Zobrazit minimální záznam

Learnability of state spaces of physical systems is undecidable

dc.contributor.authorŠpelda, Petr
dc.contributor.authorStřítecký, Vít
dc.date.accessioned2024-11-06T08:41:11Z
dc.date.available2024-11-06T08:41:11Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.14178/2678
dc.description.abstractDespite an increasing role of machine learning in science, there is a lack of results on limits of empirical exploration aided by machine learning. In this paper, we construct one such limit by proving undecidability of learnability of state spaces of physical systems. We characterize state spaces as binary hypothesis classes of the computable Probably Approximately Correct learning framework. This leads to identifying the first limit for learnability of state spaces in the agnostic setting. Further, using the fact that finiteness of the combinatorial dimension of hypothesis classes is undecidable, we derive undecidability for learnability of state spaces as well. Throughout the paper, we try to connect our formal results with modern neural networks. This allows us to bring the limits close to the current practice and make a first step in connecting scientific exploration aided by machine learning with results from learning theory.en
dc.language.isoen
dc.relation.urlhttps://doi.org/10.1016/j.jocs.2024.102452
dc.rightsCreative Commons Uveďte původ 4.0 Internationalcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.titleLearnability of state spaces of physical systems is undecidableen
dcterms.accessRightsembargoedAccess
dcterms.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.date.updated2024-11-06T08:41:11Z
dc.subject.keywordundecidabilityen
dc.subject.keywordmachine learningen
dc.subject.keywordprobably approximately correct learningen
dc.subject.keywordscientific explorationen
dc.subject.keyworddeep neural networksen
dc.identifier.eissn1877-7511
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/MSM//EH22_008/0004595
dc.date.embargoStartDate2024-11-06
dc.date.embargoEndDate2024-10-04
dc.type.obd73
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.jocs.2024.102452
dc.identifier.utWos001333517500001
dc.identifier.eidScopus2-s2.0-85205572580
dc.identifier.obd653616
dc.subject.rivPrimary50000::50600::50601
dcterms.isPartOf.nameJournal of Computational Science
dcterms.isPartOf.issn1877-7503
dcterms.isPartOf.journalYear2024
dcterms.isPartOf.journalVolume83
dcterms.isPartOf.journalIssueDecember 2024
uk.faculty.primaryId118
uk.faculty.primaryNameFakulta sociálních vědcs
uk.faculty.primaryNameFaculty of Social Sciencesen
uk.department.primaryId2492
uk.department.primaryNameKatedra bezpečnostních studiícs
uk.department.primaryNameDepartment of Security Studiesen
dc.description.pageRange1-7
dc.type.obdHierarchyCsČLÁNEK V ČASOPISU::článek v časopisu::původní článekcs
dc.type.obdHierarchyEnJOURNAL ARTICLE::journal article::original articleen
dc.type.obdHierarchyCode73::152::206en
uk.displayTitleLearnability of state spaces of physical systems is undecidableen


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam