Zobrazit minimální záznam

Dynamics, interactions and delays of the 2019 Ridgecrest rupture sequence

dc.contributor.authorTaufiqurrahman, Taufiq
dc.contributor.authorGabriel, Alice-Agnes
dc.contributor.authorLi, Duo
dc.contributor.authorUlrich, Thomas
dc.contributor.authorLi, Bo
dc.contributor.authorCarena, Sara
dc.contributor.authorVerdecchia, Alessandro
dc.contributor.authorGallovič, František
dc.date.accessioned2024-02-29T16:10:38Z
dc.date.available2024-02-29T16:10:38Z
dc.date.issued2023
dc.identifier.urihttps://hdl.handle.net/20.500.14178/2278
dc.description.abstractThe observational difficulties and the complexity of earthquake physics have rendered seismic hazard assessment largely empirical. Despite increasingly high-quality geodetic, seismic and field observations, data-driven earthquake imaging yields stark differences and physics-based models explaining all observed dynamic complexities are elusive. Here we present data-assimilated three-dimensional dynamic rupture models of California's biggest earthquakes in more than 20 years: the moment magnitude (M-w) 6.4 Searles Valley and M-w 7.1 Ridgecrest sequence, which ruptured multiple segments of a non-vertical quasi-orthogonal conjugate fault system(1). Our models use supercomputing to find the link between the two earthquakes. We explain strong-motion, teleseismic, field mapping, high-rate global positioning system and space geodetic datasets with earthquake physics. We find that regional structure, ambient long- and short-term stress, and dynamic and static fault system interactions driven by overpressurized fluids and low dynamic friction are conjointly crucial to understand the dynamics and delays of the sequence. We demonstrate that a joint physics-based and data-driven approach can be used to determine the mechanics of complex fault systems and earthquake sequences when reconciling dense earthquake recordings, three-dimensional regional structure and stress models. We foresee that physics-based interpretation of big observational datasets will have a transformative impact on future geohazard mitigation.en
dc.language.isoen
dc.relation.urlhttps://doi.org/10.1038/s41586-023-05985-x
dc.rightsCreative Commons Uveďte původ 4.0 Internationalcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.titleDynamics, interactions and delays of the 2019 Ridgecrest rupture sequenceen
dcterms.accessRightsopenAccess
dcterms.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.date.updated2024-02-29T16:10:38Z
dc.subject.keywordDynamicsen
dc.subject.keywordinteractionsen
dc.subject.keyworddelaysen
dc.subject.keyword2019en
dc.subject.keywordRidgecresten
dc.subject.keywordruptureen
dc.subject.keywordsequenceen
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/UK/COOP/COOP
dc.date.embargoStartDate2024-02-29
dc.type.obd73
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1038/s41586-023-05985-x
dc.identifier.utWos001001139300007
dc.identifier.eidScopus2-s2.0-85160234521
dc.identifier.obd641315
dc.identifier.pubmed37225989
dc.subject.rivPrimary10000::10500
dcterms.isPartOf.nameNature
dcterms.isPartOf.issn0028-0836
dcterms.isPartOf.journalYear2023
dcterms.isPartOf.journalVolume618
dcterms.isPartOf.journalIssue7964
uk.faculty.primaryId116
uk.faculty.primaryNameMatematicko-fyzikální fakultacs
uk.faculty.primaryNameFaculty of Mathematics and Physicsen
uk.department.primaryId1276
uk.department.primaryNameKatedra geofyzikycs
uk.department.primaryNameDepartment of Geophysicsen
dc.description.pageRange308-322
dc.type.obdHierarchyCsČLÁNEK V ČASOPISU::článek v časopisu::původní článekcs
dc.type.obdHierarchyEnJOURNAL ARTICLE::journal article::original articleen
dc.type.obdHierarchyCode73::152::206en
uk.displayTitleDynamics, interactions and delays of the 2019 Ridgecrest rupture sequenceen


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam