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Abstract

We demonstrate that all meta-analyses of partial correlations are biased, and

yet hundreds of meta-analyses of partial correlation coefficients (PCCs) are

conducted each year widely across economics, business, education, psychology,

and medical research. To address these biases, we offer a new weighted aver-

age, UWLS+3. UWLS+3 is the unrestricted weighted least squares weighted

average that makes an adjustment to the degrees of freedom that are used to

calculate partial correlations and, by doing so, renders trivial any remaining

meta-analysis bias. Our simulations also reveal that these meta-analysis biases

are small-sample biases (n < 200), and a simple correction factor of (n � 2)/

(n � 1) greatly reduces these small-sample biases along with Fisher's z. In

many applications where primary studies typically have hundreds or more

observations, partial correlations can be meta-analyzed in standard ways with

only negligible bias. However, in other fields in the social and the medical sci-

ences that are dominated by small samples, these meta-analysis biases are eas-

ily avoidable by our proposed methods.
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Highlights

What is already known
• All meta-analyses of partial correlation coefficients (PCCs) are biased,

though the biases are relatively small in most cases.
• Hundreds of meta-analyses of PCCs are conducted each year.
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What is new
• We offer two new corrections, UWLS+3 and REss, that widely reduce these

biases to scientific negligibility.
• Fisher's z transformations also produce small-sample biases, although they

are generally negligible in application.
• UWLS+3 is the unrestricted weighted least squares weighted average that

adjusts the degrees of freedom. It is generally less bias than meta-analyses
that transform PCCs to Fisher's z.

Potential impact for Research Synthesis Methods readers
• These new methods apply widely to all disciplines where one wishes to con-

duct a systematic review of the findings from multiple regressions.

1 | INTRODUCTION

Hundreds of meta-analyses of partial correlation coeffi-
cients (PCCs) are conducted each year widely across eco-
nomics, business, education, psychology, and medical
research.i Some researchers consider partial correlations
to be the preferred effect size to summarize multiple
regressions.1 Others recommend using partial correla-
tions as a last resort when different measures of the
dependent variable and/or the independent variable of
interest are routinely employed in the relevant area of
research.2

It is widely known that individual correlation estimates,
and PCCs, are biased downward (e.g., Olkin and Pratt).3

Recently, Stanley and Doucouliagos uncover the counterin-
tuitive result that all meta-analyses of PCC are, in contrast,
biased upward.4 That is, all meta-analyses of PCCs are
biased regardless of whether fixed effect (FE), random
effects (RE), or the unrestricted weighted least squares
(UWLS) weighted average are employed and in the absence
of any publication selection bias.ii In this paper, we offer
novel small-sample corrections that render any remaining
meta-analysis biases of PCCs scientifically trivial.

2 | PARTIAL CORRELATION
COEFFICIENTS

Across many disciplines, multiple regressions are employed
to evaluate the effect of a treatment, condition, or variable
upon some outcome of interest after controlling for other,
potential contaminating, effects or obscuring complexities.
Multiple regression can be represented as:

Yi ¼ β0þβ1X1iþβ2X2iþ���þβjXjiþ εi i¼ 1,2,…,n ð1Þ

where Y is the dependent variable or outcome of interest.
Without loss of generalization, we take X1 as the primary

variable of interest (perhaps a dichotomous variable repre-
senting treatment). The other Xs are independent variables
that are thought to affect the outcome. Subscript i repre-
sents an individual observation in a primary study (a con-
sumer, an individual subject, a geographical region, etc.),
j is the total number of independent variables, and εi rep-
resent sampling errors and other residuals.

Multiple regression is used with observational data,
quasi-experiments, and experimental designs when addi-
tional experimental conditions or pre-treatment subject
characteristics need to be considered. For our purposes, the
strength of the experimental design is not relevant as long
as the focus of the meta-analysis is upon the estimated
multiple regression coefficient, bβ1, across the research lit-
erature. However, in some cases, observational multiple
regressions can offer strong research designs.5

The partial regression coefficient, bβ1, is not a stan-
dardized effect. It is measured in units of Y per a one unit
increase in X1. Any change in the measure, metric, or
scale of either X1 or Y from one study to the next will
render the respective estimates of bβ1 uncomparable. PCCs
solve this problem. PCCs have the same statistical proper-
ties and interpretation as simple bivariate correlations
after the effects of X2,X3,…,Xj have been eliminated.6

Simple bivariate Pearson correlations are often employed
as effect sizes in meta-analysis, and partial correlations
come with the same advantages and limitations.

Gustafson mathematically derived a convenient for-
mula that converts any partial regression coefficient, bβ1,
into a PCC, rp:

rp ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þdf

p ð2Þ

where t¼ β̂1
sβ̂1

is the conventional t-test for the statistical

significance of X1 in the explanation of Y, and
df ¼n� j�1 are the degrees of freedom available to the
multiple regression, Equation (1).7 rp can be interpreted
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as a standardized regression coefficient that estimates the
number of standard deviations that Y increases when X1

increases by a one standard deviation, holding all other
variables constant, and r2p is the proportion of the varia-
tion in Y attributable to variation in X1 after eliminating
the effects of X2,X3,…,Xj. Because economics, business,
and social sciences, in general, often use different scales
and measures for Y and/or X1, PCCs are frequently
employed in the meta-analysis of these fields.2,8,9

The variance of rp is:

S21 ¼
1−r2p

� �2

df
, ð3Þ

as derived in Olkin and Siotani.1,10,11

However, the test of PCC's statistical significance, H0:
ρ = 0, requires a slightly different formula for the vari-
ance of rp :

S22 ¼
1� r2p

� �
df

ð4Þ

where ρ is the population PCC.11,12 Otherwise, the test of
statistical significance of the partial correlation would
give an illogical and different result than the test of the
statistical significance of the partial regression coefficient
from which this PCC is derived.2 Levy and Narula show
that the more complex variance formula, S21, reduces to
S22 when ρ= 0.11,12 These two formulae for rp's variance
only differ in that the numerator of S22 is not squared.
Since, by definition, �1≤ rp ≤ 1, it follows that S21 < S22
for all j rp j ≠ {0 or 1}. Using S22 and rp reproduces the t-
value and the p-value of the original estimated partial
regression coefficient, bβ1; S21 does not.

Below we demonstrate that all meta-analyses of PCCs are
biased (including FE, RE, and UWLS) regardless of which for-
mula of variance is used. Nevertheless, conventional meta-
analyses that use S21 cause the estimates of mean effect to
be twice as biased as those which employ S22: To address
these biases, we offer a simple modification to the trans-
formation formula, Equation (2), and a second small-
sample bias correction for degrees of freedom. First, how-
ever, we establish and discuss the bias of the conven-
tional meta-analysis of PCCs. It is only through
understanding these biases that a solution can be found.

3 | META-ANALYSIS BIAS

3.1 | Simulations

To investigate the statistical properties of the meta-analysis
of partial correlations, we conduct Monte Carlo simulations

of RE and UWLS estimates of the mean PCC from ran-
domly generated data, which is used to estimate multiple
regressions and transform each bβ1 to a PCC. Simulations
offer an important advantage over other approaches in
that we can set the “true” population value of the PCC, ρ,
by forcing its value upon the data generating process.

To obtain estimated PCCs for the effect size corre-
sponding to the variable, X1, we start with the following
multiple regression:

Yi ¼ β0þβ1X1iþβ2X2iþ εi i¼ 1,2,…,n ð5Þ

where n is set at {25, 50, 100, 200, and 400} but held con-
stant for a given simulation to identify and understand
the resulting small-sample biases. For simplicity, we
set all betas to 1 and assume that X1i,X2i,and εi are inde-
pendently and identically distributed as N(0, 1).iii The
variable, Yi, is generated by Equation (5) after random
and independent values are generated for X1i,X2i,and εi.
As a next step, we estimate a multiple regression for
Equation (5) and calculate the t-value of the estimated
regression coefficient β1. We then convert X 0

1s t-value to a
PCC via Equation (2).

Due to the clarity and simplicity of these data gener-
ating processes, the population variance of Yi not attrib-
uted to the remaining independent variables, X2i, equals
2 because this variance can be computed as the sum of
the variances of X1i and εi, each of which is set to have
variance 1. Both X1i and εi are independently distributed
with variance 1; hence, this total variance is the sum of
X1i and εi variances. Thus, the ratio of Y 0

is remaining var-

iance explained by X1i is ½, leading to ρ =
ffiffiffiffi
½

p
or

0.707107. This result also follows from Gustafson where

r2p is shown to be: bβ21
� bβ21þdf �S2bβ1

� �
.5 Recall that β1 is

set to 1, S2bβ1 ¼ (σ2=df �σ2X1
),13 and both σ2 and σ2X1

are set

to 1 by design; thus, again ρ2=½. In other simulation
experiments, we set ρ equal to a “medium” effect size
(ρ= sqrt(0.1)= 0.3162) by dividing X 0

1is randomly gener-
ated N(0, 1) by 3 and a “small” effect size (ρ= sqrt(1/82)
= 0.1104) by dividing by 9. Doing so makes X 0

1is variance
equal to 1/9 and 1/81, respectively while leaving the error
variance at 1—see Table 1.

For each study in our simulations, all the data in
Equation (5) is randomly generated, the multiple regres-
sion, Equation (5), and its coefficients are estimated, and
rp is calculated from Equation (2). S21 is then calculated
from Equation (3) and S22 from Equation (4), and all these
calculations are repeated 50 times to represent one meta-
analysis.iv For each meta-analysis of 50 estimated PCCs,
the RE and the UWLS weighted averages are calculated
in two ways by using S21 and S22.
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UWLS estimates the simple meta-regression coeffi-
cient, α1, from:

tk ¼ rpk
SEk

¼ α1
1

SEk

� �
þuk k¼ 1,2,…50 ð6Þ

where k is the number of PCCs combined into the meta-
analysis. k is often called the number of studies. In the sup-
plement, we also report the results for the simulation
designs that correspond to Tables 2 and 4 but with k = {10;
200} to ensure robustness. SEk is calculated as the square
root of either S21 or S22 from their respective formulae
above. Any common statistical software automatically
calculates UWLS, bα1, its standard error, test statistic, and
confidence intervals. UWLS and the FE must have identi-
cal point estimates, but UWLS automatically adjusts its
standard errors and confidence intervals for heterogene-
ity when present.14,15 We do not assume a common effect
but instead allow for random, additive heterogeneity
(Section 3.3, below); thus, FE is not an appropriate model
for these simulations. Previous simulations have shown
that UWLS is statistically superior to RE if there is selec-
tion for statistical significance or if small studies are more
heterogeneous than larger studies.14,16 In other cases
where RE's model is imposed upon the simulations, the
differences between UWLS' and RE's statistical properties
are negligible. For each randomly generated meta-analysis,
the bias, RMSE (square root of the mean squared error),
and coverage rates of RE and UWLS are calculated and
then averaged across 10,000 replications of all these steps.
See the Supplement for the simulation code.

Table 1 reports the results of these simulations using
both versions of PCC's variance—Equation (3) and
Equation (4). Using either RE or UWLS with S22 consis-
tently produces biases only 50% as large as the conven-
tional approach, RE with S21, on average and for most of
the individual conditions. Table 1 also shows that S21 gen-
erates larger root mean squared errors and worse cover-
age (i.e., coverage rates that are often much different
than their nominal 95% level) than S22. In Section 3.2,
below, we discuss the reason for these biases and why S21
produces predictably larger biases. These results confirm
Stanley and Doucouliagos' finding that the theoretically “cor-
rect” variance, S21, Equation (3), is not useful in practice
when conducting meta-analyses of partial correlations.4

3.2 | Reducing meta-analysis bias to
triviality

Looking closely at the biases identified through simula-
tions reveals two additional lessons. First, although these
biases are of a notable magnitude for small samples

(n ≤ 50), all these biases are mere rounding errors
(i.e., < 0.005) or smaller for large samples (i.e., n ≥ 200 or
n ≥ 100 if S22 is used). Second, biases consistently halve as
n doubles. Figure 1 graphs RE's and UWLS' biases against
the inverse of degrees of freedom (1/df) when ρ =

ffiffiffiffi
½

p
,

using 10,000 replications of each sample size, n= {10,
20, 40, 80, 160, 320, 640, 1280 and 25, 50, 100, 200,
400, 800, 1600, 2500}. Figure 1 reveals that S22 approxi-
mately halves RE's bias and that doubling the sample size
of the original study halves the bias of each again.

To be more precise, the biases of UWLS with inverse
S22 weights are a near exact function of the inverse of
degrees of freedom (1/df):

Biasi ¼ :000069þ :508
1
df i

� �
,

t ¼ 1:67ð Þ 505:8ð Þ; R2 ¼ 0:9999453:

ð7Þ

The values in parentheses are the t-values for the esti-
mated regression intercept and slope coefficients, respec-
tively; values greater than 2.145 are statistically
significant at the 0.05 level (t-values with df = 14). The

inverse of degrees of freedom, 1
df i

� �
, explains over 99.99%

of the bias of UWLS (R2≈ 99.995%) leaving a 95% margin
of error of 0.0003. Through numerical analysis, we know
that the bias of the meta-analysis of PCCs is a function of
the inverse df, and that any remaining error is negligible.

0
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.08

.1

.12

.14

B
ia

s

0 .02 .04 .06 .08 .1 .12 .14
1/df

UWLS2bias
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FIGURE 1 Biases of random-effects and the unrestricted

weight least square. Each point represents an average bias across

10,000 replications. RE1bias is random effects' bias that use PCC

variance, S21, from Equation (3). UWLS2bias is UWLS' bias using S22
from Equation (4).
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A century ago, Fisher observed that the: “sampling
distribution of the partial correlation obtained from
n pairs of values, when one variable is eliminated, is the
same as the random sampling distribution of a total cor-
relation derived from (n � 1) pairs. By mere repetition of
the above reasoning, it appears that when s variates are
eliminated the effective size of the sample is diminished
to (n � s)” (p. 330).6 This suggests that fine-tuning the
degrees of freedom in PCC's transformation formula may
substantially reduce or practically eliminate this bias.
Further simulations confirm that this is indeed the case.

3.2.1 | Reducing meta-analysis of PCCs bias
to triviality: REss

Following Fisher's observation, consider the simple bivar-
iate correlation:

r¼ Sxy
Sx �Sy ¼

X
Xi�X
� 	

Yi�Y
� 	. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Xi�X
� 	2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Yi�Y
� 	2q

ð8Þ

The sample covariance, Sxy, has degrees of freedom
(n� 2), because two parameters, μx and μy, must be first
estimated from a sample of n pairs of observations. Each
sample variance, S2x and S2y ,has (n� 1) has degrees of
freedom; thus, the denominator is (n� 1). This suggests
that a correction for degrees of freedom, (n� 2)/(n� 1),
might reduce the small-sample bias of meta-analysis
weighted averages that is revealed in Table 1. When the
small-sample bias is proportional to 1/df and df= (n� 1)
multiplying by (n� 2)/(n� 1) should reduce or correct
this small-sample bias. Table 2 reports the random-
effects, small-sample correction, REss, where each sample
PCC is first multiplied by (n-2)/(n-1) before the usual
random-effects formulae are applied using S22 from
Equation (4). REss greatly reduces the small-sample
biases—compare Tables 1 and 2.

These small-sample corrections of PCCs, however,
should not be applied to individual stand-alone PCCs
because it is widely known that individual correlation
estimates, and PCCs, are biased downward.3 Applying
this small-sample adjustment to stand-alone PCCs would
then only make a small downward bias worse. Rather,
they should be used only as an intermediate step in the
calculations of meta-analysis weighted averages of PCCs.
We propose employing these small-sample corrections,
(n � 2)/(n � 1) and UWLS+3 (see below) only in the cal-
culations of meta-analysis weighted averages of PCCs.
When applied to UWLS this small-sample correction,
(n � 2)/(n � 1), produces nearly the same reduction in
bias but sometimes with inadequate coverage (see

Table S1). Regardless, there is a better, more direct, way
to adjust degrees of freedom for UWLS—UWLS+3.

3.2.2 | Reducing meta-analysis of PCCs bias
to triviality: UWLS+3

As shown above, Equation (7), the biases of these meta-
analysis estimators are nearly an exact function of the
inverse degrees of freedom (df). Note further that df is in
the denominator of Gustafson's PCC transformation for-
mula, Equation (2), making all PCCs an inverse function
of the degrees of freedom. This suggests that a simple
adjustment of df in Equation (2) might provide a solu-
tion. Numerical analysis finds that adding 3 to df success-
fully reduces these small-sample biases to scientific
triviality. Because Gustafson's PCC transformation for-
mula is almost always used in PCC meta-analysis appli-
cations, adjusting the degrees of freedom here requires
no additional steps. We call the resulting transformed
weighted average “UWLS+3.”

UWLS+3 substitutes degrees of freedom that are three
larger than the multiple regression's degrees of freedom
into PCC's transformation formula, Equation (2), and
uses S22, Equation (4), as the variance. That is, UWLS+3

calculates PCCs as:

rp ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þdfþ3

p ð9Þ

for dfþ3 ¼n� sþ1 with s as the number of independent
variables in the multiple regression held constant in the
calculation of the partial correlation of interest
(i.e., s¼ j�1). This dfþ3 transformation can also be used
in conjunction with RE, but doing so produces worse sta-
tistical properties than UWLS in some conditions.v

3.2.3 | Simulation findings

UWLS+3 employs the same simulation design as before;
however, it replaces the degrees of freedom in the PCCs
transformation formula with values that are three units
greater than the degrees of freedom in the multiple
regression. As displayed in Table 2, UWLS+3 eliminates
all biases to within <±0.001, and its average absolute bias
is only 0.0002. REss also greatly reduces these biases, but
not to the extent that UWLS+3 does, nor are REss cover-
ages as close to 95% as are UWLS+3's. Table 2 assumes
that either there are two independent variables in the
multiple regression (j¼ 2) or four j¼ 4ð Þ. To ensure
broader generalizability, Table S2 reports the same simu-
lation design as Table 2, except j= 6 and 10. Induction
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TABLE 2 REss, REz, and UWLS+3 meta-analyses of partial correlations.

2 IVs: Partial correlation of X1 from Yi ¼ β0þβ1X1iþβ2X2iþ εi

Design Bias RMSE Coverage

ρ n REss REz UWLS+3 REss REz UWLS+3 REss REz UWLS+3

0.7071 25 �0.0070 0.0078 0.0009 0.0161 0.0168 0.0155 0.9891 0.9281 0.9431

0.7071 50 �0.0037 0.0036 0.0001 0.0107 0.0109 0.0105 0.9914 0.9460 0.9511

0.7071 100 �0.0019 0.0017 �0.0001 0.0075 0.0073 0.0072 0.9923 0.9530 0.9514

0.7071 200 �0.0010 0.0008 �0.0001 0.0051 0.0051 0.0051 0.9938 0.9539 0.9503

0.7071 400 �0.0004 0.0004 0.0000 0.0035 0.0036 0.0036 0.9953 0.9551 0.9480

0.3162 25 0.0050 0.0067 0.0008 0.0281 0.0284 0.0275 0.9516 0.9492 0.9408

0.3162 50 0.0017 0.0032 0.0003 0.0188 0.0190 0.0187 0.9569 0.9519 0.9458

0.3162 100 0.0008 0.0014 0.0000 0.0129 0.0131 0.0130 0.9626 0.9553 0.9460

0.3162 200 0.0005 0.0006 �0.0002 0.0091 0.0091 0.0091 0.9646 0.9567 0.9482

0.3162 400 0.0002 0.0004 0.0000 0.0063 0.0064 0.0064 0.9659 0.9556 0.9497

0.1104 25 0.0016 0.0024 0.0002 0.0306 0.0306 0.0301 0.9478 0.9545 0.9368

0.1104 50 0.0007 0.0011 0.0000 0.0208 0.0206 0.0203 0.9496 0.9593 0.9481

0.1104 100 0.0004 0.0007 0.0001 0.0143 0.0143 0.0142 0.9527 0.9584 0.9489

0.1104 200 0.0003 0.0002 �0.0001 0.0099 0.0100 0.0100 0.9573 0.9569 0.9485

0.1104 400 0.0001 0.0001 �0.0001 0.0069 0.0071 0.0070 0.9609 0.9564 0.9495

Average 0.0017a 0.0021 .0002a 0.0134 0.0135 0.0132 0.9688 0.9527 0.9471

4 IVs: Partial correlation of X1 from Yi ¼ β0þβ1X1iþβ2X2iþβ3X3iþβ4X4iþεi

0.7071 25 �0.0048 0.0083 0.0009 0.0160 0.0163 0.0164 0.9920 0.9284 0.9424

0.7071 50 �0.0032 0.0037 �0.0001 0.0108 0.0107 0.0106 0.9930 0.9434 0.9447

0.7071 100 �0.0017 0.0018 �0.0001 0.0074 0.0073 0.0073 0.9929 0.9513 0.9512

0.7071 200 �0.0009 0.0008 �0.0001 0.0051 0.0050 0.0050 0.9949 0.9554 0.9506

0.7071 400 �0.0004 0.0004 0.0000 0.0036 0.0036 0.0036 0.9935 0.9556 0.9490

0.3162 25 0.0064 0.0063 0.0000 0.0297 0.0289 0.0289 0.9491 0.9520 0.9380

0.3162 50 0.0020 0.0029 �0.0001 0.0192 0.0191 0.0191 0.9551 0.9545 0.9456

0.3162 100 0.0008 0.0014 �0.0001 0.0131 0.0129 0.0130 0.9606 0.9588 0.9516

0.3162 200 0.0005 0.0006 �0.0001 0.0090 0.0091 0.0092 0.9658 0.9592 0.9518

0.3162 400 0.0002 0.0003 �0.0001 0.0064 0.0063 0.0065 0.9642 0.9591 0.9554

0.1104 25 0.0025 0.0029 0.0005 0.0325 0.0312 0.0316 0.9440 0.9553 0.9379

0.1104 50 0.0010 0.0012 0.0000 0.0212 0.0209 0.0209 0.9508 0.9580 0.9463

0.1104 100 0.0004 0.0007 0.0001 0.0145 0.0144 0.0145 0.9548 0.9553 0.9473

0.1104 200 0.0001 0.0002 �0.0001 0.0102 0.0100 0.0101 0.9508 0.9562 0.9472

0.1104 400 �0.0001 0.0001 0.0000 0.0070 0.0071 0.0071 0.9597 0.9543 0.9458

Average 0.0017a 0.0021 .0002a 0.0137 0.0138 0.0135 0.9681 0.9531 0.9470

Note: ρ is the “true” population mean partial correlation coefficient (PCC). n is the sample size used in the primary study's multiple regression. Bias is the
difference between the meta-analysis estimate and ρ calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications.
RMSE is the square root of the mean squared error. Coverage is the proportion of 10,000 meta-analysis 95% confidence intervals that contain ρ. REss is the

random-effect's estimate of the mean using S22, from Equation (3) and the small-sample adjustment (n� 2)/(n� 1). UWLS+3 is the unrestricted weighted least
squares' estimate of the mean using S22 from Equation (4) and df+3 as the degrees of freedom in PCC's formula. REz is the random-effect's estimate of Fisher's z
converted back to PCC.
aAverage biases are averages across the absolute values of the biases. Biases reported as “0.0000” are < j ± 0.00005j.
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suggests that if you can prove trivial bias for one
(i.e., s= 1; Table 2) and trivial bias for some random s (e.-
g., s= 3), then trivial biases generalize to any s (e.g., s=
{5, 9}, Table S2). As a further corroboration of the effec-
tive elimination of meta-analysis bias, Table S3 reports
the same simulation design but with different values of
the population PCC, ρ= {0.9487; 0.2425; 0}. Also note
Table S4 where the same simulation design is reported
but with different numbers of PCCs, k= {10; 200}.
Table S5 reports simulations of meta-analyses where each
has a distribution of sample sizes, n= {30, 40, 50, 75, 100,
100, 125, 160, 200, 400}, typically seen in the meta-
analysis of correlations in psychology.17,18 In all cases,
these adjustments drive the small-sample biases to scien-
tific negligibility and their relative evaluations remain
unchanged.

Now that we have found ways to reduce these biases
to scientific triviality, what causes these biases of the con-
ventional meta-analysis of partial correlations? The sim-
ple answer is that both formulas for the variance of PCCs
are themselves a function of the PCC. Because the
weights of meta-analysis are a strictly increasing function
of r2p, it follows that for all r

2
p ≠ {0 or 1} positive sampling

errors are assigned more influence on the meta-analysis
estimate compared to negative sampling errors of the
same magnitude. In all meta-analyses that use inverse
variance weights, based on either S21 or S22, an upwards
bias in magnitude will arise: the absolute expected value
delivered by the meta-analysis will surpass jρj if the true
correlation is not 0 or 1.

Let us assume, for instance, that ρ = 0.7 and examine
how estimates with errors of the same magnitude but dif-
ferent signs (±0.2) are weighted in meta-analysis. For S22,
an UWLS estimate with a sampling error of +0.2 is
assigned a weight proportional to 1/0.19= 5.26, in stark
contrast to 1/0.75= 1.333 for a� 0.2 sampling error.
Here estimates with positive errors are assigned nearly
four times more influence than estimates with negative
errors but equal in size. Few sampling errors will in
practice be as large as ±0.2, but the aforementioned
principle of asymmetric weighting as the source of bias
in conventional meta-analysis of partial correlations
holds in general: for all sizes of sampling errors and
various meta-analysis estimators. Because RE's weights
are the inverse of the sampling variance plus a positive
constant (τ2), this asymmetric weighting of sampling
errors is moderated, but not eliminated, by RE. Table 1
shows that RE's biases are somewhat smaller than
UWLS', just as we would expect, and these differences
are especially clear for small samples when S21 is used.
Asymmetric weighting of sampling errors biases
weighted averages upwards in magnitude. Table 1 con-
firms these biases.

For bivariate correlations, this issue that the vari-
ance is a function of the effect size and that this may be
problematic for meta-analysis is widely known. The
conventional solution is to convert correlations to
Fisher z's, calculate the meta-analysis estimate of the
mean and its related statistics, then convert these terms
of Fisher z back to correlations for the purpose of inter-
pretation.19 As Fisher noted, what is true for correla-
tions is true for partial correlations after degrees of
freedom are adjusted for the number of variables elimi-
nated, s.6 Tables 2 and S1–S3 also report the biases,
RMSEs, and coverage rates for RE estimates of Fisher's
z that have been converted back to PCCs. Using Fisher's
z eliminates most of these small-sample biases. Its
biases and MSEs are nearly the same as the simple RE
correction for small-sample bias. However, in all cases
and by all criteria, UWLS+3, has better statistical prop-
erties than either Fisher's z or REss (Table 2). Although
Fisher's z and REss produce biases larger than rounding
error only for small samples and medium or larger cor-
relations, UWLS+3's bias is still 10 times smaller, see
Figure 2. Likewise, UWLS+3's RMSEs are smaller, and
its coverage rates are closer to the nominal 95% than
Fisher's z or REss. In fact, REss CIs are too narrow for
large PCCs. Practically speaking, however, all three:
Fisher's z, REss, and UWLS+3 solve this problem of
biased meta-analyses of partial correlations in the vast
majority of cases even though UWLS+3 is slightly
better.
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FIGURE 2 Biases of the meta-analysis of Fisher's z converted

back to PCC (Z Bias), the unrestricted weight least squares with

3 additional degrees of freedom (UWLS+3), and the random-effect's

estimate of the mean, REss, using S22, from Equation (3) and the

small-sample adjustment (n� 2)/(n� 1) for ρ =
ffiffiffiffi
½

p
and 10,000

replications. See Table 2 and its discussion.
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TABLE 4 REss, REz, and UWLS+3 meta-analyses of partial correlations with heterogeneity.

