Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tidal Heating in a Subsurface Magma Ocean on Io Revisited

original article
Creative Commons License IconCreative Commons BY Icon
published version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Aygun, Burak
Čadek, OndřejORCiD Profile - 0000-0001-8331-3093WoS Profile - P-6527-2016Scopus Profile - 6701410122
Publication date
2024
Published in
Geophysical Research Letters
Volume / Issue
51 (10)
ISBN / ISSN
ISSN: 0094-8276
ISBN / ISSN
eISSN: 1944-8007
Metadata
Show full item record
Collections
  • Faculty of Mathematics and Physics

This publication has a published version with DOI 10.1029/2023GL107869

Abstract
We investigate the tidal dissipation in Io's hypothetical fluid magma ocean using a new approach based on the solution of the 3D Navier-Stokes equations. Our results indicate that the presence of a shallow magma ocean on top of a solid, partially molten layer leads to an order of magnitude increase in dissipation at low latitudes. Tidal heating in Io's magma ocean does not correlate with the distribution of hot spots, and is maximum for an ocean thickness of about 1 km and a viscosity of less than 104 Pa s. Due to the Coriolis effect, the k2 Love number can depend on the harmonic order. We show that the analysis of k2 may not reveal the presence of a fluid magma ocean if the ocean thickness is less than 2 km. If the fluid layer is thicker than 2 km, k20 approximate to k22/2 approximate to 0.7. Jupiter's moon Io is the most active volcanic body in the Solar System. Although it is generally accepted that Io's volcanic activity is driven by the heat generated by tidal friction, the origin and the distribution of tidal heating within Io's interior remain a subject of debate. Here we investigate the tidal dissipation in Io's hypothetical fluid magma ocean using a new approach based on the solution of general equations describing the motion of viscous fluid. Our results indicate that the presence of a shallow magma ocean on top of a solid, partially molten layer leads to an order of magnitude increase in dissipation at low latitudes. Tidal heating in Io's magma ocean does not correlate with the distribution of hot spots, and is maximum for an ocean thickness of about 1 km and a viscosity of less than 104 Pa s. We also discuss the sensitivity of Io's gravity signature to the presence of a magma ocean and provide estimates of gravitational perturbations induced by tidal deformation. The presence of a shallow magma ocean on top of a partially molten layer leads to a strong increase in tidal dissipation at low latitudes Due to the Coriolis effect, the degree-2 Love numbers for models with a magma ocean can depend on the harmonic order The tidal Love numbers are not sensitive to the presence of a fluid magma ocean if the thickness of the fluid layer is less than 2 km
Keywords
tidal dissipation, magma ocean, Io, love numbers,
Permanent link
https://hdl.handle.net/20.500.14178/2746
Show publication in other systems
WOS:001219662700001
SCOPUS:2-s2.0-85192915429
License

Full text of this result is licensed under: Creative Commons Uveďte původ 4.0 International

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV