
ing capital. We then compute the implied elasticity condi-
tional on best practice methodology, based both on promi-
nent studies and our reading of the literature. The implied
mean elasticity is again 4, with a 95% credible interval of
(2,20). Because the typical calibration of the elasticity in the
literature is 1.5 (Cantore et al., 2017), our results suggest
that skilled and unskilled labor is substantially more substi-
tutable than commonly thought.
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