Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-resolved circular dichroism of excitonic systems: theory and experiment on an exemplary squaraine polymer

original article
Creative Commons License IconCreative Commons BY Icon
published version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Ress, Lea
Malý, PavelORCiD Profile - 0000-0001-9244-9718WoS Profile - N-9224-2017Scopus Profile - 57188719656
Landgraf, Jann B.
Lindorfer, Dominik
Hofer, Michael
Selby, Joshua
Lambert, Christoph
Renger, Thomas
Brixner, Tobias

Show other authors

Publication date
2023
Published in
Chemical Science
Volume / Issue
14 (35)
ISBN / ISSN
ISSN: 2041-6520
Metadata
Show full item record
Collections
  • Faculty of Mathematics and Physics

This publication has a published version with DOI 10.1039/d3sc01674a

Abstract
Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7 & DEG; between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.
Keywords
Time-resolved spectroscopy, Circular dichroism, Chiral spectroscopy
Permanent link
https://hdl.handle.net/20.500.14178/2354
Show publication in other systems
WOS:001051940400001
SCOPUS:2-s2.0-85169509366
PUBMED:37712031
License

Full text of this result is licensed under: Creative Commons Uveďte původ 3.0 Unported

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV