Zobrazit minimální záznam

Why and how to construct an epistemic justification of machine learning?

dc.contributor.authorŠpelda, Petr
dc.contributor.authorStřítecký, Vít
dc.date.accessioned2024-09-09T15:15:28Z
dc.date.available2024-09-09T15:15:28Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.14178/2604
dc.description.abstractConsider a set of shuffled observations drawn from a fixed probability distribution over some instance domain. What enables learning of inductive generalizations which proceed from such a set of observations? The scenario is worthwhile because it epistemically characterizes most of machine learning. This kind of learning from observations is also inverse and ill-posed. What reduces the non-uniqueness of its result and, thus, its problematic epistemic justification, which stems from a one-to-many relation between the observations and many learnable generalizations? The paper argues that this role belongs to any complexity regularization which satisfies Norton's Material Theory of Induction (MTI) by localizing the inductive risk to facts in the given domain. A prime example of the localization is the Lottery Ticket Hypothesis (LTH) about overparameterized neural networks. The explanation of MTI's role in complexity regularization of neural networks is provided by analyzing the stability of Empirical Risk Minimization (ERM), an inductive rule that controls the learning process and leads to an inductive generalization on the given set of observations. In cases where ERM might become asymptotically unstable, making the justification of the generalization by uniform convergence unavailable, LTH and MTI can be used to define a local stability. A priori, overparameterized neural networks are such cases and the combination of LTH and MTI can block ERM's trivialization caused by equalizing the strengths of its inductive support for risk minimization. We bring closer the investigation of generalization in artificial neural networks and the study of inductive inference and show the division of labor between MTI and the optimality justifications (developed by Gerhard Schurz) in machine learning.en
dc.language.isoen
dc.relation.urlhttps://doi.org/10.1007/s11229-024-04702-z
dc.rightsCreative Commons Uveďte původ 4.0 Internationalcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.titleWhy and how to construct an epistemic justification of machine learning?en
dcterms.accessRightsembargoedAccess
dcterms.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.date.updated2024-09-09T15:15:28Z
dc.subject.keywordLottery ticket hypothesisen
dc.subject.keywordComplexity regularizationen
dc.subject.keywordMaterial theory of inductionen
dc.subject.keywordEmpirical risk minimizationen
dc.identifier.eissn1573-0964
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/MSM//LX22NPO5101
dc.date.embargoStartDate2024-09-09
dc.date.embargoEndDate2024-08-10
dc.type.obd73
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s11229-024-04702-z
dc.identifier.utWos001287981600001
dc.identifier.eidScopus2-s2.0-85200732008
dc.identifier.obd650392
dc.subject.rivPrimary50000::50600::50601
dcterms.isPartOf.nameSynthese
dcterms.isPartOf.issn0039-7857
dcterms.isPartOf.journalYear2024
dcterms.isPartOf.journalVolume204
dcterms.isPartOf.journalIssue2
uk.faculty.primaryId118
uk.faculty.primaryNameFakulta sociálních vědcs
uk.faculty.primaryNameFaculty of Social Sciencesen
uk.department.primaryId2492
uk.department.primaryNameKatedra bezpečnostních studiícs
uk.department.primaryNameDepartment of Security Studiesen
dc.description.pageRange1-24
dc.type.obdHierarchyCsČLÁNEK V ČASOPISU::článek v časopisu::původní článekcs
dc.type.obdHierarchyEnJOURNAL ARTICLE::journal article::original articleen
dc.type.obdHierarchyCode73::152::206en
uk.displayTitleWhy and how to construct an epistemic justification of machine learning?en


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam