Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Humanities
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Humanities
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Detects Pairwise Associations between SOI and BIS/BAS Subscales, making Correlation Analyses Obsolete

article in reviewed proceedings
Creative Commons License IconCreative Commons BY Icon
published version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Prossinger, Hermann
Binter, JakubORCiD Profile - 0000-0001-5304-2130WoS Profile - GRB-0175-2022Scopus Profile - 56281373300
Machová, Kamila
Říha, DanielORCiD Profile - 0000-0001-5142-4485Scopus Profile - 57195970660
Boschetti, SilviaORCiD Profile - 0000-0002-8048-4062WoS Profile - HKN-7812-2023Scopus Profile - 57830722300
Ahram, Tareq
Taiar, Redha

Show other authors

Publication date
2022
Published in
Human Interaction & Emerging Technologies (IHIET-AI 2022): Artificial Intelligence & Future Applications
Publisher / Publication place
AHFE International (USA)
ISBN / ISSN
ISBN: 978-1-79238-989-4
Metadata
Show full item record
Collections
  • Faculty of Humanities
  • Faculty of Science

This publication has a published version with DOI 10.54941/ahfe100903

Abstract
We use AI techniques to statistically rigorously analyze combinations of query responses of two personality-related questionnaires. One questionnaire probes aspects of a participant's character (SOI) and the other avoidance of aversive outcomes together with approaches to goal orientated outcomes (BIS/BAS). We use one-hot encoding, dimension reduction with a neural network (a seven-layer auto-encoder) and two clustering algorithms to detect associations between the twelve combinations of SOI and BIS/BAS groups. We discover that for most combinations more than one association exists. Traditional, fallacious statistical methods cannot find these outcomes.
Keywords
One-hot Encoding, Autoencoder, Neural Networks, DBSCAN Clustering, Spectral Clustering, BIS/BAS, SOI, Heat Maps
Permanent link
https://hdl.handle.net/20.500.14178/1763
License

Full text of this result is licensed under: Creative Commons Uveďte původ 4.0 International

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV