Přeskočit na obsah

Repozitář publikační činnosti

    • čeština
    • English
  • čeština 
    • čeština
    • English
  • Přihlásit se
Zobrazit záznam 
  •   Repozitář publikační činnosti UK
  • Fakulty
  • Lékařská fakulta v Plzni
  • Zobrazit záznam
  • Repozitář publikační činnosti UK
  • Fakulty
  • Lékařská fakulta v Plzni
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

EVIDENCE BASED SELECTION OF HYPERPARAMETERS FOR EPITHELIAL SEGMENTATION IN WHOLE SLIDE IMMUNOHISTOCHEMISTRY IMAGES: FROM NORMAL MUCOSA TO COLORECTAL CANCER

původní článek
Creative Commons License IconCreative Commons BY Icon
en
preprint
  • žádná další verze
Thumbnail
File can be accessed.Získat publikaci
Autor
Pavlov, Sergii
Burlaka, Bogdan
Sobhe Abdelhamid Mahmoud, Esraa
Ye, Wenjing
Robota, Dmytro
Ambrożkiewicz, FilipORCiD Profile - 0000-0001-6850-780XScopus Profile - 56964276200
Hošek, PetrORCiD Profile - 0000-0002-9359-4770WoS Profile - AGT-0521-2022Scopus Profile - 55322449500
Jiřík, MiroslavORCiD Profile - 0000-0002-8002-2079WoS Profile - S-4251-2017Scopus Profile - 40461551400
Liška, VáclavORCiD Profile - 0000-0002-5226-0280WoS Profile - Q-4402-2017Scopus Profile - 8705914800
Hemminki, Kari JussiORCiD Profile - 0000-0002-2769-3316
Trailin, AndriyORCiD Profile - 0000-0001-8888-0759Scopus Profile - 6507189062

Zobrazit další autory

Datum vydání
2026
Informace o financování
MZ0//NU21-03-00506
MZ0//NW24-03-00521
MSM//EH22_008/0004644
Metadata
Zobrazit celý záznam
Kolekce
  • Lékařská fakulta v Plzni
Abstrakt
Background. Accurate delineation of the epithelial compartment is a critical prerequisite for reproducible quantitative analysis in digital pathology, particularly in colorectal cancer (CRC) where malignant glands determine most prognostic and biomarker-driven readouts. However, robust and transferable epithelial segmentation strategies for immunohistochemistry (IHC) whole-slide images remain insufficiently standardized.Methods. We implemented a two-stage experimental design to optimize and validate deep learning-based epithelial segmentation on DAB hematoxylin IHC images. In the first stage, U-Net hyperparameters were systematically screened on normal colorectal mucosa using a controlled factor-wise approach, evaluating encoder depth, activation function, and optimizer. Model performance was assessed using aggregated pixel-level metrics with emphasis on overlap-based measures. In the second stage, the selected configuration was transferred without modification to primary CRC tissue and used to train and evaluate two independent binary segmentation models for CD163 and CD80 IHC datasets.Results. Factor screening identified a deeper U-Net architecture with ReLU activation and RMSprop optimization as the most reliable configuration. When applied to CRC tissue, the CD163 model achieved high segmentation performance with strong agreement between predicted and ground-truth epithelial areas, while the CD80 model demonstrated consistently superior overlap metrics and near-perfect agreement in epithelial area estimation. The optimized configuration showed stable performance across markers, indicating robustness to staining heterogeneity and class imbalance.Conclusions. A structured, design-of-experiments-guided approach to U-Net parameter selection enables robust and transferable epithelial segmentation across different IHC markers in CRC. This strategy supports reproducible compartment-aware quantitative analysis and facilitates downstream biomarker assessment in digital pathology workflows.
Klíčová slova
Colorectal cancer, digital pathology, epithelial segmentation, immunohistochemistry, whole-slide imaging, U-Net, deep learning, tissue compartments, biomarker quantification.
Trvalý odkaz
https://hdl.handle.net/20.500.14178/3469
Licence

Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International

Zobrazit podmínky licence

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV
 

 

O repozitáři

O tomto repozitářiAkceptované druhy výsledkůPovinné popisné údajePoučeníCC licence

Procházet

Vše v DSpaceKomunity a kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slovaTato kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slova

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV