Broadband Dynamic Rupture Modeling With Fractal Fault Roughness, Frictional Heterogeneity, Viscoelasticity and Topography: The 2016 M-w 6.2 Amatrice, Italy Earthquake
Author
Taufiqurrahman, T
Gabriel, A. -A
Ulrich, T
Publication date
2022Published in
Geophysical Research LettersVolume / Issue
49 (22)ISBN / ISSN
ISSN: 0094-8276Metadata
Show full item recordCollections
This publication has a published version with DOI 10.1029/2022GL098872
Abstract
Advances in physics-based earthquake simulations, utilizing high-performance computing, have been exploited to better understand the generation and characteristics of the high-frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challenging. We here propose a new approach to simulate data-fused broadband ground motion synthetics using 3D dynamic rupture modeling of the 2016 M-w 6.2 Amatrice, Italy earthquake. We augment a smooth, best-fitting model from Bayesian dynamic rupture source inversion of strong-motion data (<1 Hz) with fractal fault roughness, frictional heterogeneities, viscoelastic attenuation, and topography. The required consistency to match long periods allows us to quantify the role of small-scale dynamic source heterogeneities, such as the 3D roughness drag, from observational broadband seismic waveforms. We demonstrate that 3D data-constrained fully dynamic rupture synthetics show good agreement with various observed ground-motion metrics up to similar to 5 Hz and are an important avenue toward non-ergodic, physics-based seismic hazard assessment.
Keywords
ground-motion simulations, discontinuous galerkin method, magnitude 9 earthquakes, synthetic seismograms, 3d simulations, stochastic synthetics, unstructured meshes, 0-10 hz, variability, california
Permanent link
https://hdl.handle.net/20.500.14178/1857License
Full text of this result is licensed under: Creative Commons Uveďte původ 4.0 International