Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Social Sciences
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Social Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Meta-Analysis of Social Science Research: A Practitioner’s Guide

original article
Creative Commons License IconCreative Commons BY IconCreative Commons NC IconCreative Commons NC Icon
submitted version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Iršová, ZuzanaORCiD Profile - 0000-0002-0753-8124WoS Profile - K-6387-2016Scopus Profile - 37080793200
Doucouliagos, Hristos
Havránek, TomášORCiD Profile - 0000-0002-3158-2539WoS Profile - M-8888-2015Scopus Profile - 24453189000
Stanley, T. D.

Show other authors

Publication date
2024
Published in
Journal of Economic Surveys
Volume / Issue
38 (5)
ISBN / ISSN
ISSN: 0950-0804
ISBN / ISSN
eISSN: 1467-6419
Metadata
Show full item record
Collections
  • Faculty of Social Sciences

This publication has a published version with DOI 10.1111/joes.12595

Abstract
This paper provides concise, nontechnical, step-by-step guidelines on how to conduct a modern meta-analysis, especially in social sciences.We treat publication bias, p-hacking, and heterogeneity as phenomena meta-analysts must always confront. To this end, we provide concrete methodological recommendations. Meta-analysis methods have advanced notably over the last few years. Yet many meta-analyses still rely on outdated approaches, some ignoring publication bias and systematic heterogeneity. While limitations persist, recently developed techniques allow robust inference even in the face of formidable problems in the underlying empirical literature. The purpose of this paper is to summarize the state of theart in a way accessible to aspiring meta-analysts in any field. We also discuss how meta-analysts can use advances in artificial intelligence to work more efficiently.
Keywords
meta-analysis, publication bias, p-hacking, artificial intelligence, model uncertainty
Permanent link
https://hdl.handle.net/20.500.14178/2704
Show publication in other systems
WOS:001116485800001
SCOPUS:2-s2.0-85177571549
License

Full text of this result is licensed under: Creative Commons Uveďte původ-Neužívejte dílo komerčně-Nezpracovávejte 4.0 International

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV