Transferring Word-Formation Networks Between Languages

Datum vydání
2023Publikováno v
The Prague Bulletin of Mathematical LinguisticsRočník / Číslo vydání
Neuveden (120)ISBN / ISSN
ISSN: 0032-6585Metadata
Zobrazit celý záznamKolekce
Tato publikace má vydavatelskou verzi s DOI 10.14712/00326585.027
Abstrakt
We present a method for supervised cross-lingual construction of word-formation networks (WFNs). WFNs are resources capturing derivational, compositional and other relations between lexical units in a single language. Current state-of-the-art methods for automatically creating them typically rely on supervised or unsupervised pattern-matching of affixes in string representations of words, with few recent inroads into deep learning. All methods known to us work purely in a monolingual setting, limiting the use of higher-quality supervised models to high-resource languages.In this paper, we present two methods, one based on cross-lingual word alignments and translation and another based on cross-lingual word embeddings and neural networks. Both methods are capable of transfer of WFNs into languages for which no word-formational data are available. We evaluate our models on manually-annotated word-formation data from the Universal Derivations and UniMorph projects.
Klíčová slova
word formation, multilinguality, wordnet
Trvalý odkaz
https://hdl.handle.net/20.500.14178/2316Licence
Licence pro užití plného textu výsledku: Creative Commons Uveďte původ-Neužívejte dílo komerčně-Nezpracovávejte 3.0 Unported