Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Is There a Semi-Molten Layer at the Base of the Lunar Mantle?

original article
Creative Commons License IconCreative Commons BY Icon
published version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Walterová, MichaelaORCiD Profile - 0000-0002-6779-3848WoS Profile - O-8964-2017Scopus Profile - 57194776523
Běhounková, MarieORCiD Profile - 0000-0001-8227-0685WoS Profile - C-7839-2013Scopus Profile - 16834270400
Efroimsky, Michael
Publication date
2023
Published in
Journal of Geophysical Research. Planets
Volume / Issue
128 (7)
ISBN / ISSN
ISSN: 2169-9097
Metadata
Show full item record
Collections
  • Faculty of Mathematics and Physics

This publication has a published version with DOI 10.1029/2022JE007652

Abstract
Parameterised by the Love number k(2) and the tidal quality factor Q, and inferred from lunar laser ranging (LLR), tidal dissipation in the Moon follows an unexpected frequency dependence often interpreted as evidence for a highly dissipative, melt-bearing layer encompassing the core-mantle boundary. Within this, more or less standard interpretation, the basal layer's viscosity is required to be of order 10(15)-10(16) Pa s and its outer radius is predicted to extend to the zone of deep moonquakes. While the reconciliation of those predictions with the mechanical properties of rocks might be challenging, alternative lunar interior models without the basal layer are said to be unable to fit the frequency dependence of tidal Q. The purpose of our paper is to illustrate under what conditions the frequency-dependence of lunar tidal Q can be interpreted without the need for deep-seated partial melt. Devising a simplified lunar model, in which the mantle is described by the Sundberg-Cooper rheology, we predict the relaxation strength and characteristic timescale of elastically accommodated grain boundary sliding in the mantle that would give rise to the desired frequency dependence. Along with developing this alternative model, we test the traditional model with a basal partial melt; and we show that the two models cannot be distinguished from each other by the available selenodetic measurements. Additional insight into the nature of lunar tidal dissipation can be gained either by measurements of higher-degree Love numbers and quality factors or by farside lunar seismology.
Keywords
Moon, tidal dissipation, interior structure,
Permanent link
https://hdl.handle.net/20.500.14178/2287
Show publication in other systems
WOS:001040855300001
SCOPUS:2-s2.0-85164673098
License

Full text of this result is licensed under: Creative Commons Uveďte původ 4.0 International

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV