Přeskočit na obsah

Repozitář publikační činnosti

    • čeština
    • English
  • čeština 
    • čeština
    • English
  • Přihlásit se
Zobrazit záznam 
  •   Repozitář publikační činnosti UK
  • Fakulty
  • Matematicko-fyzikální fakulta
  • Zobrazit záznam
  • Repozitář publikační činnosti UK
  • Fakulty
  • Matematicko-fyzikální fakulta
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

On ordered Ramsey numbers of matchings versus triangles

příspěvek v recenzovaném konferenčním sborníku
Creative Commons License IconCreative Commons BY IconCreative Commons NC IconCreative Commons NC Icon
postprint
  • žádná další verze
Thumbnail
File can be accessed.Získat publikaci
Autor
Balko, MartinORCiD Profile - 0000-0001-9688-9489WoS Profile - I-2677-2017Scopus Profile - 55603104800
Poljak, Marian
Král’, Daniel
Nešetřil, Jaroslav

Zobrazit další autory

Datum vydání
2023
Publikováno v
Proceedings of the 12th European Conference onCombinatorics, Graph Theory and Applications
Nakladatel / Místo vydání
Masaryk University Press (Praha)
ISBN / ISSN
ISBN: 978-80-280-0344-9eISSN: 2788-3116
Metadata
Zobrazit celý záznam
Kolekce
  • Matematicko-fyzikální fakulta

Tato publikace má vydavatelskou verzi s DOI 10.5817/CZ.MUNI.EUROCOMB23-013

Abstrakt
For graphs $G^<$ and $H^<$ with linearly ordered vertex sets, the \emph{ordered Ramsey number} $r_<(G^<,H^<)$ is the smallest positive integer $N$ such that any red-blue coloring of the edges of the complete ordered graph $K^<_N$ on $N$ vertices contains either a blue copy of $G^<$ or a red copy of $H^<$.Motivated by a problem of Conlon, Fox, Lee, and Sudakov (2017), we study the numbers $r_<(M^<,K^<_3)$ where $M^<$ is an ordered matching on $n$ vertices.We prove that almost all $n$-vertex ordered matchings $M^<$ with interval chromatic number 2 satisfy $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{5/4})$ and $r_<(M^<,K^<_3) \in O(n^{7/4})$, improving a recent result by Rohatgi (2019).We also show that there are $n$-vertex ordered matchings $M^<$ with interval chromatic number at least 3 satisfying $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{4/3})$, which asymptotically matches the best known lower bound on these off-diagonal ordered Ramsey numbers for general $n$-vertex ordered matchings.
Klíčová slova
ordered Ramsey numbers, matchings, triangles
Trvalý odkaz
https://hdl.handle.net/20.500.14178/2491
Licence

Licence pro užití plného textu výsledku: Creative Commons Uveďte původ-Neužívejte dílo komerčně-Nezpracovávejte 4.0 International

Zobrazit podmínky licence

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV
 

 

O repozitáři

O tomto repozitářiAkceptované druhy výsledkůPovinné popisné údajePoučeníCC licence

Procházet

Vše v DSpaceKomunity a kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slovaTato kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slova

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV