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A B S T R A C T

Many computational problems consider memory throughput a performance bottleneck, especially in the domain
of parallel computing. Software needs to be attuned to hardware features like cache architectures or concurrent
memory banks to reach a decent level of performance efficiency. This can be achieved by selecting the right
memory layouts for data structures or changing the order of data structure traversal. In this work, we present
an abstraction for traversing a set of regular data structures (e.g., multidimensional arrays) that allows the
design of traversal-agnostic algorithms. Such algorithms can easily optimize for memory performance and
employ semi-automated parallelization or autotuning without altering their internal code. We also add an
abstraction for autotuning that allows defining tuning parameters in one place and removes boilerplate code.
The proposed solution was implemented as an extension of the Noarr library that simplifies a layout-agnostic
design of regular data structures. It is implemented entirely using C++ template meta-programming without
any nonstandard dependencies, so it is fully compatible with existing compilers, including CUDA NVCC or Intel
DPC++. We evaluate the performance and expressiveness of our approach on the Polybench-C benchmarks.
1. Introduction

Memory operations affect the performance of applications in many
ways. Contemporary CPUs dedicate a significant part of circuits (such
as caches or prefetching units) to mitigate this problem. In parallel
processing, the situation becomes even more complicated as some
resources are shared by the cores (like L3 cache, memory controllers,
or memory buses), and the memory transactions need to be kept
coherent (by MESI protocol, for instance). GPUs introduce another
level of complexity caused by the lockstep execution model where
multiple threads perform the exact instruction in the same cycle (so
the memory transactions need to be planned across multiple cores)
and by introducing special memory types like shared memory (with
concurrently accessible banks).

The latency of memory operations often depends on how the data
are organized and how the memory is accessed. If the data dependen-
cies permit, the operations accessing the memory can be (re)arranged
to take advantage of caching, prefetching, coalesced loads, parallel
memory banks, or concurrent utilization of memory controllers without
affecting the semantics (i.e., the results) of the algorithm. Even when
the (re)arrangement does not change the number of operations (instruc-
tions being executed), it may reduce the execution time if the latencies
of the data transfers decrease. Unfortunately, the optimal arrangements
are often system-specific and rather difficult to find.
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This paper focuses on regular data structures with multidimensional
indexing (such as matrices, tensors, or grids). Such a data structure
combines a multidimensional index space (i.e., dimensions), mapping
into the linear space of offsets (layout), and address in the memory. The
actual memory access pattern is then affected by the layout mapping
and how the index space is traversed.

Let us illustrate the problem on a simple matrix with index space
(𝑖, 𝑗), where the indices run from 1 to 𝐻 (height) and 𝑊 (width),
respectively. A matrix can be stored in many ways (Fig. 1) — e.g., in the
traditional row-major layout, the linear offset is computed as 𝑖 ⋅𝑊 + 𝑗.
Traversing such a matrix by two nested loops (over 𝑖 and 𝑗), the
memory is accessed sequentially, which often performs optimally on
contemporary CPUs. If we apply the same traversal to a matrix stored
in a column-major layout with the offset computation 𝑗 ⋅ 𝑊 + 𝑖, the
subsequent memory operations are 𝑊 elements apart, which disrupts
the prefetching and may increase cache misses.

Transforming the layout of a data structure or the order of its
traversal may have a profound effect on the performance [1]. Although
the compilers attempt to optimize these operations (e.g., applying a
polyhedral optimizer to reorder nested loops), these automated efforts
do not always meet with optimal results since these optimizations are
performed under imprecise assumptions about data dependencies and
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Fig. 1. Examples of common matrix layouts.

lignment. Furthermore, the code transformation search space is often
ast, and the impact of a transformation on performance is difficult to
redict. Manual transformations can lead to better performance, but
esigning such transformations may prove difficult, tiresome, and even
rror-prone, especially in parallel applications. Therefore, providing
he programmer with code constructs for simple and flexible ways
f expressing the desired transformations of traversal order might be
eneficial.

We present an abstraction that facilitates a flexible specification
f traversals over regular data structures. Our proposed implementa-
ion extends C++ library Noarr,1 which provides first-class objects for
efining memory layouts [2], in two ways:

1. We applied the layout abstraction of Noarr for loop transforma-
tions (Noarr Traversers).

2. We designed an autotuning adapter (Noarr Tuning) to simplify
the tuning of layout or traversal parameters with existing tools
(like OpenTuner).

The proposed solution has several benefits over contemporary li-
raries and tools that address the same problem. Most notably, we aim
or standard C++ compilers so that our solution requires no compiler

plugins or DSL preprocessing. The transformations are described using
first-class objects, and their type is composable from pre-implemented
(templated) classes provided by the library. This highly promotes code
agnosticism (layouts and traversal orders are abstracted) as well as
code reuse (the same transformations can be applied in different situa-
tions). Finally, we aim specifically at high-performance parallel appli-
cations providing direct connections to existing frameworks (like TBB,
OpenMP, or CUDA).

Let us emphasize that the aforementioned benefits define the in-
tended group of users for our tool. Other approaches may be better
(lead to faster implementations or require less code to write) in cases
where some of the discussed benefits are considered irrelevant. For
instance, using a specific DSL may be easier in simple cases (Halide [3])
at the cost of universality and the necessity for more compilation steps.

The paper is organized as follows. Section 2 explains Noarr and
introduces the running examples. The traversal abstraction is explained
in Section 3, and Section 4 describes its utilization for parallel program-
ming (TBB, OpenMP and CUDA). Section 5 shows an extension of the
abstraction for autotuning. The evaluation of performance and coding
complexity is presented in Section 6. The related work is overviewed
in Sections 7 and 8 concludes the paper.

2. Background

Specifying memory layouts and traversal orders (and their transfor-
mations) can be tackled using various approaches (besides the auto-
mated optimizations performed by the compiler):

• Native approach uses only native constructs of the selected lan-
guage. In C++, for instance, class policies can be used for selecting
data structure layouts and iterators for data structure traversal.

1 https://github.com/ParaCoToUl/noarr-structures.
2 
• Annotations may be introduced into the language to hint to the
compiler how the data structures (e.g., arrays) or loops may be
transformed. This approach usually builds on native compiler
optimizations (e.g., to guide polyhedral optimizer [4]), but it also
requires specialized compilers or compiler plugins.

• Domain specific language (DSL) may describe either a data struc-
ture or the computation kernel in an abstract form. If the DSL is
restricted and the target problem is simple enough, its compiler
can extract an optimal execution plan for the kernel, not only op-
timizing memory operations but possibly handling the scheduling
of parallel execution as well [3].

We investigate the native approach, aiming to step beyond tradi-
tional design patterns and software engineering practices. This involves
exploiting the possibilities of the C++ language to its limits using
templates, functional-like assembly of objects, and static (compile-time)
meta-programming.

2.1. Noarr structures

We base our approach on the Noarr Structures library [2] that pro-
vides an expressive and flexible abstraction for creating data structure
layouts. The key idea is constructing the layout via composing prede-
fined template proto-structures such as arrays, vectors, or tuples. The
following example shows two representations of a matrix — row-wise
(rw) and col-wise (cw), depicted in Figs. 1(a) and 1(b), respectively.
Let us emphasize the arguments 'i' and 'j' that identify the matrix
dimensions — a characteristic feature of Noarr is that each dimension
is uniquely identified by a name (usually a character).

auto rw = scalar<float>() ^ vector<'j'>() ^ vector<'i'>();
auto cw = scalar<float>() ^ vector<'i'>() ^ vector<'j'>();

The key point is that each structure is built from the bottom up. The
process starts with a scalar and involves incremental applications of
transformations via the ^ operator (e.g., applying vector adds a new
imension). Each such transformation produces a new (usually more
omplex) structure that can be used to create further structures. The
ollowing example demonstrates creating a matrix with a fixed size:

size_t size = 42;
auto matrix = rw ^ noarr::set_length<'i', 'j'>(size, size);

In this case, the matrix size is set at runtime and stored in the newly
created object; however, using the same syntax, we can set the size at
compile-time by replacing size with noarr::lit<42>, storing the
size in the type.

Another important principle of Noarr is decoupling the layouts from
memory management. The structures used in the previous examples
have no binding to memory. They represent an indexing abstraction
for computing memory offsets that can be used to access values in a
data buffer:

size_t offset = matrix | noarr::offset<'i', 'j'>(i, j);
float &ref = matrix | noarr::get_at<'i', 'j'>(data, i, j);

This syntax for indexation applies to any Noarr structure that has
the dimensions 'i' and 'j', offering a unified way to access data in
a layout-agnostic manner, which is crucial for our approach. The |
operator applies a getter (on the right) to a structure (on the left).

The following example shows retrieving the size of the matrix and the
length of the 'i' dimension:

size_t size = matrix | noarr::get_size();
size_t length = matrix | noarr::get_length<'i'>();

Concerning memory management, Noarr provides a wrapper called
bag that binds the Noarr structure with a memory pointer. A binding
with a raw pointer defines a flexible view into (borrowed) memory; a
binding with a unique pointer defines ownership of the memory.

https://github.com/ParaCoToUl/noarr-structures
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auto matrix_view = noarr::bag(matrix, data);
auto matrix_container = noarr::bag(matrix);
float &ref = matrix_view[noarr::idx<'i', 'j'>(i, j)];

The noarr::idx<'i', 'j'>(i, j) object (called state) represents
a point in the index space of the matrix. It can be used to access an
element of any bag with the covered indices.

2.2. Running examples

We describe two well-known algorithms by detailing their trivial
implementations and elaborate on their potential for parallelization and
optimization. They will be used as running examples to demonstrate the
benefits of our approach.

2.2.1. Matrix multiplication
It presents one of the most profound and well-studied problems

with many applications. We consider the naïve (𝑁3) algorithm, which
computes elements of the output matrix as dot products. Having square
matrices A and B (of the size 𝑁2), the product matrix C may be
computed as:

for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {

C[i][j] = 0;
for (size_t k = 0; k < N; ++k) {

C[i][j] += A[i][k] * B[k][j];
} } }

The individual elements of the matrix C can be computed inde-
endently (even concurrently), and the internal dot products are both
ssociative and commutative. Typical optimizations are based on tiling,
hich requires splitting the outer two loops and may also enable
fficient parallel processing [5].

.2.2. Histogram
An approximation of the distribution of numeric data often used in

ata analysis, machine learning, or similarity search. The objective is
o assign data elements into predefined bins (categories) and count the
umber of elements in each bin. Having histogram H and a function
hat finds a bin for each element, the algorithm can be coded simply
s:

H[bins] = { 0, ... , 0 };
for (size_t i = 0; i < N; ++i)

H[findBin(data[i])] += 1;

The histogram algorithm is particularly interesting from the per-
pective of parallel computing [6]. When the input elements are pro-
essed concurrently, the histogram updates must be synchronized (e.g.,
y atomic instructions). If the number of bins is low and the level of
oncurrency high (like in the case of a GPU), the histogram updates will
ecome a bottleneck. In such cases, sophisticated methods of privatiza-
ion (and subsequent merging of private copies) could be beneficial.
nother perspective is that a histogram can be computed as a bin-wise
arallel reduction (with per-bin data filtering).

. Traversal abstraction

The (Noarr Traversers) abstraction is implemented as an extension
f the C++ library Noarr by applying the same fundamental Noarr ap-
roach of specifying data layouts (and their transformations) via a com-
osition of first-class objects (proto-structures) to the transformations of

traversal orders.
A traverser is an object representing an index space and its cor-

responding traversal order constructed from one or multiple Noarr
structures to be traversed together. The default index space unifies the
dimensions of the provided structures. The user can then provide a

callable object (like a lambda) specifying the action performed for each a

3 
point of the index space. The individual points are represented by a
state object that can index the appropriate elements of the traversed
structures.

To alter the traversal order of the index space, a transformation
structure can be applied to the traverser, producing a new traverser.
The transformation structure is assembled from elemental first-class
proto-structures like Noarr structures. The proto-structures represent
loop transformations such as dimension interchange, tiling, z-curve,
or even more general transformations such as introducing new loops,
binding some iteration dimensions to specific indices, or restricting
their spans.

When the dimensions of the traversed structures match entirely,
the traverser represents a loop nest on these dimensions. In other
cases, it can be used to perform various reductions, complex joins, or
more general algorithms like matrix multiplication (explored further
in this section) if the user provides input structures with appropriate
dimensions.

The automatic traversal and indexation provided by the traverser
abstraction enables the design of traversal-agnostic algorithms. With
transformations defined as separate objects and used to produce altered
traversers, we can create multiple versions of the same computation
by applying different transformations to the same traverser without
altering the internal code of the algorithm, offering an interface for
dynamic code optimizations or semi-automated autotuning, which we
discuss more in Section 5.

A traverser can also be used as an argument to a parallel executor,
which then performs the traversal in parallel (we present ones based
on TBB, OpenMP, and CUDA as examples in Section 4). The traversal
is parallelized along one or multiple dimensions of the traverser, and
each started thread is provided with an inner traverser representing the
traversal of its corresponding section of the index space that is usually
constructed via binding some dimensions to specific value ranges.

3.1. Introducing syntax for traversers

The syntax for traversers extends the syntax of Noarr Structures.
Both these abstractions follow the pattern

base ^ transformationA ^ transformationB ^ ... | callable

where base is a scalar (in Noarr Structures) or a call to the
noarr::traverser constructor (in Noarr Traversers). In both cases,
this base object is transformed by the sequence of proto-structures and
then used as an input for a callable object. The callable is a getter
or a specific property of the structure or an element offset (in case
f Structures) and a lambda function or a parallel executor (in case of
raversers). Furthermore:

1. The constructor of the traverser is given one or more Noarr struc-
tures and deduces the base index space from them by unifying
their dimensions.

2. A transformation proto-structure is applied to the base index
space via the ^ operator. It changes the traversal order of the
individual points of the index space. Suppose the original index
space was equivalent to that of a structure S, after applying the
transformation T, the index space is equivalent to that of the
structure S ^ T.

3. The traverser is supplied via the | operator to a lambda function
executed for each point of the index space represented by a state
object. Alternatively, the traverser can be used as an argument
to a parallel executor, offering a unified interface for paral-
lel traversal over the index space, like ranges in the standard
library.

When constructed using a single structure and supplied to a lambda
unction, the traverser iterates through the dimensions of that structure

nd calls the lambda function with a state object that represents a
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point in the index space. It can be used to access the corresponding
element of the traversed structure. The following example performs an
element-wise initialization of structure c (like a traditional for-each
lgorithm):

noarr::traverser(c) | [=](auto state) { c[state] = 0; };

The traverser automatically creates a unified index space, combin-
ng the spaces of input structures by preserving a unique instance of
ach dimension. Depending on which dimensions the structures have
n common, the resulting index space may range from identical to the
pace of each structure (complete unification) up to a cartesian product
f all dimensions (no unification). By naming the indices of three
atrices a(𝑖, 𝑘), b(𝑘, 𝑗), and c(𝑖, 𝑗), the index-unification process allows

us to write even more complex algorithms like matrix multiplication
simply as:

noarr::traverser(a, b, c) | [=](auto state) {
c[state] += a[state] * b[state];

};

The traverser extracts dimensions 𝑖, 𝑘 from the first structure and
hen 𝑗 from the second (all other dimensions are duplicates), which
ields the index space to be the cartesian product of (𝑖, 𝑘, 𝑗). In other

words, the index space corresponds to the three perfectly nested loops
of the naïve matrix multiplication algorithm presented in Section 2.2.

The traversal order of its index space can be transformed by apply-
ing a transformation proto-structure. In the case of matrix multiplica-
tion, the most common transformation would be to perform tiling —
i.e., splitting each of the indices into an index of a block (of fixed size)
and a local index within the block. An example of such transformation
is presented below.

auto tiles = noarr::into_blocks<'i', 'I'>(noarr::lit<16>) ^
noarr::into_blocks<'k', 'K'>(noarr::lit<16>) ^
noarr::into_blocks<'j', 'J'>(noarr::lit<16>) ^
noarr::hoist<'I', 'J', 'K'>();

noarr::traverser(a, b, c) ^ tiles | [=](auto state) {
c[state] += a[state] * b[state];

};

The example shows a transformation structure composed of multiple
roto-structures. The into_blocks proto-structure splits the given

dimension into two dimensions, one representing the local index within
the block and the other representing the block index. The hoist
proto-structure then moves the block indices to the outermost traversal
loops. The parameter noarr::lit<16> ensures that the block size is
represented as a compile-time constant.

Many transformations are already implemented in the Noarr li-
brary, including renaming/reordering the indices, restricting iteration
spans, fixing indices in given dimensions to specific values, and some
more complex operations designed for parallel processing. Details are
provided in our replication package 2

3.2. Traversal over sections of the index space

In some situations, iterating sections of the index space instead of
single values may be required (representing an imperfect loop nest).
A typical example is accumulating a portion of the dot product corre-
sponding to a given block in a register to reduce the number of memory
operations. In such cases, we put the lambda within the for_dims
wrapper, which takes a list of dimensions representing the traversed
sections. The lambda is then executed for each section of the index
space and provided with inner traverser for traversal over the internal
section (using the same traverser interface).

2 https://github.com/jiriklepl/ParCo2024-artifact.
4 
noarr::traverser(a, b, c) ^ tiles
| noarr::for_dims<'I', 'J', 'K', 'j', 'i'>(

[=](auto inner_trav) {
auto res = c[inner_trav]; // local var (register)
inner_trav | [=, &res](auto state) {

res += a[state] * b[state];
};
c[inner_trav] = res;

});

4. Parallel execution

We use the histogram running example (Section 2.2) as a repre-
sentative of a simple parallel reduction problem. First, let us show its
sequential implementation using Noarr traversers:

auto in = bag(scalar<char>() ^ vector<'i'>(size), i);
auto out = bag(scalar<size_t>() ^ array<'v', 256>(), o);
noarr::traverser(in) | [=](auto state) {

out[noarr::idx<'v'>(in[state])] += 1;
};

The algorithm iterates over the input data in the in bag consisting
f size characters and increments the corresponding bin in the his-
ogram stored in the out bag. The noarr::idx<'v'> function maps
he input values in their histogram bins.

In Noarr, parallel execution is implemented via specialized execu-
ors that take a traverser as an argument and implement the calls to
he given platform. This approach separates the concerns of the tra-
erser and the parallel execution, making the code more modular and
xtensible. We implemented executors for TBB [7], OpenMP [8], and
UDA [9] as representatives of different technologies to demonstrate
odularity. A demonstration of an executor for parallel reduction using
BB follows:

noarr::tbb_reduce(
noarr::traverser(in),
[](auto out_state, auto &out_left) {

out_left[out_state] = 0;
},
[in](auto in_state, auto &out_left) {

out_left[noarr::idx<'v'>(in[state])] += 1;
},
[](auto out_state, auto &out_left, const auto &out_right) {

out_left[out_state] += out_right[out_state];
},
out);

The tbb_reduce executor takes five arguments: the traverser, the
output bag, and three lambda expressions. The first lambda initializes
the output structure, the second performs the element-wise reduction,
and the third merges the privatized histogram copies. The reduction is
performed automatically over the whole space defined by the traverser
and parallelized along its first dimension. The user can specify a dif-
ferent dimension for parallelization by applying the hoist<Dim>()
transformation to the traverser.

The parallel executor transparently privatizes the given output
structure to prevent data collisions when the parallelized dimension
does not parametrize the output structure (like in the example) and,
thus, different threads can access the same memory. Then, the executor
creates a local copy of the output structure for each worker thread as
needed (managed by tbb::combinable). The third lambda defines
a merging procedure for two copies of the histogram.

For the simple case of parallel for-each (which can be used for the
histogram computation if the privatization is handled manually), we
also present parallel executors for standard C++ parallelization and
OpenMP. All of these share the same interface, so the user can easily
choose between them, as presented in the following example of a paral-
lel histogram computation with explicit privatization. Initialization and

merging of the privatized copies are omitted for brevity.

https://github.com/jiriklepl/ParCo2024-artifact
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// manually split the input into chunks
auto traverser = noarr::traverser(in ^

noarr::into_blocks<'i', 't'>(BLOCK_SIZE));
// privatize the output structure for each chunk
auto priv_out = noarr::bag(out_struct ^

noarr::vector_like<'t'>(traverser.get_struct()));
auto task = [&](auto state) {

priv_out[state + noarr::idx<'v'>(in[state])] += 1;
};

// use one of the following parallel executors:
noarr::tbb_for_each(traverser ^ noarr::hoist<'t'>(), task);
noarr::omp_for_each(traverser ^ noarr::hoist<'t'>(), task);
noarr::std_for_each(traverser ^ noarr::hoist<'t'>(), task);

In this example, we split the input data into chunks of size
LOCK_SIZE and allocate a private copy of the output structure out

or each chunk. The task lambda performs the same operation as in
he previous examples. vector_like creates a vector of the same
ize as the corresponding dimension of the traversed structure, and
oist is used to move the 't' dimension to the outermost loop so

hat the computation is performed in parallel over the chunks. The
bb_for_each, omp_for_each, and std_for_each functions
xecute the task lambda in parallel using TBB, OpenMP, and standard
++, respectively.

.1. Extension to GPU (CUDA traverser)

One of the key advantages of the proposed abstraction is that it aims
t maximal compatibility with standard C++ compilers. This simplifies
nd expedites its application within other parallel environments like
UDA [9] or SYCL [10], which employ custom compilers that extend
ut remain compatible with C++ language. We present an adaptor for
UDA as a proof of concept, but a similar approach can be used for
YCL.

CUDA framework is based on the SIMT (Single Instruction, Multiple
hreads) paradigm. CUDA threads are spawned collectively (forming
grid) executing a single piece of code (kernel). Each thread is given

ndex structures (threadIdx, blockIdx) to identify a data element
rocessed by the thread. Threads are grouped into thread blocks so they

can cooperate more closely (via on-chip shared memory or using faster
synchronization primitives). The indexing structures (for threads and
blocks) can encompass up to three dimensions to conveniently deal
with multidimensional data (like matrices or 3D grids).

The proposed CUDA traverser wraps a regular traverser describing
how its dimensions are mapped to the grid. This mapping is subse-
quently used to generate the grid execution parameters (block size and
block count) and internal traverser that can be used in the kernel. The
following code represents a kernel that computes the histogram (stored
in global memory) using atomic updates (a typical implementation),
where each thread computes multiple input values. The aggregation of
work per thread is a necessary optimization (which we discuss further
in the paper) that significantly decreases global memory writes (and
atomic collisions).

template<class InTr, class In, class Out>
__global__ void histogram(InTr in_trav, In in, Out out) {

in_trav | [=](auto state) {
auto value = in[state];
atomicAdd(&out[noarr::idx<'v'>(value)], 1);

};
}

The in_trav is an inner traverser created from the traverser of
the input data in the kernel invocation to traverse a section of the data
within a thread. The invocation is handled as follows:

auto in_blk_struct = in_struct ^
noarr::into_blocks<'i', 'B', 't'>(BLOCK_SIZE) ^
noarr::into_blocks<'B', 'b', 'x'>(ELEMS_PER_THREAD);

auto in = noarr::bag(in_blk_struct, in_ptr);
auto out = noarr::bag(out_struct, out_ptr);
5 
auto ct = noarr::cuda_threads<'b', 't'>(noarr::traverser(in));
histogram<<<ct.grid_dim(), ct.block_dim()>>>(ct.inner(), in,

out);

The essential part of the mechanism is hidden in the function
cuda_threads that automatically associates some of the traverser
dimensions with the CUDA grid dimensions. In this case, the b be-
comes the block index and t the thread index within the block. The
resulting cuda traverser then provides kernel invocation parameters via
its methods grid_dim() and block_dim(). The inner traverser
in_trav passed as the first argument to the kernel is the result
of binding b and t dimensions to the blockIdx and threadIdx
CUDA structures respectively, and allows (in-thread) iteration over the
remaining dimension x.

Let us emphasize that the execution, as well as internal behavior
(how many items are processed by a thread), are both governed by
the input traverser. This permits a certain level of agnosticism in
the parallelization of algorithms. The composable nature of traversers
makes it possible to separate the blocking operations required for CUDA
execution into a predefined proto-structure that may be applied to
a traverser as a transformation. Noarr also provides a simple_run
() method as a shortcut since kernel execution is the most frequent
operation.

4.2. Shared memory privatization

Massively parallel systems are particularly susceptible to intensive
data synchronization. In the histogram kernel, the atomic updates
may cause a bottleneck. Even if the updates are distributed evenly,
collisions are unavoidable since the histogram has much fewer bins
than the GPU has cores.

A typical solution to this problem is privatization — i.e., creating
multiple copies of the histogram so each thread (or a small group of
threads) has a separate copy. In this case, the optimal solution is to
create a copy in the shared memory for each warp lane (32 copies per
thread block). This way, threads in a warp have no collisions among
themselves and the aggregation in the shared memory significantly
decreases the number of global memory transactions. Afterward, the
individual copies need to be merged into the final copy in the global
memory before a thread block terminates.

The shared memory is divided into 32 banks (consecutive 32-bit
words are placed in banks in a round-robin fashion), so each thread in
the warp can access a different bank. Concurrent operations accessing
one bank are serialized (except for special cases like data broadcast),
which delays an entire warp. Histogram stored in a contiguous block in
the shared memory would span over all banks, so concurrent updates
would still cause bank conflicts (and thread serialization) even if the
structure is privatized. The solution is to place each histogram copy
into a separate bank, which requires a rather specific stridden layout
pattern.

We introduce noarr::cuda_striped<N>, a helper structure
ailored particularly for shared memory. The parameter 𝑁 denotes the
umber of copies distributed across the banks. The optimum is 𝑁 = 32

(i.e., one copy per bank); however, picking a lower 𝑁 may be necessary
if 32 copies would not fit in the memory. The kernel could be optimized
sing a striped structure shm_s, as follows. (For the sake of brevity,
e omit initialization, reduction, and the necessary barriers.)

template<class InT, class In, class Shm, class Out>
__global__ void histogram(InT in_trav, In in, Shm shm_s, Out

out) {
extern __shared__ char shm_ptr[];
auto shm_bag = noarr::bag(shm_s, shm_ptr);
// initialize shared memory (zero the bins)
in_trav | [=](auto state) {

auto val = in[state];
atomicAdd(&shm_bag[noarr::idx<'v'>(val)], 1);

};
// reduce shm copies of histogram into global memory

}
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The atomicAdd uses the bag allocated in the shared memory,
and the shm_s structure transparently handles access to private copies
(based on the thread index). The shm_s structure is constructed ex-
ternally in our example, so the kernel is more generic, and the shared
memory utilization can be subjected to external tuning; however, it can
also be constructed internally.

// 'in' and 'out' match the previous example
auto ct = noarr::cuda_threads<'b', 't'>(noarr::traverser(in));
auto shm_s = out_struct ^ noarr::cuda_striped<NUM_COPIES>();
histogram<<<ct.grid_dim(), ct.block_dim(),

shm_s | noarr::get_size()>>>(ct.inner(), in, shm_s, out);

The shared memory needs to be initialized when each thread block
tarts. In this case, all histogram copies need to have their bin coun-
ers zeroed. The most efficient way is for all threads (of a block) to
ooperate on initialization evenly. For this purpose, we use noarr::
cuda_step, which automatically distributes the work among the
available threads. The cuda_step object is constructed using the rank
of the current thread and the number of threads cooperating on the
stripe provided by current_stripe_cg.

auto subset = noarr::cuda_step(shm_s.current_stripe_cg());
noarr::traverser(shm_bag) ^ subset | [=](auto state) {

shm_bag[state] = 0;
};

A different access pattern is required at the end, where the his-
ogram copies are merged. In this case, the threads cooperatively
terate over the histogram, processing the bins concurrently. Each bin
s summed up across the copies and atomically added to the global
tructure. The num_stripes method returns the number of copies.
he difficulty here is that we cannot access the shared memory bag
irectly since it would direct each thread to its corresponding copy, so
he actual index (state) needs to be computed as follows.

noarr::traverser(out) ^ noarr::cuda_step_block() | [=](auto
state){

size_t sum = 0;
for (size_t i = 0; i < shm_s.num_stripes(); ++i) {

sum += shm_bag[state + noarr::cuda_stripe_idx(i)];
}
atomicAdd(&out[state], sum);

};

Granted, the code required to access all private copies from each
hread is rather complex. However, this type of access is required only
or the final reduction, and such an operation can be easily wrapped in
templated algorithm, so the regular user would not have to implement

t explicitly.

. Autotuning

The autotuning process is often governed by a script that searches
or optimal parameters for the tuned program. Hence, the tuned param-
ters need to be declared twice — in the tuning script (with possible
alue domains) and in the tuned applications (where they affect the
ehavior of the program). The difficulty is keeping both sides up to
ate and ensuring that the parameters are properly passed into the
ompilation process (static parameters) or via command line arguments
dynamic parameters).

The core part of an example from our domain of selecting optimal
raversal order for a data structure is listed below:

// define policy classes
struct traverse_by_rows { ... };
struct traverse_by_columns { ... };
struct traverse_by_blocks { ... };

auto policy = POLICY; // tuning parameter (passed as a macro)
for_each(policy, matrix, [](auto& value) { modify(value); });
6 
Fig. 2. Schema of the autotuning process with Noarr Tuner.

If this application is optimized by OpenTuner [11], for instance,
the Python script governing the tuning has to properly inject argument
-DPOLICY to the C++ compiler, and the value of this macro must
match the identifier of one of the prepared traverse_ structures. Any
extension or modification of the traverse possibilities implemented in
the C++ application must be duly reflected in the Python script, making
the development process tedious and error-prone.

We propose an abstraction that allows the tuning parameters (and
their domains) to be declared directly with the tuned application
in a single-source manner. The tuning script is then generated from
this source using our extension to the Noarr framework in a special
compilation step (depicted in Fig. 2).

The compilation is controlled by a macro (NOARR_TUNE). If
present, the code is compiled in a generator mode, which bypasses
the main function of the application, creating an executable that
only generates the script for the autotuner (e.g., a Python script for
OpenTuner or Optuna [12]). In the case of a native C++ autotuner
ATF [13]), the compiled executable directly runs the tuning loop.
ithout the NOARR_TUNE macro, the compilation results in a regular

xecutable that runs the application (which can be subjected to tuning).

.1. Noarr tuning abstraction

To demonstrate the syntax and technical details of our Noarr Tuning
bstraction, we will build on the matrix multiplication running example
Section 2.2). Even the naïve implementation of the algorithm provides
any options for tuning, such as the memory layout of the matrices,

locking factor, or loop order.
Listing 1 presents specifying these choices in Noarr syntax. It defines

static tuned object that represents the tuned parameters. It is used
oth to generate the tuning script (if compiled in generator mode with
OARR_TUNE macro) and to preprocess and handle parameters passed

rom the autotuning framework (if compiled regularly).

The following list describes the macros used in the Noarr Tuning
bstraction in Listing 1 and their behavior:

• NOARR_TUNE_BEGIN(formatter) specifies an autotuning
backend together with a build process (e.g., direct execution
of a specific compiler or CMake) and a measurement process
(e.g., running the binary and collecting the reported wall clock
time). The formatter is a placeholder for a specific backend
configuration as described in Section 5.2.
This macro generates the appropriate directives to initialize the
autotuning backend in the generator mode. It takes no action in
the regular compilation mode.

• NOARR_TUNE_PAR declares a tuned parameter and its domain.
The first argument is the name of the parameter used to identify
it on both sides (tuned code and the tuner). The remaining
arguments define the type, allowed values, and other type-specific

options.
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using namespace noarr;
struct tuned {

NOARR_TUNE_BEGIN(formatter);

NOARR_TUNE_PAR(cLayout, tuning::choice,
scalar<float>() ^ vector<'i'>() ^ vector<'j'>(),
scalar<float>() ^ vector<'j'>() ^ vector<'i'>());

// aLayout (i, k) and bLayout(k, j) defined analogically

// pow(n) = 2 ** n: 1, 2, 4, 8, 16, 32
NOARR_TUNE_PAR(blockSize, tuning::mapped_range, pow, 5);

// xor_fold(a, b, c) = (a ^ b) ^ c
NOARR_TUNE_PAR(loopOrder, tuning::mapped_permutation,

xor_fold, hoist<'j'>(), hoist<'k'>(), hoist<'i'>());
NOARR_TUNE_PAR(blockOrder, tuning::mapped_permutation,

xor_fold, hoist<'J'>(), hoist<'K'>(), hoist<'I'>());

NOARR_TUNE_CONST(blocks, into_blocks<'i', 'I'>(*blockSize) ^
into_blocks<'j', 'J'>(*blockSize) ^
into_blocks<'k', 'K'>(*blockSize));

NOARR_TUNE_CONST(order, *blocks ^ *loopOrder ^ *blockOrder)
;

NOARR_TUNE_END();
} tuned;

// algorithm:
auto C = bag(*tuned.cLayout ^ set_lengths<'i','j'>(I, J));
auto A = bag(*tuned.aLayout ^ set_lengths<'i','k'>(I, K));
auto B = bag(*tuned.bLayout ^ set_lengths<'k','j'>(K, J));
traverser(A, B, C) ^ *tuned.order | [=](auto state) {

C[state] += A[state] * B[state];
};

Listing 1: Noarr Tuning abstraction for the naïve matrix multiplication

In the generator mode, the parameter generates the appropriate
directives for the autotuning framework and assumes the default
value for the given parameter type (e.g., for the choice type,
the first value). In the regular compilation mode, the parameter
assumes the value passed by the autotuning framework.

• NOARR_TUNE_CONST specifies a constant parameter usually de-
rived from the other parameters. The first argument specifies the
parameter’s name and the second its value. The behavior of this
macro is the same regardless of the compilation mode.

• NOARR_TUNE_END operates only in generator mode and final-
izes the specification. It triggers the generator of the autotun-
ing code (which usually writes the generated script to std. out-
put) and then stops the runtime by calling std::exit(0), thus
suppressing the main function.

The parameters specified in the tuned object can be accessed in
the algorithm implementation using the dereference operator * (e.g., *
tuned.blockSize). This applies to parameters and constants in
both compilation modes.

Since the tuned object is defined in the static scope, it is initialized
before the program starts; hence, the END macro can stop the runtime
before the main algorithm executes (in the generator mode), ensuring
that the algorithm runs only in the regular compilation mode without
applying any changes to the algorithm implementation.

The described mechanism reduces the boilerplate code for the auto-
tuning process since it is automatically generated by the Noarr Tuning
abstraction. The single-source approach simplifies the autotuning pro-
cess, reduces the possibility of errors, and promotes the separation of
concerns and the reusability of the code (as demonstrated in the matrix
multiplication example, where the tuning specification is separated
from the algorithm implementation).

5.2. Autotuning backend

Noarr Tuner was designed modularly to work with any autotuner.
The formatter placeholder in Listing 1 selects the autotuning back-
end and specifics of the build process and algorithm execution on the
7 
given platform. As an example, Listing 2 demonstrates a formatter
specification for OpenTuner.

using namespace noarr::tuning;
opentuner_formatter(

std::cout, // output stream for the autotuning script
cmake_compile_command_builder(PRJ_PATH, BUILD_DIR, "algorithm"

),
direct_run_command_builder(BUILD_DIR / "algorithm"),
MEASUREMENT_COMMAND);

Listing 2: OpenTuner formatter specification for the Noarr Tuning
abstraction

Each subsequent tuning macro in Listing 1 calls a format method
of the formatter that registers the parameter using its name and value
specification. The value specification is an object representing the
parameter type and the possible values. Another level of abstraction
is added to the value representation since the backend does not need
to know the specific values of the parameter (e.g., choice lists are
converted to numbers).

The OpenTuner formatter specified in Listing 2 uses the CMake
ompiler command builder and Direct run command builder wrappers to
enerate the commands for recompiling the algorithm and running the
inary, respectively. This allows the abstraction to support further build
ystems and measurement processes. The MEASUREMENT_COMMAND is
string that specifies the command used by the OpenTuner backend to
easure the performance of the algorithm, which allows the user to

pecify the fitness metric and how it is retrieved from the algorithm
untime.

Consider the tuning problem from Listing 1 with OpenTuner for-
atter and a CMakeLists.txt file that specifies the project setup
ith targets algorithm and algorithm-tune representing the

wo compilation modes. The targets are distinguished by defining
OARR_TUNE for the algorithm-tune target (triggering the gen-
rator mode). The following commands then run the whole autotuning
rocess:

mkdir -p build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build . -t algorithm -tuning

# run the OpenTuner script
python3 <(./algorithm -tuning) --test-limit=NUM_TESTS

The specification of the autotuning backend via a formatter allows
us to easily extend the Noarr Tuning abstraction to support other auto-
tuning frameworks. The only requirement is to implement the formatter
for the given backend supporting calls to the
format(name, value_specification) method with the appro-
priate value specifications.

5.3. Noarr tuning in the context of parallelism

In Section 4, we discuss the parallelization of algorithms by passing
a Noarr Traverser representing an indexation space with a given itera-
tion order to a parallel executor that wraps the desired parallelization
framework. The executor handles one or more dimensions of the it-
eration in parallel by spawning tasks (like TBB) or a grid of threads
(like CUDA). To demonstrate the synergy of both proposed Noarr
abstractions, we build on the examples from Section 4 and combine
them with autotuning, allowing us to present more coherent examples
of Noarr Tuner.

The histogram running example (Section 2.2) demonstrated paral-
lelization that employed the CUDA framework. This problem is particu-
larly interesting since it has several parameters that affect performance
(providing good candidates for tuning) — the block size, the number of
elements processed by each thread, and the number of private copies in

the shared memory. The first two are used when re-shaping the index
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struct tuned {
NOARR_TUNE_BEGIN(formatter);

NOARR_TUNE_PAR(blockSize, noarr::tuning::choice, 256, 512, 10
24);

NOARR_TUNE_PAR(elemsInThread, noarr::tuning::choice, 1, 2, 4,
8);

NOARR_TUNE_PAR(privCopies, noarr::tuning::choice, 1, 2, 4);

NOARR_TUNE_CONST(grid,
noarr::into_blocks<'i','B','t'>(*blockSize) ^
noarr::into_blocks<'B','b','x'>(*elemsInThread));

NOARR_TUNE_END();
} tuned;

template<class InT, class In, class Shm, class Out>
__global__ void histogram(InT in_trav, In in, Shm shm_s, Out

out) {
__shared__ int shm_ptr[];
auto shm_bag = noarr::bag(shm_s, shm_ptr);
// initialize shared memory (zero the bins)
in_trav | [=](auto state) {

atomicAdd(&shm_bag[noarr::idx<'v'>(in[state])], 1);
};
// reduce shm copies of histogram into global memory

}

void run_histogram(auto in, auto out) {
auto ct = noarr::cuda_threads<'B', 't'>(

noarr::traverser(in ^ *tuned.grid));
auto shm_s = out.structure() ^

noarr::cuda_striped<*tuned.privCopies>();

histogram<<<ct.grid_dim(), ct.block_dim(),
shm_s | noarr::get_size()>>>(ct.inner(), in, shm_s, out);

}

Listing 3: Noarr Tuning use for the CUDA framework

space, and the last one is supplied to the noarr::cuda_striped<
N> construct to ensure bank-aware distribution of the private copies in
the shared memory. Listing 3 presents the example of CUDA histogram
from Section 4.2, adapted for autotuning.

struct tuned {
NOARR_TUNE_BEGIN(formatter);
NOARR_TUNE_PAR(loop_order, noarr::tuning::choice,

noarr::hoist<'i', 'j'>(), noarr::hoist<'j', 'i'>());
NOARR_TUNE_END();

} tuned;

void matrix_multiplication(auto A, auto B, auto C) {
noarr::tbb_for_each(

noarr::traverser(C),
[=](auto state) { C[state] = 0; });

noarr::tbb_for_each(
noarr::traverser(A, B, C) ^ *tuned.loop_order,
[=](auto state) { C[state] += A[state] * B[state]; });

}

Listing 4: Noarr Tuning use for the TBB framework

The example in Listing 4 builds on the TBB implementation of
matrix multiplication (𝐶 ∶= 𝐴 × 𝐵) from Section 2.2. In this case, the
uning process should select the best dimension for parallel processing.
he tuned object specifies the loop order of the matrix multiplication
lgorithm via hoisting the given dimension to the topmost position. The
elected executor (tbb_for_each) is used to run the algorithm in
arallel along the hoisted (topmost) dimension.

The two presented examples show a selection of several tuning
hoices for different parallelization frameworks. Together with Listing
, they demonstrate the flexibility and expressiveness of the Noarr Tun-
ng abstraction that is extensible to different parallelization frameworks
y specifying the appropriate executor wrapper and also to different

utotuning backends by implementing the appropriate formatter. The

8 
abstraction is designed to work well with the Noarr Structures and
Noarr Traversers abstractions, but it can be used independently as well
to tune any (hyper-)parameters of the algorithm or the parallelization
framework.

6. Evaluation

The evaluation has the following objectives: (1) We would like to
demonstrate that the proposed abstraction has no additional perfor-
mance overhead. (2) We discuss its qualities from the perspective of
the programmers using multiple code complexity metrics to assess its
added complexity and perform a comparison with other approaches
(annotations, DSL). (3) We evaluate the autotuning capabilities of the
abstraction and its compilation overhead. We have also considered
performing a user study, but that is currently beyond the scope of this
paper and we were unable to find a sufficient number of volunteers.

Due to space limitations, we present only selected key results in the
paper. A complete set of experiments and results is available in the
replication package 3

6.1. Methodology and datasets

The presented performance evaluations were measured on Intel
Xeon Gold 6130 (CPU) and Tesla V100 PCIe 16G (GPU) compiled with
GCC 13.2.0 and NVCC 12.3. Each test comprised one warmup run and
10× subsequent measured runs. The wall time of the tested kernel was
measured by a high-resolution system clock. We present only mean
values whenever the variance of the measured times is very low (below
1%); otherwise, we present the boxplots (with 25%, 50%, and 75%
quantiles).

We used Polybench/C-4.2.14 and Polybench/GPU-1.05 [14] bench-
mark suites (using the EXTRALARGE dataset) for the performance
evaluation. The Polybench/C suite (CPU kernels) contains a set of 30
algorithms commonly used in scientific high-performance computing,
such as problems from linear algebra, stencils, or data mining. The
Polybench/GPU suite contains a set of 21 algorithms mostly from the
Polybench/C suite, with the addition of some algorithms that are more
specific to GPU computing (e.g., 2DConvolution). For Polybench/GPU,
we have implemented 5 algorithms as a representative subset for the
evaluation.

6.1.1. Code complexity metrics
To assess the complexity of the Noarr implementation compared

to the baseline C code, we use a set of metrics that capture the
textual and semantic complexity of the code. The presented metrics
are measured collectively on all kernels of the Polybench suite unless
stated otherwise. However, we also provide results that aggregate their
measurements on individual kernels in the artifact. We discuss cases
that show a significant difference between these two granularities.

For the basic textual comparison, we use the number of lines of
code, the total number of characters, and the number of individual
code tokens (as identified by clang lexer) as metrics. Additionally,
we measure the size of gzip-compressed code to get an idea of the
entropy of the code (for this metric, the size of each kernel compressed
separately and the size of the archive containing all kernels are both
presented, since the complexity estimates are expectedly different for
these two cases).

To capture the semantic complexity of the code, we use the McCabe
cyclomatic complexity [15] and Halstead complexity [16] measures based
on the control flow and the number of unique operators and operands
in the code, respectively. The McCabe complexity counts the control

3 https://github.com/jiriklepl/ParCo2024-artifact.
4 https://sourceforge.net/projects/polybench/files.
5
 https://github.com/sgrauerg/polybenchGpu.

https://github.com/jiriklepl/ParCo2024-artifact
https://sourceforge.net/projects/polybench/files
https://github.com/sgrauerg/polybenchGpu
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Parallel Computing 121 (2024) 103096 
flow statements (occurrences of if and for and lambda expressions
replacing the for-loops are the only control flow constructs present
in compared code) and adds the number of connected control flow
components (+1 for each kernel). The Halstead complexity measures
use counts of the operators and operands tokenized by the clang lexer
— operands consist of non-function identifiers (mostly local variables)
and literals (primarily numbers), operators consist of other tokens.

The aforementioned metrics are not specifically intended for cap-
turing the complexity of indexing data structure or how difficult it is
to transform its traversal order. For an illustration, transposing a data
structure and tiling its traversal with two-dimensional indexation A[i
[j] will require expressions like A[J*TSIZE + j][I*TSIZE + i]
ith a similar change to the traversal’s loop bounds and step sizes.
here Noarr code would use much simpler A[state] expression (as

he state contains the appropriate indices regardless of the transfor-
ation), and the corresponding traverser does not explicitly specify any

ounds.
To capture the transformability, we require metrics focusing on code

onstructs that direct the traversal and indexation of the data structures
nd are potentially affected by their transformations. In our domain,
hese constructs are the indexation expressions and loop statements (or
heir equivalents, such as traversers). Thus, we define two additional
etrics:

• The indexation complexity counts loop statements and all occur-
rences where a data structure is indexed (an element is being
accessed).

• The subscript complexity is a more fine-grained metric that counts
individual loop expressions (loop bounds and step sizes) and the
number of indexing sub-expressions (i.e., every bracket used for
indexing).

For instance, expression A[i][j] = B[j][i] has indexation com-
lexity 2 and subscript complexity 4. This approach is inspired by
ther presented metrics which measure a linear count of some textual
r semantic elements in the code. The most direct comparison is the
cCabe complexity — branches into specific parts in a procedure are

nalogous to the indexation expressions accessing parts of data, and the
rocedures are analogous to the loops in the code.

A traversal with lower indexation complexity is likely easier to
ransform, as fewer constructs must be changed. However, the proposed
etrics do not measure the complexity of the expressions used for

ndexation (like J*TSIZE + j) since similar expressions are usually
impler or the same in Noarr implementations compared to the C
aseline. Thus, our metrics provide a conservative estimate of the
escribed complexity related to the indexing of data structures.

.1.2. Threats to validity
The greatest concern is whether our Noarr implementation is di-

ectly comparable with the original Polybench code since we rewrote
he algorithms into the Noarr manually. To mitigate this threat to
alidity, we have imposed several rules that govern the transcription
f Polybench kernels into their Noarr counterparts:

1. All data layouts are equivalent; each dimension of a data struc-
ture is represented by a noarr::vector.

2. The loops from the baseline implementation are directly mapped
to Noarr traverser abstractions.

3. Kernels are structurally equivalent, and their computation state-
ments are in the same order and rewritten into an equivalent
form.

4. Data structure accesses happen at the equivalent computation
points and access elements in the same order.

5. The time measurements and device synchronizations (for GPU)
take place at equivalent program points.
 T

9 
Fig. 3. Comparing Noarr to plain C on Polybench/C-4.2.1.

Rewriting the algorithms according to these requirements is not
easily automatable, nor can we automatically verify that all the rules
have been upheld. As a basic precaution, we at least included scripts
that check whether the implementations produce the same result.
With additional code cross-reviews, we are reasonably certain that
the corresponding C and Noarr codes represent the same algorithm
with identical implementation optimization, only written in different
abstractions.

The code complexity comparisons are also threatened by the fact
that the source codes were written manually. To mitigate this problem,
we extract each kernel from the Polybench suite and the corresponding
Noarr implementation delimited by the scop pragma that is used
o mark the kernel code (usually for polyhedral optimizations). The
oilerplate code (running the kernels, measuring their execution times,
nd dumping the results), which is shared among all algorithms in
ach implementation, is removed from the measurements since it is
ot subject to any transformations and does not depend on the algo-
ithm. The code that initializes the input data structures is not subject
o any transformations either (transforming it could taint its use for
erification); therefore, it is removed as the boilerplate.

After the extraction, we use clang-format to ensure that the
ode is formatted consistently (among all kernels and between the two
mplementations) for the text-based metrics to be as accurate as pos-
ible. The only affected metrics are the lines of code, character count,
nd the compressed code size, as the other metrics are independent of
he formatting.

.2. Performance results

The performance results are presented as a relative speedup of Noarr
mplementations over their corresponding plain C/C++ (or CUDA)
ounterparts. Speedups above 1× indicate that the Noarr implemen-
ation enabled additional compiler optimizations, whereas speedups
elow 1× indicate possible overhead or that Noarr obfuscated the code
or the compiler and prevented some optimizations.

Fig. 3 summarizes the results of the entire Polybench in sequential
xecution. Most of the algorithms indicate that Noarr implementation
as the same performance as plain C. There are five outliers where
oarr performed better and five where it performed worse than the
aseline. Examining the compiled code indicates that the differences
re caused by the compiler selecting a different optimization path. The
EAN column shows the geometric mean of all speedups (1.00×).

Fig. 4(a) presents the speedups of a selected subset of Polybench
lgorithms that were subjected to hand-tuning (applying tiling and loop
eordering). Figs. 4(b) and 4(c) present the results of selected algo-
ithms with their outermost loop in the critical segment parallelized by

BB and OpenMP, respectively. Finally, the GPU results (using CUDA
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Fig. 4. Comparing selected algorithms Noarr vs. baseline.

raverser) are presented in Fig. 4(d). The results indicate that the addi-
ional traverser transformations applied in Noarr and the parallelization
xtensions do not have significant overhead over direct implementation
n C, TBB, OpenMP, and CUDA, respectively. The parallel processing
n a multi-socket CPU host is much more volatile, so we present the
oxplots of all ten results instead of the mean value in each graph
or TBB and OpenMP parallelization (4(b) and 4(c)). Each plot also
ncludes a MEAN column with the geometric mean of all speedups for
he algorithms in the given category.

.3. Autotuning results

To evaluate the capabilities of the Noarr Tuning abstraction, we
ave added our proposed autotuning mechanism to the Noarr imple-
entation of algorithms from the Polybench/C suite — some of which
ave been slightly modified to allow for more extensive tuning. For the
xperiment, we used OpenTuner backend (we tested all implemented
ackends, but it has no bearing on these results).

In Table 1, we present the ten algorithms that allow for arbitrary
oop reordering and tiling on some of the dimensions. The table shows
he number of loop reorders, tile sizes, tile layouts, and data layouts

all of which are different choices for the autotuner to select from.
ince each choice affects the actual data structure types and loop orders
n the algorithm, and only a small portion of that is usually explored
ntil an optimum is reached, it would not be sensible to compile all
ossible combinations in a single binary; for some of the algorithms, it
ould not be even feasible on many platforms due to the vastness of

he search space (the size of the search space is presented on the next
ow). It is thus important to recompile the algorithms in the autotuning
rocess for the actual parameters chosen by the autotuning backend.

The last four rows of the table show the number of parameters that
he autotuner can adjust (total number, number of ranges, number of
ategories, and number of permutations). It shows that some of the
resented algorithms include non-trivial combinations of the discussed
arameter types.

The speedups of the autotuned algorithms and histories of the
utotuning process are subject to the used autotuning backend and
re not presented in this paper as the focus is on automatization of
resenting the tuning search space to the autotuning backend and
ecompiling the code with the selected parameters — not on the actual
uning process itself. However, the Noarr Tuning abstraction hides the
pecifics of the tuning backend, so it can be easily replaced with any
ther, possibly better-performing, backend.

Fig. 5 shows the mean compilation (wall clock) times of the direct
eimplementation (untuned) and the recompiled code during auto-
uning (autotuned) visualized as a slowdown in comparison to the
aseline C implementation for the given algorithm; accompanied by
he geometric MEAN of the slowdowns (untuned: 3.34×, autotuned:
.16×). Recompilation uses precompiled headers to speed up the pro-
ess (as only the algorithm code changes), and the tuned parameters are
assed via a file instead of arguments to the compiler. The presented
10 
Fig. 5. Compilation times of the reimplemented algorithms compared to the baseline
C implementation.

results show that the Noarr Traverser abstraction has a significant
overhead in compilation time. However, this overhead increases only
slightly with the tuning abstraction despite the increase in complexity
of the algorithm.

The compilation time overhead increase (relative to the runtime) of
the recompiled code compared to the baseline C compilation (which
represents the minimum estimate equivalent to replacing all tuning ab-
straction with preprocessor macros) is −6.7% for covariance (min),
12 660% for atax (max), and 997.7% on average (median: 23.22%).
For the algorithms presented in Table 1, the compilation time overhead
increase is 1.64% for floyd-warshall (min), 3077% for gemver
(max), and 534.7% on average (median: 31.3%). The measurements
are extremely volatile due to the non-deterministic selection of paths
chosen by the autotuning backend.

6.4. Comparison to alternate approaches

Comparing loop transformation approaches from the code design
perspective is difficult for many reasons. A user study might be the
best way, but it is currently beyond our capabilities as it would require
the cooperation of many users. For the basic insight, we provide a
discussion comparing three typical approaches (annotations, DSL, and
native C++ with the assistance of Noarr). Details about our selection
of the compared technologies are in Section 7. We use the matrix
multiplication running example optimized for memory transfers by
blocking.

For each tool, we present an equivalent code example that imple-
ments the matrix multiplication computation kernel and specifies the
intended loop transformation (tiling and loop reordering). We focus
solely on the code differences and not on any performance differ-
ences since such would be due to independent factors such as further
optimizations or implementation details of the tools.

1 float A[I][K], B[K][J], C[I][J];
2
3 for (i = 0; i < I; i++)
4 for (j = 0; j < J; j++)
5 for (k = 0; k < K; k++)
6 mul: C[i][j] += A[i][k] * B[k][j];
7
8 // in a separate file:
9 affine(mul, {[i,j,k]->[i,k,j]})

10 affine(mul, {[i,k,j]->[oi,oj,ok,ii,ij,ik]: oi=[i/32] and ii=
i%32 and oj=[j/32] and ij=j%32 and ok=[k/32] and ik=k%3
2})

Listing 5: Loopy (using affine directives)
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Table 1
Autotuning results for selected Noarr implementations of Polybench/C-4.2.1 algorithms.

Algorithm 2mm 3mm symm trmm floyd-warshall gemver mvt doitgen heat-3d jacobi-2d

Loop reorders 4 8 2 2 6 8 4 2 6 2
Tile sizes 74 76 72 72 73 76 74 72 73 72

Tile layouts 4 8 2 2 6 8 4 2 6 2
Data layouts 32 128 8 4 2 2 2 12 4 4
Search space size 1.23 M 0.96 G 1.57 k 0.78 k 32.9 k 7.53 M 76.8 k 2.35 k 49.4 k 0.78 k
Number of parameters 13 19 7 6 6 13 9 6 7 6
- Integral ranges 4 6 2 2 3 6 4 2 3 2
- Categories 9 13 5 4 1 7 5 3 0 4
- Permutations 0 0 0 0 2 0 0 1 4 0
Listing 5 presents an implementation that relies on annotations.
t keeps the code quite close to the original (plain C) implementa-
ion since the entire transformation is described by separate affine

constructs. On the other hand, these constructs are quite complex to
understand at first glance and limited to affine transformations only.

1 Halide::Buffer<float> A{I, K}, B{K, J}, C{I, J};
2
3 Halide::Func mul{"mul"};
4 Halide::Var i{"i"}, j{"j"};
5 Halide::RDom k{0, K};
6
7 mul(i, j) = C(i, j); // Initial values
8 mul(i, j) += A(i, k) * B(k, j); // Matrix multiplication
9

10 Halide::Var ii{"i_inner"}, ij{"j_inner"};
11 Halide::RVar ik{"k_inner"};
12
13 mul.update().tile(i, j, ii, ij, 32, 32).split(k, k, ik, 32)
14 .reorder({i, j, k, ii, ij, ik});
15 mul.realize(C);

Listing 6: Halide (DSL using methods on function stages)

The Halide implementation (Listing 6) represents the DSL approach.
alide was designed for regular operations like matrix multiplication;

hus, the realization is easy, albeit a little more verbose than Loopy
nd Noarr. On the other hand, with more complex data dependencies
r irregular data traversals (for instance, the Gram–Schmidt algorithm
rom Polybench), Halide code gets quite cumbersome.

auto A = bag(scalar<float>() ^ array<'k', K>() ^ array<'i', I>());
auto B = bag(scalar<float>() ^ array<'j', J>() ^ array<'k', K>());
auto C = bag(scalar<float>() ^ array<'j', J>() ^ array<'i', I>());

auto my_order = into_blocks<'i', 'I'>(32) ^
into_blocks<'j', 'J'>(32) ^
into_blocks<'k', 'K'>(32) ^
hoist<'I', 'K', 'J', 'i', 'j', 'k'>();

traverser(A, B, C) ^ my_order | [&](auto state) {
C[state] += A[state] * B[state];

};

Listing 7: Native C++ with Noarr traversers

Finally, Listing 7 presents an implementation in Noarr. The com-
plexity is comparable both with Loopy and Halide, though the assem-
bling of structures and traverser ordering may seem a little unusual
to mainstream C++ programmers since it uses functional programming
patterns. The greatest benefit is that the type constructs for structures
and orderings can be easily reused, simplifying the design of similar
data structures and the optimization of similar algorithms. Further-
more, this code can be compiled by any C++ compiler without extra

preprocessing.
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6.5. Code complexity

In this section, we discuss the complexity of the Noarr implementa-
tion compared to the baseline C code according to the metrics described
in Section 6.1.1. The goal is to assess the implementation overhead
of the Noarr abstraction and the potential benefits it brings to the
programmer.

All the measured metrics are presented in Table 2. Most textual
metrics (characters count, code tokens, and gzipped code) suggest
about a 20% increase in the textual complexity (i.e., verbosity) of
the code due to the Noarr abstraction. This result is expected as the
Noarr constructs have generally longer names than the C constructs
they replace — this is best visible on the contrast between the code
tokens and characters count metrics, where the Noarr code has only
6.4% more individual tokens, but 21.7% more characters. The lines of
code metric contrast this trend, showing a decrease of 13.1% in the
Noarr implementation, which is primarily due to the baseline C code
containing a higher number of explicit iterations (loop statements in C,
traversers in Noarr) — each appearing on a separate line.

The McCabe complexity, which assesses the control flow, shows
an average decrease of 19% in the Noarr implementation, which is
an expected result as Noarr Traversers can substitute multiple nested
loops — this is consistent with the lines of code. The Halstead difficulty
metric gives a result consistent with the textual metrics, showing an
increase of 20% in the Noarr implementation, while the Halstead effort
metric shows an increase of 35%.

The indexation complexity and subscript complexity metrics show
36.8% and 70.5% decrease in the Noarr implementation, respectively.
This shows how much redundant data layout and traversal information
Noarr can abstract away on the two granularities discussed in Sec-
tion 6.1.1. The decrease of the explicit indices and bounds also gives
an estimation of the increase in the layout and traversal agnosticism
of the code that enables the programmer to design the algorithm
in such a way that it can be easily optimized by transforming the
data structures and traversals without changing the algorithm itself.
In Noarr, this constitutes applying the transformation objects to the
traversers and data structures that comprise the composition of the
desired transformations.

7. Related work

Optimization based on loop transformations has been addressed
from various perspectives in vast research materials, namely in the
fields of compilers, vectorization, autotuning, code generators, and
optimizations of particular scientific computations. Contemporary com-
pilers use sophisticated loop optimizers based on the polyhedral model,
such as Graphite in GCC [17] or Polly in LLVM [18]. However, these
optimizers are limited by the lack of information about the effects of
the transformations on the optimized metric.

One of the first papers [19] that addressed the loop transforma-
tions from the perspective of optimizing memory operations is over
20 years old. Since then, several models based on static predictions
have been created [17,18]. The latest innovations focus on elaborate
multi-objective scheduling for loop transforms [20].
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Table 2
Comparison of code complexity metrics between the baseline C code and the Noarr
code (negative difference means that Noarr is better).

Metric Baseline C Noarr Difference

Lines of code 452 393 −13.1%
Characters count 14 424 17 558 +21.7%
Code tokens 6157 6551 +6.4%
Gzipped code size 6011 7447 +23.9%
Gzipped archive size 3446 4115 +19.4%

McCabe complexity 189 153 −19.0%
Halstead length 6127 6521 +6.4%
Halstead vocabulary 156 205 +31.4%
Halstead volume 44 637.7 50 077.9 +12.2%
Halstead difficulty 308.6 371.6 +20.2%
Halstead effort 1.38 ⋅ 107 1.86 ⋅ 107 +34.9%

Indexation complexity 525 332 −36.8%
Subscript complexity 1126 332 −70.5%

Autotuning methods address the optimization problem by generat-
ng variations of the program and evaluating them either by sophis-
icated models or by measuring execution metrics such as execution
ime. Modern autotuning tools are often built on top of existing opti-
izers and employ methods from the machine-learning domain — for

nstance, Wu et al. [21] presented a tuning tool based on Polly [18]
hat employs Bayesian optimizations.

.1. Domain specific languages

Many works address the issue of separating the specifics of memory
ccess patterns and traversals from the algorithm by defining the algo-
ithm via some DSL with a simplified model that facilitates applying
arious transformations. We have selected Halide language [3] as a
tate-of-the-art representative with a superficially similar approach.
lthough Halide is designed for optimized image processing, their
pproach found use in deep learning algorithms [22] as well. However,
heir approach relies on a custom compilation pipeline and a runtime
ibrary, while Noarr depends solely on the C++ language.

The Halide language [3] uses a decoupling approach similar to our
ransformation of traversers via proto-structures. In Halide, a sched-
le defines traversal transformations and parallelization on the de-
ined algorithms. However, the schedules lack the extensibility and
omposability of proto-structures.

.2. Annotations

Another approach employed by various tools and compiler exten-
ions uses code annotations that specify the desired layout and loop
ransformations. The Loopy [4] system, perhaps closest to our research,
xtends the LLVM compiler and provides custom affine transformations
nd testing for the legality of loop transformation.

.3. Native tools

The projects closest to our approach can be characterized by being
uilt using native C++ abstractions and thus allowing for more seamless
nteraction with other C++ features, intrinsics, or user-defined abstrac-
ions and avoiding the necessity for custom development toolkits in
avor of existing tools for C++ development, significantly reducing

requirements on maintenance.
The C++ Standard Library already provides an abstraction for dif-

ferent traversal options via its ranges library. However, the library is
not designed for parallelism and multidimensional data layouts. The
mdspan class template can express many layouts of multidimensional
arrays but does not provide a way of expressing traversals and their
transformations.
 e
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The NVIDIA Thrust library [23] provides routines for parallel code
execution on both CPU and GPU. It is a header-only C++ library.
While offering plenty of freedom in defining systems-agnostic concur-
rent traversals via functions like thrust::for_each or
thrust::reduce, their approach is based on an iterator design
pattern restricted to 1D traversals. Furthermore, Thrust is restrained
to rather high-level use by not exposing low-level CUDA API (such as
thread or block index).

Similarly to Thrust, Kokkos [24] and RAJA [25] provide routines
for common parallel programming idioms (for_each, reduce, scan
) and they serve as portability layers for many systems such as HIP,
OpenMP, CUDA or SYCL. However, they primarily focus on platform-
agnosticism and do not provide the necessary abstractions for express-
ing traversal transformations.

The CuTe library by the CUTLASS [26] project is a header-only
library that resembles our approach. It provides a layout abstraction
for regular data structures expressed as a multilinear mapping and a
tensor wrapper that combines a given layout with some data. These
abstractions are similar to Noarr Structures (more specifically, proto-
structures and their bag wrappers) in expressiveness and general use.
This similarity is most noticeable in defining more complex layouts
via layout algebra that performs functional composition of the dif-
ferent layout objects. Their approach allows for this by defining a
linearized index space for each layout, while Noarr proto-structures
are specifically designed to be equivalent to partial functions on index
spaces. However, the CuTe library is focused almost exclusively on
tensor representations and does not provide a way to express traversal
transformations.

8. Conclusion

We presented a novel abstraction for user-guided loop transforma-
tions focusing on the traversal of regular data structures. We base the
abstraction on the Noarr library and its paradigm for layout design to
encompass loop transformations. This expansion significantly enhances
the versatility of Noarr, enabling users to optimize memory access
patterns by altering either the data structure layout, the traversal
pattern, or both via a unified mechanism of applying composable first-
class transformation objects. In addition, we introduced an abstraction
for autotuning that allows the programmer to define tuned parameters
directly in the tuned application and automatically generates necessary
control scripts for the autotuner.

Besides the benefits related to memory access optimizations, the
traverser abstraction is particularly useful for parallel processing. We
demonstrate its utility with several examples (TBB, OpenMP, and
CUDA) as proof of concept. Furthermore, we introduce an extension
of Noarr that handles the management of replicated structures in
CUDA shared memory. This functionality is particularly relevant in
General-Purpose computing on Graphics Processing Units (GPGPU)
programming.

Presented abstractions promote code independence (separation of
concerns) and reusability. They also simplify semi-automated exper-
imentation and performance tuning. Building the abstraction on top
of Noarr (which automatically handles correct indexing and ranges)
further simplifies the transformation design process and makes it less
error-prone. In addition, the abstraction can be used to statically gather
behavioral information from the code which can help to guide the
autotuning process with next-generation methods like deep learning.

Extension summary

This article extends the paper Pure C++ Approach to Optimized
arallel Traversal of Regular Data Structures [27] presented in the pro-
eedings of The 15th International Workshop on Programming Models
nd Applications for Multicores and Manycores (PMAM 2024). This

xtension introduces the novel abstraction for autotuning (Section 5)
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and refines the syntax for traversers (Section 3). The demonstration
of the utility of traversers in parallel programming (Section 4) was
extended to discuss OpenMP parallelization and a unified syntax for the
parallelized for-each loop construct across multiple parallel backends to
demonstrate its extensibility. The evaluation (Section 6) was extended
to cover the new autotuning abstraction, compilation times, and purely
syntactic complexity metrics that indicate how difficult the abstraction
may be for programmers. Most of the remaining sections were rewritten
to accommodate the aforementioned changes as well as to incorporate
feedback we received.
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