Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at √s=13 TeV

original article
Creative Commons License IconCreative Commons BY Icon
published version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Tumasyan, A.
Adam, W.
Andrejkovic, J. W.
Bergauer, T.
Chatterjee, S.
Damanakis, K.
Dragicevic, M.
Del Valle, A. Escalante
Hussain, P. S.
Jeitler, M.
Finger, MichaelORCiD Profile - 0000-0003-3155-2484WoS Profile - P-9117-2017Scopus Profile - 8435121500
Finger, MiroslavORCiD Profile - 0000-0002-7828-9970WoS Profile - P-7005-2017Scopus Profile - 55708019600
Květoň, AntonínORCiD Profile - 0000-0001-8197-1914WoS Profile - AAA-9178-2020Scopus Profile - 57188628481

Show other authors

Publication date
2023
Published in
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume / Issue
844 (2023)
ISBN / ISSN
ISSN: 0370-2693
Metadata
Show full item record
Collections
  • Faculty of Mathematics and Physics

This publication has a published version with DOI 10.1016/j.physletb.2023.137813

Abstract
A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016-2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb-1. The search is sensitive to resonances with masses between 1.3 and 6 TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7 TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Keywords
CMS, Diboson resonances, Substructure,
Permanent link
https://hdl.handle.net/20.500.14178/2360
Show publication in other systems
WOS:001053536800001
SCOPUS:2-s2.0-85167995430
License

Full text of this result is licensed under: Creative Commons Uveďte původ 4.0 International

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV