

Czech Cardiovascular Research and Innovation Days, 21.11.2023

PROGNOSIS OF CARDIOGENIC SHOCK FOLLOWING ACUTE MYOCARDIAL INFARCTION

TAMILLA MUZAFAROVA ON THE BEHALF OF THE GROUP:

TAMILLA MUZAFAROVA1, ZUZANA MOTOVSKA1, OTA HLINOMAZ2, PETR KALA3, MILAN HROMADKA4, JAN PRECEK5, JAN MROZEK6, JAN MATEJKA7, JIRI KETTNER8, JOSEF BIS9, JIRI JARKOVSKY10, 11

1CARDIOCENTER, THIRD FACULTY OF MEDICINE, CHARLES UNIVERSITY AND UNIVERSITY HOSPITAL KRALOVSKE VINOHRADY, CZECH REPUBLIC; 2FIRST DEPARTMENT OF INTERNAL MEDICINE-CARDIOANGIOLOGY, ICRC, FACULTY OF MEDICINE OF MASARYK UNIVERSITY HOSPITAL KRALOVSKE VINOHRADY, CZECH REPUBLIC; 3DEPARTMENT OF INTERNAL MEDICINE OF MASARYK UNIVERSITY HOSPITAL KRALOVSKE VINOHRADY, CZECH REPUBLIC; 3DEPARTMENT OF CARDIOLOGY, UNIVERSITY HOSPITAL AND FACULTY OF MEDICINE IN PILSEN, CHARLES UNIVERSITY AND UNIVERSITY HOSPITAL BRNO, CZECH REPUBLIC; 3DEPARTMENT OF CARDIOLOGY, UNIVERSITY HOSPITAL AND FACULTY OF MEDICINE IN PILSEN, CHARLES UNIVERSITY AND UNIVERSITY HOSPITAL BRNO, CZECH REPUBLIC; 3DEPARTMENT OF INTERNAL MEDICINE I – CARDIOLOGY, UNIVERSITY HOSPITAL OLOGY, UNIVERSITY HOSPITAL OSTRAVA, CZECH REPUBLIC; 7DEPARTMENT OF CARDIOLOGY, REGIONAL HOSPITAL ONOMOUC, CZECH REPUBLIC; GCARDIOVASCULAR DEPARTMENT, UNIVERSITY HOSPITAL OSTRAVA, CZECH REPUBLIC; 7DEPARTMENT OF CARDIOLOGY, REGIONAL HOSPITAL ONOMOUC, CZECH REPUBLIC; GCARDIOVASCULAR DEPARTMENT, UNIVERSITY HOSPITAL OSTRAVA, CZECH REPUBLIC; 7DEPARTMENT OF CARDIOLOGY, INSTITUTE FOR CLINICAL AND EXPERIMENTAL MEDICINE, CZECH REPUBLIC; 9FIRST DEPARTMENT OF INTERNAL MEDICINE, 7DEPARTMENT OF CARDIOLOGY, UNIVERSITY HOSPITAL OSTRAVA, CZECH REPUBLIC; 7DEPARTMENT OF CARDIOLOGY, REGIONAL HOSPITAL PARDUBICE, CZECH REPUBLIC; 9FIRST DEPARTMENT OF CARDIOANGIOLOGY, UNIVERSITY HOSPITAL AND EXPERIMENTAL MEDICINE, CZECH REPUBLIC; 9FIRST DEPARTMENT OF INTERNAL MEDICINE, CARDIOANGIOLOGY, UNIVERSITY, BRO, CZECH REPUBLIC; 9FIRST DEPARTMENT OF INTERNAL MEDICINE, CHARLES UNIVERSITY, HRADEC KRÁLOVÉ, CZECH REPUBLIC; 9FIRST DEPARTMENT OF INTERNAL MEDICINE, CHARLES UNIVERSITY, HRADEC KRÁLOVÉ, CZECH REPUBLIC; 11THE INSTITUTE OF BIOSTATISTICS AND ANALYSES, FACULTY OF MEDICINE, MASARYK UNIVERSITY, BRO, CZECH REPUBLIC; 11THE INSTITUTE OF HEALTH INFORMATION AND STATISTICS OF THE CZECH REPUBLIC.

DECLARATION OF INTERESTS

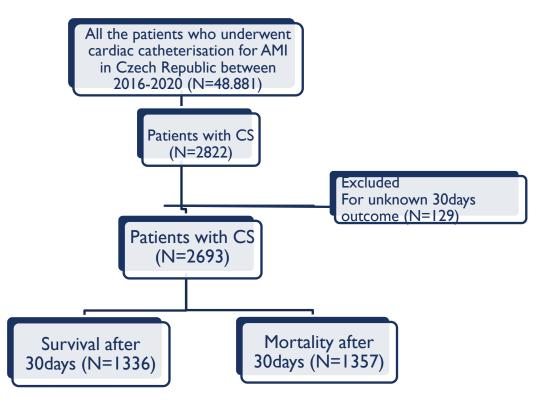
Nothing to declare

FUNDING

- The project National Institute for Research of Metabolic and Cardiovascular Diseases (Program EXCELES, ID Project No. LX22NPO5104) - Funded by the European Union – Next Generation EU
- Charles University Research Program COOPERATIO Cardiovascular Science and by the Ministry of Health of the Czech Republic, Grant No. NV19-02-00086.

BACKGROUND

Clinical definition	ESC guidelines	SHOCK Trial	IABP-SHOCK II
Cardiac disorder that results in both clinical and biochemical evidence of tissue hypoperfusion	Systolic blood pressure under 90 mmHg with appropriate fluid resuscitation with clinical (cold sweated extremities, oliguria, mental confusion, dizziness, narrow pulse pressure) and laboratory (elevated serum lactate and creatinine, metabolic acidosis) signs of hypoperfusion	Clinical criteria (hypotension—a systolic blood pressure under 90 mmHg for at least 30 min or above 90 mmHg with supportive measures, signs of end-organ hypoperfusion (cool extremities or a urine output of <30 mL per hour, and a heart rate of \geq 60 beats per minute) OR Hemodynamic criteria (cardiac index of no more than 2.2 L/min/m ² and a pulmonary-capillary wedge pressure of at least 15 mmHg)	At least one sign of impaired end-organ perfusion: (altered mental status; cold, clammy skin and extremities; oliguria < 30 mL/h; or serum lactate ≥ 2.0 mmol/L)


BACKGROUND

- Cardiogenic shock complicates 5-12 % of cases of acute myocardial infarction
- In-hospital mortality from CS complicating AMI remains consistently high at about 50%
- The number of patients treated with CS-AMI is approximately 40.000-50.000 in the United States and 60.000-70.000 in Europe per year

AIM OF THE STUDY

- To examine the incidence and outcomes of patients with cardiogenic shock complicating acute myocardial infarction in Czech Republic
- To analyze predictive factors of patients with cardiogenic shock complicating acute myocardial infarction

STUDY POPULATION

Data source:

- The National Registry of Cardiovascular Surgery and Interventions: Module of Cardiovascular Interventions (a part of the National Health Information System defined in §70 par. I of the Act No. 372/2011 Coll., on Health Services and Conditions of Their Provision (Act on Health Services))

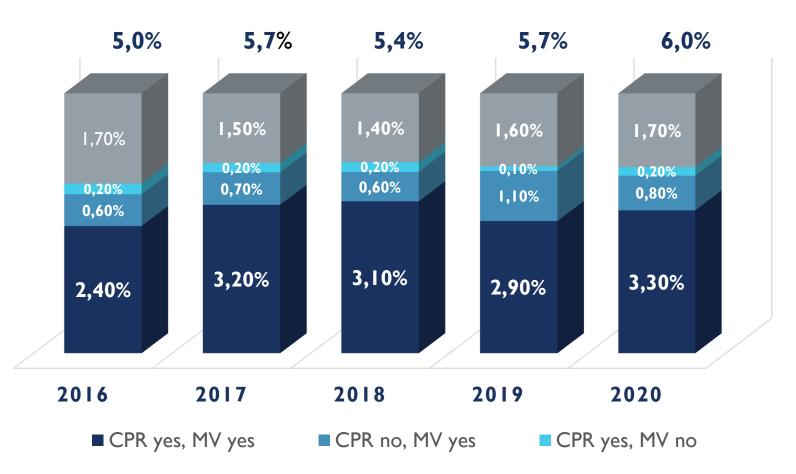
- The National Registry of Deaths

Figure. Patients inclusion flow chart

METHODOLOGY

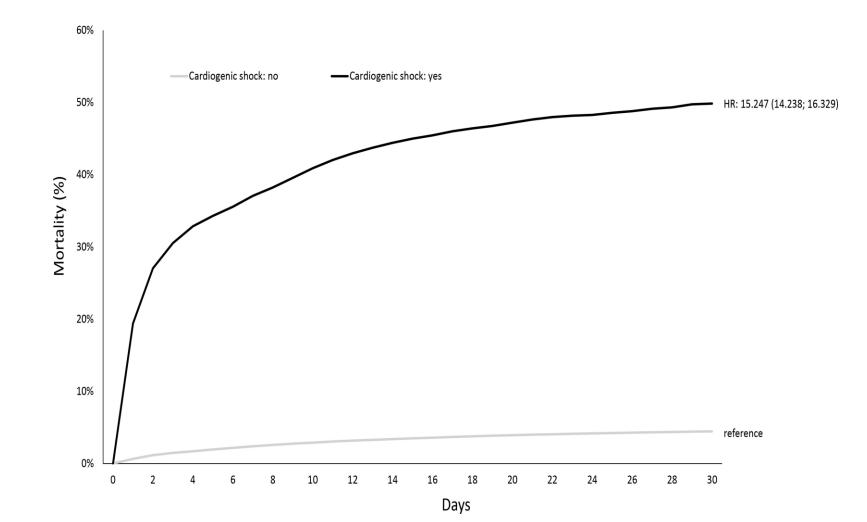
- Standard descriptive statistic
- Univariate and multivariate logistic regression, forward stepwise selection algorithm
- Survival:
 - Kaplan-Meier methodology
 - Cox-proportional hazards model
- Deyo-Charlson Comorbidity index based on the International Classification of Diseases codes
- Analysis with SPSS 28.0.1.1, p=0.05 the level of statistical significance

BASIC CHARACTERISTICS

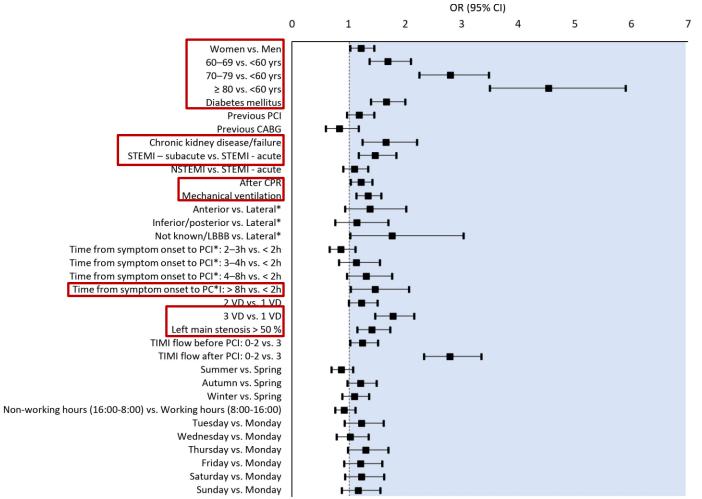

Predictor		Totally in group	30days mortality	Þ	
Total, N		2693	1357		
Female, %		27.4	54.1	0.018	
Age, mean ± S	D	67.6 ± 12.0	70.4 ± 11.6	<0.001	
Age, %	<40	1.1	40.0		
	40-49	6.5	33.7		
	50-59	16.1	32.8	<0.001	
	60-69	31.7	46.1	<0.001	
	70-79	28.3	58.5		
	>80	16.3	69.5		
Diabetes mellitus, %		23.1	59.8		
Chronic kidney disease, %		8.1	61.9	<0.001	
Previous PCI, %		17.7	54.1	0.077	
Previous CABC	Previous CABG, %		46.7	0.357	
After CPR, %		57.4	52.6	0.010	
Mechanical ventilation, %		68	52.8	<0.001	
DCCI	0-1	10.7 %	10.6 %		
	2-3	31.3 %	29.0 %	0.057	
	4-6	37.9 %	39.8 %	0.057	
	>6	20.2 %	20.7 %		

Predictor		Totally in group	30days mortality	Þ
Indication, %	STEMI acute	65.5	48.4	
	STEMI subacute	14.7	58.2	0.002
	NSTEMI	19.9	51.0	
Time from symptoms	<2	14.4 %	46.3 %	
onset to PCI, hours (only for acute STEMI),	2-3	18.8 %	42.8 %	
%	3-4	10.3 %	49.6 %	0.005
	4-8	11.7 %	53.2 %	
	>8	7.5 %	55.9 %	
Multivessel disease, %	IVD	25.7 %	42.3 %	
	2VD	28.5 %	47.5 %	<0.001
	3VD	40.5 %	56.8 %	
Left main stenosis, %		17.3	57.4	<0.001
Localization, %	Anterior	36.3	50.3	0.059
	Inferior	21.2	45.5	
	Lateral	4.3	41.9	
	LBBB	3.5	55.8	
TIMI flow before PCI, %	0	57.3 %	53.0 %	
	1	10.1 %	50.0 %	0.008
	2	14.8 %	46.4 %	0.008
	3	17.8 %	45.4 %	
TIMI flow after PCI	0	9.2 %	69.5 %	
	-T	4.6 %	69.9 %	<0.001
	2	10.4 %	72.2 %	<0.001
	3	75.8 %	43.9 %	

redictor		Totally in group	30days mortality	Þ	
Season	Spring, %	27.1	49.2		
	Summer, %	23.0	46.0	0.020	
	Autumn, %	25.9	54.2		
	Winter, %	24.0	51.8		
Daytime	Working hours, %	34.8	49.3		
	Afterworkin g hours, %	30.3	47.6	0.503	
	Unknown, %	34.9	53.9		
Weekday	Weekday, %	74.45	50.03	<0.001	
	Weekend, %	25.55	51.45	<0.001	

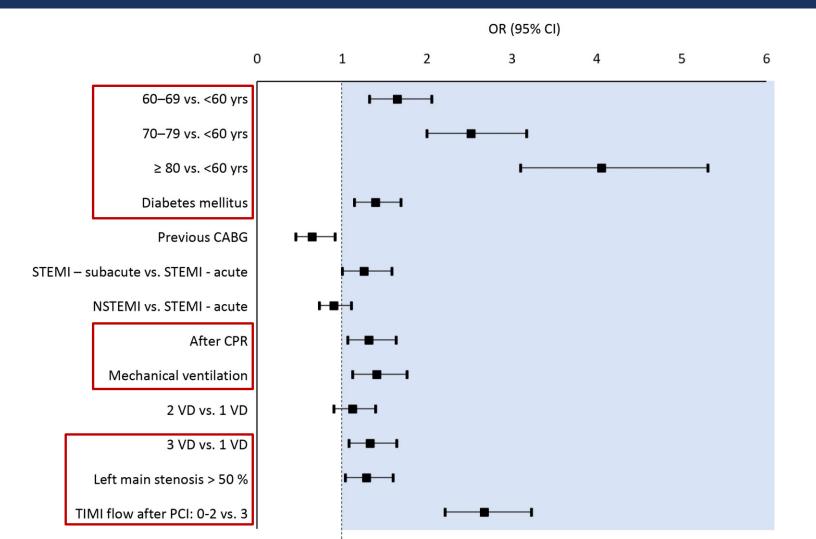

INCIDENCE OF CS-AMI DURING 2016-2020

- 56.7 % of patients required cardiopulmonary resuscitation (both out- and in-hospital)
- 67.1 % required mechanical ventilation
- 53.5 % required both mechanical ventilation and CPR



MORTALITY (2016-2020)

Year	30days mortality, %
2016	53,7
2017	51,6
2018	49,7
2019	49,3
2020	47,9
Total	50,4



CHARACTERISTICS INFLUENCING 30DAYS MORTALITY OF CARDIOGENIC SHOCK – UNIVARIATE ANALYSIS

* acute STEMI only

CHARACTERISTICS INFLUENCING 30DAYS MORTALITY OF CARDIOGENIC SHOCK – MULTIVARIATE ANALYSIS

CONCLUSION

- Cardiogenic shock complicates 5,6% of AMI cases in Czech Republic, the mortality of cardiogenic shock complicating acute myocardial infarction is 50,4%
- Outcome of patients with CS-AMI is highly affected by the patient's degree of instability, as documented by mechanical ventilation and resuscitation, and the timing of successful revascularization.
- The independent impact of comorbidities and nontraditional factors on the prognosis of these patients has not been confirmed.

PUBLISHED RESULTS

The Prognosis of Cardiogenic Shock Following Acute Myocardial Infarction an Analysis of 2693 Cases From a Prospective Multicenter Registry

Dtsch Arztebl Int 2023; 120: 538-9. DOI: 10.3238/arztebl.m2023.0102

Muzafarova, T; Motovska, Z; Hlinomaz, O; Kala, P; Hromadka, M; Precek, J; Mrozek, J; Matejka, J; Kettner, J; Bis, J; Jarkovsky, J

THANK YOU FOR YOUR ATTENTION

Acknowledgements:

- The authors acknowledge the work of all colleagues who contributed to creating the registries.
- We acknowledge the efforts of the Institute of Health Information and Statistics of the Czech Republic in developing the National Information Systems that enabled the analysis of quality data.
- The work was funded by the project National Institute for Research of Metabolic and Cardiovascular Diseases (Program EXCELES, ID Project No. LX22NPO5104) - Funded by the European Union – Next Generation EU
- The work was further supported by the Charles University Research Program COOPERATIO Cardiovascular Science and by the Ministry of Health of the Czech Republic, Grant No. NV19-02-00086.

PREDICTIVE SCORING SYSTEMS

APACHE-II and APACHE-III	SAPS-II	CARD- SHOCK	GRACE	Other published clinical, imaging and hemodynamic variables
13 physiological variables measured during the first 24 hours after ICU admission	2 physiological and 3 disease- related variables	7 variables associated with in-hospital mortality	Good discrimination and calibration for in- hospital and long-term mortality among all patients presenting	Anoxic brain damage, end-organ hypoperfusion, elevated lactate, prior CABG, ACS pathogenesis, LV ejection fraction, RV function, pulmonary artery pulsatility index
+ pathogenesis of shock, sex, race, and comorbidities	12 997 patients from 12 countries used to predict in-hospital	219 patients with all-cause CS lacked external validation	with ACS, but it is not applicable to non-ACS presentations - not applicable to non-ACS	(defined as the ratio of pulmonary artery pulse pressure to right atrial pressure), mitral regurgitation, LV stroke work, cardiac power output, SBP, number of vasopressors,
>17 000 ICU patients in US	mortality	landation	presentations	systemic inflammatory response syndrome, and TIMI (Thrombolysis in Myocardial Infarction) flow