2 IVs: Partial correlation of X1 from Yi ¼ β0þβ1X1iþβ2X2iþ εi

Design Bias RMSE Coverage

ρ I2 REss REz UWLS+3 REss REz UWLS+3 REss REz UWLS+3

0.7071 0.369 �0.0058 0.0024 0.0041 0.0199 0.0199 0.0203 0.9614 0.9404 0.9465

0.7071 0.559 �0.0068 �0.0016 0.0043 0.0192 0.0165 0.0167 0.9110 0.9429 0.9378

0.7071 0.730 �0.0113 �0.0038 0.0043 0.0198 0.0152 0.0149 0.8717 0.9392 0.9397

0.7071 0.848 �0.0140 �0.0046 0.0045 0.0205 0.0145 0.0140 0.8233 0.9340 0.9333

0.7071 0.919 �0.0154 �0.0053 0.0044 0.0210 0.0144 0.0136 0.7897 0.9279 0.9317

0.3162 0.404 �0.0004 0.0037 0.0020 0.0333 0.0327 0.0331 0.9305 0.9421 0.9388

0.3162 0.515 �0.0049 0.0001 0.0018 0.0265 0.0256 0.0261 0.9328 0.9470 0.9456

0.3162 0.669 �0.0068 �0.0013 0.0022 0.0233 0.0222 0.0226 0.9316 0.9427 0.9447

0.3162 0.800 �0.0075 �0.0022 0.0022 0.0215 0.0204 0.0207 0.9274 0.9398 0.9416

0.3162 0.890 �0.0077 �0.0025 0.0023 0.0204 0.0190 0.0192 0.9270 0.9430 0.9461

0.1104 0.320 0.0012 0.0018 0.0003 0.0326 0.0334 0.0335 0.9413 0.9461 0.9373

0.1104 0.364 �0.0006 0.0005 0.0003 0.0245 0.0248 0.0249 0.9405 0.9427 0.9417

0.1104 0.500 �0.0006 0.0001 0.0004 0.0193 0.0199 0.0201 0.9460 0.9415 0.9440

0.1104 0.661 �0.0010 �0.0001 0.0006 0.0167 0.0170 0.0172 0.9449 0.9445 0.9482

0.1104 0.795 �0.0014 �0.0004 0.0004 0.0154 0.0154 0.0155 0.9450 0.9460 0.9506

Average 0.0057a 0.0020a 0.0023 0.0223 0.0207 0.0208 0.9149 0.9413 0.9418

4 IVs: Partial correlation of X1 from Yi ¼ β0þβ1X1iþβ2X2iþβ3X3iþβ4X4iþεi

0.7071 0.349 �0.0031 0.0033 0.0044 0.0195 0.0206 0.0209 0.9671 0.9372 0.9422

0.7071 0.549 �0.0062 �0.0016 0.0042 0.0191 0.0165 0.0167 0.9183 0.9459 0.9430

0.7071 0.726 �0.0110 �0.0039 0.0042 0.0195 0.0152 0.0148 0.8738 0.9402 0.9421

0.7071 0.847 �0.0139 �0.0049 0.0043 0.0203 0.0147 0.0140 0.8284 0.9331 0.9367

0.7071 0.919 �0.0152 �0.0050 0.0048 0.0208 0.0141 0.0135 0.7963 0.9325 0.9326

0.3162 0.398 0.0008 0.0048 0.0025 0.0347 0.0338 0.0342 0.9272 0.9461 0.9386

0.3162 0.508 �0.0041 0.0005 0.0021 0.0267 0.0259 0.0264 0.9348 0.9440 0.9433

0.3162 0.665 �0.0069 �0.0016 0.0018 0.0232 0.0222 0.0225 0.9311 0.9425 0.9439

0.3162 0.800 �0.0073 �0.0019 0.0025 0.0213 0.0202 0.0205 0.9323 0.9454 0.9465

0.3162 0.889 �0.0081 �0.0023 0.0026 0.0207 0.0192 0.0195 0.9262 0.9413 0.9433

0.1104 0.323 0.0012 0.0020 0.0004 0.0344 0.0346 0.0346 0.9392 0.9473 0.9365

0.1104 0.358 �0.0001 0.0007 0.0004 0.0247 0.0251 0.0252 0.9410 0.9437 0.9421

0.1104 0.495 �0.0010 0.0005 0.0009 0.0199 0.0198 0.0200 0.9392 0.9446 0.9462

0.1104 0.658 �0.0011 �0.0005 0.0002 0.0167 0.0171 0.0173 0.9403 0.9390 0.9431

0.1104 0.794 �0.0014 �0.0004 0.0005 0.0153 0.0154 0.0156 0.9451 0.9410 0.9457

Average 0.0054a 0.0023a 0.0024 0.0224 0.0209 0.0210 0.9160 0.9416 0.9417

Note: ρ is the “true” population mean partial correlation coefficient (PCC). The sample sizes of the primary study's multiple regressions are the same as
reported in Tables 1 and 2. Bias is the difference between the meta-analysis estimate and ρ calculated from 50 estimated partial correlation coefficients and
averaged across 10,000 replications. RMSE is the square root of the mean squared error. Coverage is the proportion of 10,000 meta-analysis 95% confidence

intervals that contain ρ. REss is the random-effect's estimate of the mean using S22, from Equation (4) and the small-sample adjustment (n� 2)/(n� 1). UWLS+3

is the unrestricted weighted least squares' estimate of the mean using S22 from Equation (4) and df+3 as the degrees of freedom in PCC's formulae. REz is the
random-effect's estimate of Fisher's z converted back to PCC.
aAverage biases are averages across the absolute values of the biases. Biases reported as “0.0000” are < j ± 0.00005j.
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3.3 | Heterogeneity

Notable heterogeneity across studies within an area of
research is common in all disciplines. In psychology, for
example, the observed variance from study-to-study is
about 4 times larger than what reported standard errors
imply (i.e., median I2 = 74%).18 To ensure that partial
correlation's biases are robust to heterogeneity, we have
modified the same simulation design to produce hetero-
geneity at levels seen in psychology. Tables 3 and 4
report the same simulations as Tables 1 and 2, except
that random heterogeneity is added to each study's esti-
mated correlation in each meta-analysis. We first con-
vert each randomly generated estimated PCC to Cohen's
d, add a random normal deviation with mean zero and
standard deviation {0.5, 0.3, 0.2d} as ρ is: {0.7071,
0. 3162, 0.1104}, and, lastly, transform this back to a par-
tial correlation. That is, the simulations fix tau to be
{0.5, 0.3, 0.2d} as ρ is: {0.7071, 0. 3162, 0.1104}. We trans-
form to Cohen's d in this way to produce random het-
erogeneity consistent with the random-effect model and
to reproduce roughly the same distribution of heteroge-
neity as seen in psychology, in both absolute terms
(d) and relatively (I2).vi Table 3 shows that the biases of
the meta-analysis of correlations remain, while Table 4
confirms that Fisher's z and the small-sample correc-
tions introduced here consistently reduce these biases to
scientific negligibility.

4 | DISCUSSION

Meta-analyses of PCCs are generally biased. We offer
new solutions: UWLS+3 and the small-sample correction,
REss. Although these biases are ubiquitous, the good
news is that they practically and scientifically disappear
when the primary studies employ larger samples
(n ≥ 200). Thus, these biases will typically not be a nota-
ble factor in the meta-analysis of econometric studies in
economics and finance, which often involve hundreds of
observations or more.vii Nonetheless, for many areas
of education, business, psychology, medicine and health,
meta-analysts should use UWLS+3, REss, or Fisher's z in
the meta-analysis of PCCs.

An important limitation to our study is that the pri-
mary research literatures will typically be much richer
than what our simulations have assumed. We abstract
from such complexities to isolate and detect these biases
and then to understand their underlying cause. However,
many meta-analyses will include some studies which
may be sufficiently large to have negligible bias, which
will likely moderate the biases of these weighted aver-
ages. Thus, in most social science applications, it is

unlikely that the bias of the meta-analysis of PCCs will
be as large as those revealed here in small samples.

Both UWLS+3 and REss are easy to implement. To
calculate UWLS+3, meta-analysts merely need to add 3 to
df in PCC's transformation formula, Equation (2), and
use Equation (4) to calculate PCC's variance, S22. UWLS+3

is the simple regression coefficient, Equation (6), and it can
be estimated using any regression software. Note that UWLS'
regression does not have an intercept (or a “constant”).
Aside from small improvements to bias, MSE, and coverage
rates over Fisher's z,viii UWLS+3's advantage lies in its com-
putational simplicity and the clarity of its interpretation.

Unlike the meta-analysis of Fisher's z, UWLS+3 is a
partial correlation and can be understood entirely as
such. Neither UWLS+3 nor REss need to be transformed
back to a correlation to be interpretable. This is particu-
larly helpful for multiple meta-regression analysis
(MRA). In economics applications, meta-analyses of
PCCs are common and frequently involve a dozen or
more moderator variables. To understand the impact of
important MRA coefficients, it is necessary to interpret
them in terms of the effect size studied, in this case PCCs.
When Fisher's zs are the object of meta-analysis and
MRA, it is easy to misinterpret MRA results as correla-
tions. With multiple MRA, the inverse Fisher's z transfor-
mation, PCC ¼ e

2�Z�1
2�Zþ1½ �, would need to be separately

employed multiple times if Fisher's zs are meta-analyzed.
Computational simplicity and clarity of interpretation

are also advantages of REss. When there is little or no het-
erogeneity, Table 2, UWLS+3 dominates both Fisher's z
and REss. However, REss has a limitation not seen in
either UWLS+3 or Fisher's z. When the “true” correlation
is very large, ρ = 0.9487, REss has notably larger biases
than either UWLS+3 or Fisher's z. However, we have not
seen average PCCs as large 0.7 in any economics meta-
analysis,ix and no bivariate average correlation (RE) has
an absolute value larger than 0.6 among the 108 Psycho-
logical Bulletin meta-analyses.17

5 | CONCLUSION

We find that all meta-analyses of partial correlations are
biased, and we offer simple remedies for these biases,
UWLS+3 and REss. Both make a simple adjustment to the
degrees of freedom used to calculate partial correlations
and thereby render trivial any remaining bias. UWLS+3

generally outperforms REss and the more cumbersome
application of Fisher's z, but all three reduce bias to triv-
ial magnitudes in the great majority of practical applica-
tions. Our simulations also reveal that all biases are
small-sample biases (n ≤ 200). Thus, in applications
where primary studies typically have hundreds and even
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more observations, PCCs can be meta-analyzed in any of
the above ways without notable bias. However, for many
fields in the social and the medical sciences where small-
sample studies dominate, these small-sample biases are
easily avoidable by employing UWLS+3, REss, or
Fisher's z.
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ENDNOTES
i According to Google Scholar, 4,530 articles were published in 2022
that include the phrases “partial correlation” and “meta-analysis”.
Of course, not all of these studies are meta-analyses that use partial
correlation coefficients. Some articles explain why they do not use
partial correlations, while others are primary studies or narrative
reviews citing meta-analyses. However, out of the first 100 hits, 75
are indeed meta-analyses that utilize partial correlations, as docu-
mented in our online appendix at meta-analysis.cz/pcc. It is proba-
ble that the proportion of meta-analyses using partial correlations
among the Google Scholar hits will decrease further down the list.
Nevertheless, even among the studies ranked between the 80th and
100th places, more than half are meta-analyses employing partial
correlations. Hence, we have reason to believe that some hundreds
of meta-analyses conducted in 2022 utilized partial correlations.

ii The unrestricted weighted least squares (UWLS) weighted aver-
age has been shown to have better statistical properties than RE
when there is publication selection bias or when heterogeneity is

correlated with sample size (or SE), which meta-research evi-
dence finds in psychology.14-16 Recently, UWLS is shown to better
represent medical research than RE across over 67,000 meta-ana-
lyses of approximately 600,000 studies.20

iii We also simulate more complex multiple regression with 4, 6, and
10 independent variables. Results from these more complex multi-
ple regressions are practically equivalent and are reported below
and in the Supplement. The independence or dependence of the
independent X-variables from one another is immaterial to the
issues at hand. All formulas for PCCs automatically account for
the independence/dependence among the X-variables (as well as
their correlations with the dependent variable Y) no matter what
they might be. This is true for the calculation of PCC from the cor-
relation matrix or from Gustafson's t-formula, Equation (2), which
give the same PC values.1,7 Also, the t-value of the partial regres-
sion coefficient and its standard error account fully for all of the
relevant correlations in the correlation matrix, and this is why
Gustafson's t-formula gives the same PCC as the seeming more
complex correlation matrix formula.1 If we were to assume even
the simplest nonzero correlations between X1 and X2 and that
both are correlated with Y, the values of the population PCC
would change according to a rather complex formula and our sim-
ulations would no longer be transparent. Besides, using this more
complex matrix formula with dependent independent variables is
unnecessary for the generalization of our findings. The biases we
find will exist for the same values of the population PCC and sam-
ple size regardless of the complex or simple way that a particular
value of the population PCC is arrived. This conclusion follows
from Gustafson's proof of Equation (2).7 He does not assume that
the independent variables are independent (or orthogonal) from
each other. His proof works regardless of the dependence/indepen-
dence among the independent variables. Likewise, Fisher observed
that the distribution of PCCs will be the same as the simple bivari-
ate correlation once the diminished degrees of freedom are corre-
spondingly adjusted without reference to the independence/
dependence among the independent variables, and this is con-
firmed by simulations.6 The biases that we find in the conven-
tional meta-analysis of PCCs depend only on the values of the
population mean PCC, sample sizes, and their corresponding dis-
tributions. Thus, we choose to derive the values of the population
PCC in the most transparent and clear way possible, and, to keep
our simulations consistent with the previous work on this topic,
we follow the exact same simulation design (with independent
independent variables) as two recent RSM papers.4,11

iv These biases are largely independent of the number of PCCs (k)
in the meta-analysis, but very dependent on the sample size (n)
of the primary study. Stanley and Doucouliagos used other values
of k and found that meta-analyses of 10 or fewer studies consis-
tently have slightly smaller biases while those with a larger num-
ber of estimates (k = 200) have slightly larger biases. Thus, the
pattern and size of these small-sample biases are largely indepen-
dent of the number of PCCs (k) in the meta-analysis.4

v Random effects are often problematic relative to UWLS especially
when there is publication selection bias or if small-study findings
are more heterogeneous.14-16

vi Generating heterogeneity through random variations to X1's
regression coefficient, β1 = 1±N(0, 0.2) produces approximately
same overall results as Tables 3 and 4.
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vii Across 358 economic meta-analyses about 2/3rds of 174,542 esti-
mates are computed from sample sizes larger than 200.21

viii When there is heterogeneity and a relatively large number of
studies (k = 200), Fisher's z and UWLS+3 have virtually the
same statistical properties—see Table S4.

ix Among 151 meta-analyses of partial correlations for which we
have data, the UWLS estimate ranges from �0.45 to 0.55. The
median absolute UWLS is 0.021.21
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