Spurious precision in meta-analysis of observational research

Datum vydání
2025Publikováno v
Nature CommunicationsNakladatel / Místo vydání
Nature Publishing GroupRočník / Číslo vydání
16 (1)ISBN / ISSN
ISSN: 2041-1723ISBN / ISSN
eISSN: 2041-1723Informace o financování
GA0//GM23-05227M
GA0//GA24-11583S
MSM//LX22NPO5101
Metadata
Zobrazit celý záznamKolekce
Tato publikace má vydavatelskou verzi s DOI 10.1038/s41467-025-63261-0
Abstrakt
Meta-analysis assigns more weight to studies with smaller standard errors to maximize the precision of the overall estimate. In observational settings, however, standard errors are shaped by methodological decisions. These decisions can interact with publication bias and p-hacking, potentially leading to spuriously precise results reported by primary studies. Here we show that such spurious precision undermines standard meta-analytic techniques, including inverse-variance weighting and bias corrections based on the funnel plot. Through simulations and large-scale empirical applications, we find that selection models do not resolve the issue. In some cases, a simple unweighted mean of reported estimates outperforms widely used correction methods. We introduce MAIVE (Meta-Analysis Instrumental Variable Estimator), an approach that reduces bias by using sample size as an instrument for reported precision. MAIVE offers a simple and robust solution for improving the reliability of meta-analyses in the presence of spurious precision.
Klíčová slova
publication bias and p-hacking, Spurious precision, meta-analytic, MAIVE
Trvalý odkaz
https://hdl.handle.net/20.500.14178/3360Licence
Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International
